无理数是如何发现的?

作者&投稿:潭狡 (若有异议请与网页底部的电邮联系)
无理数的发现是怎样的?~

在古希腊,研究几何是一种时尚,许多有学问的人都研究几何。毕达哥拉斯就是一位在几何学上表现出色的大数学家。当时,毕达哥拉斯手下有许多门徒,他们都是愿意为研究数学奉献一生的人。
现在我们都知道,除去整数、分数这些有理数之外,还有无理数。但那个时候如果有人说“世界上除了整数和分数之外,还存在其他的数”,那么他一定会被大家公认为是口出谬误的人,一定会被置于死地。而这个他,就是毕达哥拉斯的弟子希伯修斯。
事情要追溯到2000多年前的古希腊。那时希腊的手工业、商业、航海事业都有较快发展,促进了各国政治、经济、文化的交流,科学研究气氛也很浓厚,涌现出一批哲学家、数学家、天文学家。
这一时期最伟大的数学家毕达哥拉斯,组建了毕达哥拉斯学派,这个学派既是学习团体,又是政治、宗教团体,有着严格的清规戒律。毕达哥拉斯教他们学习数学知识,但不准把学到的知识传给外人。若是谁有了新的发现,也都归毕达哥拉斯。违背这些规定的人就要被处死。比如,会员必须宣誓“绝不把知识传授给外人”,否则将接受严重处分,甚至极刑——活埋。
规矩虽严格,但毕达哥拉斯学派对古希腊数学的发展却也作出了突出贡献。著名的勾股定理就是这个学派成员智慧的结晶,称为毕达哥拉斯定理。不过在毕达哥拉斯学派证明了勾股定理后,遇到了一个没法解决的问题:如果正方形长为1,那么它的对角线L呢?勾股定理里L=?这个数是整数还是分数呢?
照毕达哥拉斯的观点,L是一个比1大又比2小的数,所以它不是整数只能是分数。然而他们费了九牛二虎之力,也没有找出这个分数。
发现这个神秘数的是毕达哥拉斯的一个学生,勤奋好学的希伯修斯。他断言,边长是1的正方形对角线的长既不是整数,也不是分数,而是一个人们还未认识的新数。
希伯修斯的发现推翻了毕达哥拉斯的论断——“世上只有整数和分数,除此之外,就没有别的什么数了”。因此,当毕达哥拉斯知道后,感到十分恐慌,他立即下令封锁这个“发现”,并扬言,谁敢泄露给学派以外的人,立即处以极刑。
聪明的希伯修斯预感到这个发现会为他带来灭顶之灾,但因为对学术的热爱,他一边坚持自己的发现是对的,一边暗地与伙伴们进行研究。结果却一传十,十传百。毕达哥拉斯恼羞成怒,认为这个人胆敢亵渎他神圣的权威,背叛自己的学派。于是,立即下令追查泄露机密的人,这个人当然就是希伯修斯。
希伯修斯闻声逃走,却最终逃不出毕达哥拉斯学派的追兵,这其中还有他的对头克迪拉。终于,希伯斯永远地沉睡在了地中海里。可是,他发现的新成员“无理数”并没有随着他一起下沉,也没有永远地被“无理”下去。
15世纪意大利著名画家达芬奇将这种数称之为“无理的数”;17世纪德国天文学家开普勒称之为“不可名状”的数。这种叫法也算是在“纪念”毕达哥拉斯学派的“无理”吧。
无理数的存在终于得到了证实。
希伯修斯的发现,第一次向人们揭示了无理数的存在,并对2000多年后的数学发展产生了深远的影响。促使人们从依靠直觉转向依靠证明,推动了公理几何学与逻辑学的发展,并且孕育了微积分的思想萌芽。
毕达哥拉斯学派证明了勾股定理,结果促使希伯修斯发现了一种新的数,震撼了毕达哥拉斯学派的数学基石──万物皆依赖于整数。希伯修斯为了追求真理,献出了自己宝贵的生命,这就是人们称作的第一次数学危机。
古希腊数学家毕达哥拉斯

