对数函数的发展史

作者&投稿:焦治 (若有异议请与网页底部的电邮联系)
幂函数、指数函数、对数函数的历史~

对数函数的历史:
16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,於是数学家们为了寻求化简的计算方法而发明了对数。

德国的史提非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。

欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。

纳皮尔对数值计算颇有研究。他所制造的「纳皮尔算筹」,化简了乘除法运算,其原理就是用加减来代替乘除法。 他发明对数的动机是为寻求球面三角计算的简便方法,他依据一种非常独等的与质点运动有关的设想构造出所谓对数方 法,其核心思想表现为算术数列与几何数列之间的联系。在他的《奇妙的对数表的描述》中阐明了对数原理,后人称为 纳皮尔对数,记为Nap.㏒x,它与自然对数的关系为

Nap.㏒x=107㏑(107/x)
由此可知,纳皮尔对数既不是自然对数,也不是常用对数,与现今的对数有一定的距离。

瑞士的彪奇(1552-1632)也独立地发现了对数,可能比纳皮尔较早,但发表较迟(1620)。

英国的布里格斯在1624年创造了常用对数。

1619年,伦敦斯彼得所著的《新对数》使对数与自然对数更接近(以e=2.71828...为底)。

对数的发明为当时社会的发展起了重要的影响,正如科学家伽利略(1564-1642)说:「给我时间,空间和对数,我可以创造出一个宇宙」。又如十八世纪数学家拉普拉斯( 1749-1827)亦提到:「对数用缩短计算的时间来使天文学家的寿命加倍」。

最早传入我国的对数著作是《比例与对数》,它是由波兰的穆尼斯(1611-1656)和我国的薛凤祚在17世纪中叶合 编而成的。当时在lg2=0.3010中,2叫「真数」,0.3010叫做「假数」,真数与假数对列成表,故称对数表。后来改用 「假数」为「对数」。

我国清代的数学家戴煦(1805-1860)发展了多种的求对数的捷法,著有《对数简法》(1845)、《续对数简法》(1846)等。1854年,英国的数学家艾约瑟(1825-1905) 看到这些著作后,大为叹服。

当今中学数学教科书是先讲「指数」,后以反函数形式引出「对数」的概念。但在历史上,恰恰相反,对数概念不是来自指数,因为当时尚无分指数及无理指数的明确概念。布里格斯曾向纳皮尔提出用幂指数表示对数的建议。1742年 ,J.威廉(1675-1749)在给G.威廉的《对数表》所写的前言中作出指数可定义对数。而欧拉在他的名著《无穷小 分析寻论》(1748)中明确提出对数函数是指数函数的逆函数,和现在教科书中的提法一致。

对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier,1550-1617年)男爵。

在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。
那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子:
0、1、2、3、4 、5 、6 、7 、8 、9 、10 、11 、12 、13 、14 、……
1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、……
这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。
比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384。
经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。
法国著名的数学家、天文学家拉普拉斯(Pierre Simon Laplace,1749-1827)曾说:对数,可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。

