二阶常系数微分方程的通解公式是什么?

作者&投稿:圭德 (若有异议请与网页底部的电邮联系)
~

二阶微分方程的通解公式:y''+py'+qy=f(x),其中p,q是实常数。

自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。若函数y1和y2之比为常数,称y1和y2是线性相关的。若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。

举例

求微分方程:y"-4y'+3y=(x^2-1)e^(3x)的通解。

第一步,先求特征方程r^2-4r+3=0的根,解得r1=3, r2=1。因此齐次方程的通解是Y=C1e^(3x)+C2e^x。

又λ=3是特征方程的一个根,因此设非齐次方程的特解y*=(ax^3+bx^2+cx)e^(3x),代入原微分方程,可得6ax+2b+2(3ax^2+2bx+c)=x^2-1. 化简得6ax^2+(6a+4b)x+(2b+2c)=x^2-1,因此a=1/6, b=-1/4, c=-1/4。原微分方程的通解为:y=C1e^(3x)+C2e^x+(x^3/6-x^2/4-x/4)e^(3x)。




常系数微分方程的阶怎么求?
常系数微分方程:凡是联系自变量x,这个自变量的未知函数y=y(x)及其直到n阶导数在内的函数方程F(x,y,y′,y″,…,y(n))=0叫做常微分方程,并称n为常微分方程的阶。一、常系数微分方程的地位和作用 常微分方程是是数学与应用数学、信息与计算科学专业的一门专业必修课,在反映客观现实世...

怎样解二阶常系数线性微分方程?
二阶常系数线性微分方程一般形式y'' +p y' + qy = f(x)① (下面用到r1、r2、y1、y2、C1、C2)一、二阶常系数齐次线性方程 其一般形式y'' + py' + qy = 0 ② 即①式中的f(x) = 0,求该式通解,直接运用定理得知②的通解:y = C1y1(x) + C2y2(x)接着只需求解出y1(x)...

一阶常系数微分方程求解公式
一阶常系数微分方程求解公式y=Ce^(-2x)+x-1\/2。若式子可以导成y'+P(x)y=Q(x)的形式,利用公式y=[∫Q(x)e^(∫P(x)dx)+C]e^(-∫P(x)dx)求解。若式子可变形为y'=f(y\/x)的形式,设y\/x=u利用公式du\/(f(u)-u)=dx\/x求解。若式子可整理为dy\/f(y)=dx\/g(x)的形式,用...

如何求二阶线性常系数微分方程的通解
1、Ay''+By'+Cy=e^mx 特解 y=C(x)e^mx 2、Ay''+By'+Cy=a sinx + bcosx 特解 y=msinx+nsinx 3、Ay''+By'+Cy= mx+n 特解 y=ax 二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+...

二阶常系数线性微分方程的通解有哪些形式?
1、Ay''+By'+Cy=e^mx 特解 y=C(x)e^mx 2、Ay''+By'+Cy=a sinx + bcosx 特解 y=msinx+nsinx 3、Ay''+By'+Cy= mx+n 特解 y=ax 通解 1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)2、两根相等的实根:y=(C1+C2x)e^(r1x)3、一对共轭复根:r1=α+iβ,r...

高阶常系数微分方程的特解怎么设?
考虑 0 是否是该微分方程的特征根,(1) 0不是特征根, 设 y * = Qn(x) ( x 的一个n次多项式)(2) 0是 1 重特征根, 设 y * = x * Qn(x)(3) 0是 k 重特征根, 设 y * = x^k * Qn(x)例如: 特征方程 r (r-1)³ (r+5)² = 0 则 r1 = 0 是1 ...

一阶常系数微分方程
一阶常系数微分方程的通解公式:y'+P(x)y=Q(x)。阶指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的指数为1。导数是微积分学中重要的基础概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近...

求二阶常系数齐次线性微分方程的通解
二阶微分方程的3种通解公式如下:第一种:两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)。第二种:两根相等的实根:y=(C1+C2x)e^(r1x)。第三种:一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)。举例说明 求微分方程2y''+y'-y=0的通解。先...

一阶常系数线性微分方程的通解
一阶常系数线性微分方程的通解如下:一阶线性齐次微分方程公式:y'+P(xy)=Q(x)。Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的指数为1。通解求法:一阶线性微分方程的求解一般采用常数变易法,通过常数变易法,可求出一阶线性...