e
e的发现始於微分,当 h 逐渐接近零时,计算 之值,其结果无限接近一定值 2.71828...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数.
计算对数函数 的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数.
若将指数函数 ex 作泰勒展开,则得
以 x=1 代入上式得
此级数收敛迅速,e 近似到小数点后 40 位的数值是
将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由
透过这个级数的计算,可得
由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i,
另方面,
所以,
我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的.
甲)差分.
考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们就把这个函数书成 或 (un).数列 u 的差分 还是一个数列,它在 n 所取的值以定义为
以后我们乾脆就把 简记为
(例):数列 1, 4, 8, 7, 6, -2, ... 的差分数列为 3, 4, -1, -1, -8 ...
注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推.
差分算子的性质
(i) [合称线性]
(ii) (常数) [差分方程根本定理]
(iii)
其中 ,而 (n(k) 叫做排列数列.
(iv) 叫做自然等比数列.
(iv)' 一般的指数数列(几何数列)rn 之差分数列(即「导函数」)为 rn(r-1)
(乙).和分
给一个数列 (un).和分的问题就是要算和 . 怎麼算呢 我们有下面重要的结果:
定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则
和分也具有线性的性质:
甲)微分
给一个函数 f,若牛顿商(或差分商) 的极限 存在,则我们就称此极限值为 f 为点 x0 的导数,记为 f'(x0) 或 Df(x),亦即
若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称 为 f 的导函数,而 叫做微分算子.
微分算子的性质:
(i) [合称线性]
(ii) (常数) [差分方程根本定理]
(iii) Dxn=nxn-1
(iv) Dex=ex
(iv)' 一般的指数数列 ax 之导函数为
(乙)积分.
设 f 为定义在 [a,b] 上的函数,积分的问题就是要算图甲阴影的面积.我们的办法是对 [a,b] 作分割:
;其次对每一小段 [xi-1,xi] 取一个样本点 ;再求近似和 (见图乙);最后再取极限 (让每一小段的长度都趋近於 0).
若这个极限值存在,我们就记为 的几何意义就是图甲阴影的面积.
(事实上,连续性也「差不多」是积分存在的必要条件.)
图甲
图乙
积分算子也具有线性的性质:
定理2 若 f 为一连续函数,则 存在.(事实上,连续性也「差不多」是积分存在的必要条件.)
定理3 (微积分根本定理) 设 f 为定义在闭区间 [a,b] 上的连续函数,我们欲求积分 如果我们可以找到另一个函数 g,使得 g'=f,则
注:(1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心!
上面定理1及定理3基本上都表述著差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样.
我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满足 , g'=f (这是差分及微分的问题),那麼对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是"以简御繁"的精神.牛顿与莱布尼慈对微积分最大的贡献就在此.
甲)Taylor展开公式
这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,於是我们就想法子去找一个较「简单」的函数 g,使其跟 f 很「靠近」,那麼我们就用 g 来取代 f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清
两个问题:即如何选取简单函数及逼近的尺度.
(一) 对於连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有 n 阶的「切近」,即 ,答案就是
此式就叫做 f 在点 x0 的 n 阶 Taylor 展式.
g 在 x0 点附近跟 f 很靠近,於是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个 Taylor 级数就等於 f 自身.
值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0+f'(x0)(x-x0)) 的图形正好是一条通过点 (x0,f(x0)) 而且切於 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点 (x0,f(x0)) 的切线局部地来取代原来 f 曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在.
利用 Talor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分「一以贯之」.
复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这麼简单.
当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.)
注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对 x=0 点作 Taylor 展式.
(二) 对於离散的情形,Taylor 展开就是:
给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft 在 t=0 点具有 n 阶的「差近」.所谓在 0 点具有 n 阶差近是指:
答案是 此式就是离散情形的 Maclaurin 公式.
乙)分部积分公式与Abel分部和分公式的类推
(一) 分部积分公式:
设 u(x),v(x) 在 [a,b] 上连续,则
(二) Abel分部和分公式:
设(un),(v)为两个数列,令 sn=u1+......+un,则
上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式 的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然.
(丁)复利与连续复利 (这也分别是离散与连续之间的类推)
(一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和 yn= 显然这个数列满足差分方程 yn+1=yn(1+r)
根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式.
(二) 若考虑每年复利 m 次,则 t 年后的本利和应为
令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert
换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就是微分方程 y'=ry 的解答.
由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对於常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推.
(戊)Fubini 重和分定理与 Fubini 重积分定理(也是离散与连续之间的类推)
(一) Fubini 重和分定理:给一个两重指标的数列 (ars),我们要从 r=1 到 m,s=1到 n, 对 (ars) 作和 ,则这个和可以这样求得:光对 r 作和再对 s 作和(反过来亦然).亦即我们有
(二)Fubini 重积分定理:设 f(x,y) 为定义在 上之可积分函数,则
当然,变数再多几个也都一样.
(己)Lebesgue 积分的概念
(一) 离散的情形:给一个数列 (an),我们要估计和 ,Lebesgue 的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和.
(二)连续的情形:给一个函数 f,我们要定义曲线 y=f(x) 跟 X 轴从 a 到 b 所围出来的面积.(见下图)
Lebesgue 的想法是对 f 的影域 作分割:
函数值介 yi-1 到 yi 之间的 x 收集在一齐,令其为 , 於是 [a,b] 就相应分割成 ,取样本点 ,作近似和
让影域的分割加细,上述近似和的极限若存在的话,就叫做 f 在 [a,b] 上的 Lebesgue 积分.