历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用.
(一)
��马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.
��自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源.
(二)
��早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义.
��1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到1689年,瑞士数学家约翰·贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x和常量按任何方式构成的量叫“x的函数”,表示为yx.
��当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x和常数c而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”.
��18世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延.
(三)
��函数概念缺乏科学的定义,引起了理论与实践的尖锐矛盾.例如,偏微分方程在工程技术中有广泛应用,但由于没有函数的科学定义,就极大地限制了偏微分方程理论的建立.1833年至1834年,高斯开始把注意力转向物理学.他在和W·威伯尔合作发明电报的过程中,做了许多关于磁的实验工作,提出了“力与距离的平方成反比例”这个重要的理论,使得函数作为数学的一个独立分支而出现了,实际的需要促使人们对函数的定义进一步研究.
��后来,人们又给出了这样的定义:如果一个量依赖着另一个量,当后一量变化时前一量也随着变化,那么第一个量称为第二个量的函数.“这个定义虽然还没有道出函数的本质,但却把变化、运动注入到函数定义中去,是可喜的进步.”
��在函数概念发展史上,法国数学家富里埃的工作影响最大,富里埃深刻地揭示了函数的本质,主张函数不必局限于解析表达式.1822年,他在名著《热的解析理论》中说,“通常,函数表示相接的一组值或纵坐标,它们中的每一个都是任意的……,我们不假定这些纵坐标服从一个共同的规律;他们以任何方式一个挨一个.”在该书中,他用一个三角级数和的形式表达了一个由不连续的“线”所给出的函数.更确切地说就是,任意一个以2π为周期函数,在〔-π,π〕区间内,可以由
�表示出,其中
��富里埃的研究,从根本上动摇了旧的关于函数概念的传统思想,在当时的数学界引起了很大的震动.原来,在解析式和曲线之间并不存在不可逾越的鸿沟,级数把解析式和曲线沟通了,那种视函数为解析式的观点终于成为揭示函数关系的巨大障碍.
��通过一场争论,产生了罗巴切夫斯基和狄里克莱的函数定义.
��1834年,俄国数学家罗巴切夫斯基提出函数的定义:“x的函数是这样的一个数,它对于每个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的.”这个定义建立了变量与函数之间的对应关系,是对函数概念的一个重大发展,因为“对应”是函数概念的一种本质属性与核心部分.
��1837年,德国数学家狄里克莱(Dirichlet)认为怎样去建立x与y之间的关系无关紧要,所以他的定义是:“如果对于x的每一值,y总有完全确定的值与之对应,则y是x的函数.”
��根据这个定义,即使像如下表述的,它仍然被说成是函数(狄里克莱函数):

f(x)= 1���(x为有理数),
0���(x为无理数).

��在这个函数中,如果x由0逐渐增大地取值,则f(x)忽0忽1.在无论怎样小的区间里,f(x)无限止地忽0忽1.因此,它难用一个或几个式子来加以表示,甚至究竟能否找出表达式也是一个问题.但是不管其能否用表达式表示,在狄里克莱的定义下,这个f(x)仍是一个函数.
��狄里克莱的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义.
(四)
��生产实践和科学实验的进一步发展,又引起函数概念新的尖锐矛盾,本世纪20年代,人类开始研究微观物理现象.1930年量子力学问世了,在量子力学中需要用到一种新的函数——δ-函数,

即�ρ(x)= 0,x≠0,
∞,x=0.

��δ-函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是
��P(0)=压力/接触面=1/0=∞.
��其余点x≠0处,因无压力,故无压强,即�P(x)=0.另外,我们知道压强函数的积分等于压力,即
�函数概念就在这样的历史条件下能动地向前发展,产生了新的现代函数定义:若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元.
��函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般集合上的函数关系.
��函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”.
��设集合X、Y,我们定义X与Y的积集X×Y为
��X×Y={(x,y)|x∈X,y∈Y}.
��积集X×Y中的一子集R称为X与Y的一个关系,若(x,y)∈R,则称x与y有关系R,记为xRy.若(x,y)R,则称x与y无关系.
��现设f是X与Y的关系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么称f为X到Y的函数.在此定义中,已在形式上回避了“对应”的术语,全部使用集合论的语言了.
��从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.

对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier,1550-1617年)男爵。

在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间。纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。

当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。

那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。让我们来看看下面这个例子:

0、1、2、3、4 、5 、6 、7 、8 、9 、10 、11 、12 、13 、14 、……

1、2、4、8、16、32、64、128、256、512、1024、2048、4096、8192、16384、……

这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂。如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的加和来实现。

比如,计算64×256的值,就可以先查询第一行的对应数字:64对应6,256对应8;然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384。

纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。这种“化乘除为加减”,从而达到简化计算的思路,不正是对数运算的明显特征吗?