二阶常系数齐次线性微分方程的求解方法?
方法:1.二阶常系数齐次线性微分方程解法 一般形式:y”+py’+qy=0,特征方程r2+pr+q=0 特征方程r2+pr+q=0的两根为r1,r2 微分方程y”+py’+qy=0的通解 两个不相等的实根r1,r2 y=C1er1x+C2er2x 两个相等的实根r1=r2 y=(C1+C2x)er1x 一对共轭复根r1=α+iβ,r2=α-iβ ...

龙湾区19526378724: 求解二阶常系数非齐次线性微分方程的通解,详解,谢谢! -
望钩肌苷: 特征方程 2r^2+r-1=0 (2r-1)(r+1) r=1/2,r=-1 所以齐次通解 y=C1e^(x/2)+C2e^(-x) 设特解为y=ae^x y'=y''=y=ae^x 代入原方程得 2ae^x+ae^x-ae^x=2e^x a=1 因此特解y=e^x 因此非齐次通解是y=C1e^(x/2)+C2e^(-x)+e^x

龙湾区19526378724: 二阶常系数齐次线性微分方程通解 -
望钩肌苷: y'' - 2y' + 5y = 0, 设y = e^[f(x)],则 y' = e^[f(x)]*f'(x), y''= e^[f(x)]*[f'(x)]^2 + e^[f(x)]*f''(x). 0 = y'' - 2y' + 5y = e^[f(x)]*[f'(x)]^2 + e^[f(x)]*f''(x) - 2e^[f(x)]*f'(x) + 5e^[f(x)], 0 = [f'(x)]^2 + f''(x) - 2f'(x) + 5, 当f(x) = ax + b,a,b是常数时. f''(x) = 0, f'(x) = a. 0 = a^2 - 2a + 5. ...

龙湾区19526378724: 已知通解怎么求二阶常系数微分方程 -
望钩肌苷: 若函数族F是二阶常系数微分方程a*y''+b*y'+c*y=0的通解,任取F中的一个特解f,取其定义域上互异的三点u,v,w使如下3阶行列式非零: f''(u) f'(u) f(u) f''(v) f'(v) f(v) f''(w) f'(w) f(w) 则从方程组 f''(u)*a+f'(u)*b+f(u)*c=0 f''(v)*a+f'(v)*b+f(v)*c=0 f''(w)*a+f'(w)*b+f(w)*c=0 可解得a,b,c.

龙湾区19526378724: 二阶常系数非齐次微分方程y″ - 4y′+3y=2e2x的通解为y=------ -
望钩肌苷: 对应齐次方程的特征方程为 λ2-4λ+3=0, 求解可得,其特征根为 λ1=1,λ2=3, 则对应齐次方程的通解为 y1=C1ex+C2e3x. 因为非齐次项为 f(x)=e2x,且 2 不是特征方程的根, 故设原方程的特解为 y*=Ae2x, 代入原方程可得 A=-2, 所以原方程的特解为 y*=-2e2x. 故原方程的通解为 y=y1+y*=C1ex+C2e3x -2e2x,其中C1,C2为任意常数.

龙湾区19526378724: 二阶微分方程的通解公式和三角函数
望钩肌苷: 二阶微分方程的通解公式是:y=x(Acosx+Bsinx),对于一元函数来说,如果在该方程中出现因变量的二阶导数,就称为二阶(常)微分方程,其一般形式为F(x,y,y',y'')=0.在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解.在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解.具有这种性质的微分方程称为可降阶的微分方程,相应的求解方法称为降阶法.

龙湾区19526378724: 二阶常系数线性微分方程y"+y=0的通解 -
望钩肌苷: 故答案为-xex+x+2. 因为常系数线性齐次微分方程y"+y=0的通解为: y=(C1+C2 x)ex, 故 r1=r2=1为其特征方程的重根,且其特征方程为 (r-1)2=r2-2r+1, 故 a=-2,b=1. 对于非齐次微分方程为y″-2y′+y=x, 设其特解为 y*=Ax+B, 代入y″-2y′...

龙湾区19526378724: 求二阶常系数方程通解 -
望钩肌苷: 解:微分方程为y″+4y=3e^2x 特征方程为r²+4=0,r=2i或-2i;设y=ae^2x,得:a=3/8 微分方程的特解为(3e^2x)/8 微分方程的解为y=(C1cos2x+C2sin2x)+(3e^2x)/8

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网