毕达哥拉斯的弟子却发现正方形的边长与其对角线是不可公度的。即不论划分多小,都没有一个c可以均匀地分割正方形的边长和对角线。这就是第一个被发现的无理数√2。

建立在“任何两个量都是可公度”这一理论基础上的毕达哥拉斯学派数学大厦迅速崩坏,这一发现动摇了整数至高无上的地位,因为如果并非一切量都可公度,那么想要表示所有线段长度,光靠整数比就不够了。

他们处死了发现这个数的学生,但这抹杀不掉无理数的存在,越来越多的无理数被发现。

由于无理数的算术性质非常神秘,希腊人认为,最好完全回避采用数字的表达形式,而全神贯注于通过简明的几何体来表达量。就这样,开启了长达一千年的几何对算数绝对优势的希腊数学新篇章。

扩展资料

在公元前 6 世纪,受到毕达哥拉斯的影响,古希腊数学家们都认为,所有物理或几何的量都是一个整数或是整数的比值,称为“有理数”。

很快,他们意识到自己需要用到一些不同于有理数的数。  比如,我们可以用一个数与其自身相乘,得到它的平方;相反的运算可以得到平方根。但是,没有任何一个有理数是 2 的平方根;然而,边长为 1 的正方形的对角线正是这个值,记作 √2。

同样,为了用栅栏圈起一块 2 平方千米大的正方形场地,你要准确计算场地的周长,计算结果是 4√2 千米,这也是个无理数。一个直角边为 1 米和 2 米的直角三角形的斜边长为√5 米,这也是个无理数。( √5-1)/2 的值被用来定义最美的人体比例。

传统上,这是分割一段长度的最完美的比例,其定义方法是:较长部分与全长的比值等于较短部分与较长部分的比值——同样是个无理数。事实上,所有无理数与某一有理数进行加减乘除运算后得到的仍是无理数。

参考资料来源:百度百科-无理数



无理数是怎么发现的?这件事还要从公元前6世纪古希腊的毕达哥拉斯学派说起。

毕达哥拉斯学派的创始人是著名数学家毕达哥拉斯。他认为:“任何两条线段之比,都可以用两个整数的比来表示。”两个整数的比实际上包括了整数和分数。因此,毕达哥拉斯认为,世界上只存在整数和分数,除此以外,没有别的什么数了。

可是不久就出现了一个问题,当一个正方形的边长是1的时候,对角线的长m等于多少?是整数呢,还是分数?

根据勾股定理m2=12+12=2,m显然不是整数,因为12=1,22=4,而m2=2,所以m一定比1大,比2小。那么m一定是分数了。可是,毕达哥拉斯和他的门徒费了九牛二虎之力,也找不出这个分数。

边长为1的正方形,它的对角线m总该有个长度吧!如果m既不是整数,又不是分数,m究竟是个什么数呢?难道毕达哥拉斯错了,世界上除了整数和分数以外还有别的数?这个问题引起了毕达哥拉斯极大的苦恼。

毕达哥拉斯学派有个成员叫希伯斯,他对正方形对角线问题也很感兴趣,花费了很多时间去钻研这个问题。

毕达哥拉斯研究的是正方形的对角线和边长的比,而希伯斯却研究的是正五边形的对角线和边长的比。希伯斯发现当正五边形的边长为1时,对角线既不是整数也不是分数。希伯斯断言:正五边形的对角线和边长的比,是人们还没有认识的新数。

希伯斯的发现,推翻了毕达哥拉斯认为数只有整数和分数的理论,动摇了毕达哥拉斯学派的基础,引起了毕达哥拉斯学派的恐慌。为了维护毕达哥拉斯的威信,他们下令严密封锁希伯斯的发现,如果有人胆敢泄露出去,就处以极刑——活埋。

真理是封锁不住的。尽管毕达哥拉斯学派教规森严,希伯斯的发现还是被许多人知道了。他们追查泄密的人,追查的结果,发现泄密的不是别人,正是希伯斯本人!