经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点。

所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。法国著名的数学家、天文学家拉普拉斯(Pierre Simon Laplace,1749-1827)曾说:对数,可以缩短计算时间,“在实效上等于把天文学家的寿命延长了许多倍”。

函数这个数学名词是莱布尼兹在1694年开始使用的,以描述曲线的一个相关量,如曲线的斜率或者曲线上的某一点。莱布尼兹所指的函数现在被称作可导函数,数学家之外的普通人一般接触到的函数即属此类。对于可导函数可以讨论它的极限和导数。此两者描述了函数输出值的变化同输入值变化的关系,是微积分学的基础。

1718年,约翰·贝努里(en:Johann Bernoulli)把函数定义为“一个变量的函数是指由这个变量和常量以任何一种方式组成的一种量。”1748年,约翰·贝努里的学生欧拉(Leonhard Euler)在《无穷分析引论》一书中说:“一个变量的函数是由该变量和一些数或常量以任何一种方式构成的解析表达式”。例如f(x) = sin(x) + x3。1775年,欧拉在《微分学原理》一书中又提出了函数的一个定义:“如果某些量以如下方式依赖于另一些量,即当后者变化时,前者本身也发生变化,则称前一些量是后一些量的函数。”
19世纪的数学家开始对数学的各个分支作规范整理。维尔斯特拉斯(Karl Weierstrass)提出将微积分学建立在算术,而不是几何的基础上,因而更趋向于欧拉的定义。
通过扩展函数的定义,数学家能够对一些“奇怪”的数学对象进行研究,例如不可导的连续函数。这些函数曾经被认为只具有理论价值,迟至20世纪初时它们仍被视作“怪物”。稍后,人们发现这些函数在对如布朗运动之类的物理现象进行建模时有重要的作用。
到19世纪末,数学家开始尝试利用集合论来规范数学。他们试图将每一类数学对象定义为一个集合。狄利克雷(Johann Peter Gustav Lejeune Dirichlet)给出了现代正式的函数定义(参见下文#正式定义)。狄利克雷的定义将函数视作数学关系的特例。然而对于实际应用的情况,现代定义和欧拉定义的区别可以忽略不计。


函数的发展史
直到18世纪,法国数学家达朗贝尔在进行研究中,给函数重新下了一个定义,他认为,所谓变量的函数,就是指由这些变量和常量所组成的解析表达式,即用解析式表达函数关系。后来瑞士的数学家欧拉又把函数的定义作了进一步的规范,他认为函数是能描画出的一条曲线。我们常见到的一次函数的图像、二次函数的图像...

函数是谁发明的?
函数不是谁发明的,它是一个数学概念! 1673年,莱布尼兹首次使用函数一词表示“幂”18世纪中叶,达朗贝尔与欧拉先后引出了“任意的函数”的说法在函数概念发展史上,法国数学家富里埃的工作影响最大1834年,俄国数学家罗巴切夫斯基提出函数的定义1.国际著名数学大师,沃尔夫数学奖得主,陈省身2.享有国际盛誉...

函数概念的发展史
不过,它和我们今天使用的函数一词的内涵并不一样,它表示”幂”、“坐标”、“切线长”等概念。直到18世纪,法国数学家达朗贝尔在进行研究中,给函数重新下了一个定义,他认为,所谓变量的函数,就是指由这些变量和常量所组成的解析表达式,即用解析式表达函数关系。后来瑞士的数学家欧拉又把函数的定义...

函数的历史,急!!!
分类: 教育\/学业\/考试 >> 论文报告 问题描述:我想知道函数的历史,包括函数是怎么产生的,是谁先提出这个概念的,后来函数又是怎么发展的,急!!!拜托了,谢谢 解析:数学是研究现实世界的空间形式和数量关系的.它研究的对象本来是十分具体的,但为了在比较纯粹的状况下来研究空间形式和数量关系,才不得不...

函数出现的社会背景谢谢了,大神帮忙啊
” 在函数概念发展史上,法国数学家富里埃的工作影响最大,富里埃深刻地揭示了函数的本质,主张函数不必局限于解析表达式.1822年,他在名著《热的解析理论》中说,“通常,函数表示相接的一组值或纵坐标,它们中的每一个都是任意的……,我们不假定这些纵坐标服从一个共同的规律;他们以任何方式一个挨一个.”在该书中...

对数函数的性质是什么?
产生历史:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数。德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫...

基本初等函数发展史
函数是数学的重要的基础概念之一。进一步学习的数学分析,包括极限理论、微分学、积分学、微分方程乃至泛函分析等高等学校开设的数学基础课程,无一不是以函数作为基本概念和研究对象的。其他学科如物理学等学科也是以函数的基础知识作为研究问题和解决问题的工具。函数的教学内容蕴涵着极其丰富的辩证思想,是对...

研究函数发展历史的意义是什么?
研究函数发展历史可以帮助我们了解函数在不同时期的概念和定义,以及它们的应用范围和限制。从最初的数表到随后的代数表达式,再到现代的函数概念,函数的定义和应用范围都在不断发展和完善。这种发展的历史过程反映了数学思想的变化和发展,可以帮助我们更加深入地了解数学这一学科的发展脉络。同时,研究函数...

中国数学史
这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年(公元前186年)...

指数函数的由来(背景、人、故事)
是考古学家在研究碳14含量在生物体内的残留发展起来的

文登市17371284683: 对数函数(数学函数) - 搜狗百科
楚邱培古:[答案] 对数函数的历史:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,於是数学家们为了寻求化简的计算方法而发明了对数.德国的史提非(1487-1567)在1544年所...

文登市17371284683: 幂函数、指数函数、对数函数的历史幂函数、指数函数、对数函数是什么时候发明的,是谁发明的, -
楚邱培古:[答案] 对数函数的历史:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,於是数学家们为了寻求化简的计算方法而发明了对数.德国的史提非(1487-1567)在1544年所...

文登市17371284683: 数学常识中对数的发展过程是什么?
楚邱培古: 对数的发明经历了漫长的过程,它开始于苏格兰数学家约翰•纳皮尔,他在 1594年第一次提出了对数的概念.但是,对数的真正发明和宣布又花了 20年的时间:1614 年...

文登市17371284683: 函数发展的历史 -
楚邱培古: 函数概念是全部数学概2113念中最重要的概5261念之一,纵观300年来函数概念的发展,众4102多1653数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展.本文拟通过对函数概念的发展与...

文登市17371284683: 对数的发明有何意义?在现在有什么重要应用? -
楚邱培古: 对数是由数学家约翰·纳皮尔(1550-1617)发明,这个意义无论对于当时还是现在都是非常重大.在中学数学中,我们先是学习了指数,比如2^3=8.然后,我们才学习了指数的逆运算——对数,比如求出2的多少次方才会等于8,我们可以用...

文登市17371284683: 函数概念发展的历史过程 -
楚邱培古:[答案] 函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展.本文拟通过对函数概念的发展与比较的研究,对函数概念的...

文登市17371284683: 指数函数发展历程指数函数由谁提出,一直到现在它的作用,等等,关于指数函数越具体越好. -
楚邱培古:[答案] 首先,为了简化繁重的四则运算,发明了对数,然后就发明了对数函数,然后取反函数发明了指数函数.

文登市17371284683: 函数的发展史
楚邱培古: 函数是数学的重要的基础概念之一.进一步学习的数学分析,包括极限理论、微分学、积分学、微分方程乃至泛函分析等高等学校开设的数学基础课程,无一不是以函数作...

文登市17371284683: 函数的背景和发展 -
楚邱培古: 数学是研究现实世界的空间形式和数量关系的.它研究的对象本来是十分具体的,但为了在比较纯粹的状况下来研究空间形式和数量关系,才不得不把客观对象的所有其它特征抛开不管,因此,数学的抽象完全舍弃了事物的质的内容,而仅仅保留...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网