这还了得!希伯斯竟背叛老师,背叛自己的学派。毕达哥拉斯学派按照教规,要活埋希伯斯,希伯斯听到风声逃跑了。

希伯斯在国外流浪了好几年,由于思念家乡,他偷偷地返回希腊。在地中海的一条海船上,毕达哥拉斯的忠实门徒发现了希伯斯:残忍地将希伯斯扔进地中海。无理数的发现人被谋杀了!

希伯斯虽然被害死了,但是无理数并没有随之而消灭。从希伯斯发现中,人们知道了除去整数和分数以外,还存在着一种新数,2就是这样的一个新数。给新发现的数起个什么名字呢?当时人们觉得,整数和分数是容易理解的,就把整数和分数合称“有理数”;而希伯斯发现的这种新数不好理解,就取名为“无理数”。

有理数和无理数有什么区别呢?

主要区别有两点:

第一,把有理数和无理数都写成小数形式时,有理数能写成有限小数或无限循环小数,比如4=4.0,0,45=8,13=0.333……而无理数只能写成无限不循环小数,比如2=1.4142……根据这一点,人们把无理数定义为无限不循环小数。

第二,所有的有理数都可以写成两个整数之比;而无理数却不能写成两个整数之比。根据这一点,有人建议给无理数摘掉“无理”的帽子,把有理数改叫“比数”,把无理数改叫“非比数”。本来嘛,无理数并不是不讲道理,只是人们最初对它不太理解罢了,利用有理数和无理数的主要区别,可以证明2是无理数,使用的方法是反证法。

证明2是无理数。

证明:假设2不是无理数,而是有理数。

既然2是有理数,它必然可以写成两个整数之比的形式:

2=pq

又由于p和q有公因数可以约去,所以可以认为pq为既约分数。

把2=pq两边平方,得:2=p2q2

即2q2=p2

由于2q2是偶数,p必定为偶数,设p=2m

由2q2=4m2

得q2=2m2

同理q必然也为偶数,设q=2n。

既然p和q都是偶数,它们必有公因数2,这与前面假设pq是既约分数矛盾。这个矛盾是由假设2是有理数引起的。因此2不是有理数,而应该是无理数。

无理数可以用线段长度来表示。下面是在数轴上确定某些无理数位置的方法,其中2,3,5……都是无理数。具体做法是:

在数轴上,以原点O为一个顶点,以从O到1为边作一个正方形。根据勾股定理有:

OA2=12+12=2

OA=2

以O为圆心,OA为半径画弧与OX轴交于一点,该点的坐标为2,也就是说在数轴上找到了表示2的点;以2点引垂直于OX轴的直线,与正方形一边的延长线交于B,同理可得OB=3,可在数轴上同法得到3。还可以得到5,6,7,等等无理数点。

也可以用作直角三角形的方法,得到表示,2,3,5等无理数的发现。

有理数与无理数合称实数。初中阶段遇到的数都是实数。今后还要陆续学到许多无理数,如e,sin10,log10等等。

毕达哥拉斯多弟子却发现正方形的边长与其对角线是不可公度的。


数学史上的3次危机都是什么(简单概括)?无理数是怎样产生的?尺规作图3...
无理数的发现──第一次数学危机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献...

无理数概念
无理数的发现历史:平方根的发现:最早关于无理数的研究可以追溯到古希腊数学家毕达哥拉斯。他们发现,某些数字的平方根(如2的平方根)无法用有理数表示,从而引入了无理数的概念。数学推理与证明:到了公元3世纪,欧几里得提出了著名的欧几里得算法,证明了任意有理数除以一个无理数都会得到无限不循环...

最早发现无理数的数学家是谁?
这就是无理数这一名词的出现过程,但是希伯斯的发现推翻了原本毕达哥拉斯学派的理论,动摇了学派理论的基础,引起了支持毕达哥拉斯学派理论的人们的恐慌,于是为了维护所谓学派正统的微信,这群人严封死锁了希伯斯的发现。三、希伯斯的命运 由于希伯斯发现的无理数被许多人知道了,于是维护毕达哥拉斯学派...

无理数e是怎么被发现的
e的发现始于微分,当 h 逐渐接近零时,计算 之值,其结果无限接近一定值 2.71828...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数. 计算对数函数 的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数. 若将指数函数...

数学史上发生过三次危机,这三次危机是怎么回事?
最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。虽然三次数学危机都已经得到了解决,但是对数学史的影响是非常深刻的,数学家试图建立严格的数学系统,但是无论多么小心,都会存在缺陷,包括后来发现的哥德尔不完备性定理。

十个数学家的故事 50个字
古希腊的毕达哥拉斯学派认为,世间任何数都可以用整数或分数表示,并将此作为他们的一条信条.有一天,这个学派中的一个成员希伯斯(Hippasus)突然发现边长为1的正方形的对角线是个奇怪的数,于是努力研究,终于证明出它不能用整数或分数表示.但这打破了毕达哥拉斯学派的信条,于是毕达哥拉斯命令他不许外传.但希伯斯却...

理数是什么?
1、数学术语,分为有理数和无理数,有理数小数部分有限或无限循环,无理数小数部分无限不循环。2、指船舶装卸货物过程中,记录起吊货物的钩数,点清钩内货物细数,计算装卸货物的数字。3、道理。无士无兵,而欲合战,其败负也,理数也然。4、天数。方陛下好问之初,遽以疾去,推之理数。

无理数是谁首先发现的?
历史上首先发现无理数的著名数学家希巴斯,就是毕达哥拉斯的一位学生,他也是毕达哥拉斯学派中最杰出的代表人物之一。他发现了根号2是无理数,这是人类发现的第一个无理数。

数学发展中的重大事件有哪些?
无理数的发现 说到无理数的发现,不得不提到数学史上一个著名的定理“毕达哥拉斯定理”,毕达哥拉斯定理的发现本身就是一个大事件,在当时的毕达哥拉斯学派,据说还特意举行了盛大的庆祝活动。通过毕达哥拉斯定理,认识到无理数的存在,使得人们对数开始重新思考,甚至引发了数学史上的第一次数学危机...

无理数是谁发现的?
希伯斯——发现的.无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环.无理数的另一特征是无限的连分数表达式.传说无理数由毕达哥拉斯学派弟子希伯斯发现.

东宝区19260251799: 无理数是怎么来的?求简洁明了 -
市所盐酸: 无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环. 常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等.无理数的另一特征是无限的连分数表达式.

东宝区19260251799: 无理数的发现历史 -
市所盐酸:[答案] “无理数”的由来 公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可子希勃索斯公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性...

东宝区19260251799: 无理数是怎样产生的,尺规作图的三大不能问题是什么具体些,急用,快些,谢谢 -
市所盐酸:[答案] 传说中,无理数最早由毕达哥拉斯学派弟子希伯斯发现.他以几何方法证明无法用整数及分数表示.而毕达哥拉斯深信任意数均可用整数及分数表示,不相信无理数的存在.但是他始终无法证明不是无理数,后来希伯斯将无理数透露给外人——此知...

东宝区19260251799: 无理数是怎样被发现的?
市所盐酸: 毕达哥拉斯及其学派虽然对数学的发展作出过重大贡献,但他们的封闭 与保守却束缚... 但是毕达哥拉斯死后,其学派成员希伯斯却发现正方形 对角线与其边长是不可比的,...

东宝区19260251799: 无理数是谁发现的? -
市所盐酸:[答案] 希伯斯——发现的. 无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环.无理数的另一特征是无限的连分数表达式.传说无理数由毕达哥拉斯学派弟子希伯斯发现.

东宝区19260251799: 无理数是谁首先发现的? -
市所盐酸:[答案] 历史上首先发现无理数的著名数学家希巴斯,就是毕达哥拉斯的一位学生,他也是毕达哥拉斯学派中最杰出的代表人物之一.他发现了根号2是无理数,这是人类发现的第一个无理数.

东宝区19260251799: 无理数的由来 -
市所盐酸: “无理数”的由来 公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希勃索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公...

东宝区19260251799: 无理数e是怎么被发现的 -
市所盐酸: e的发现始於微分,当 h 逐渐接近零时,计算 之值,其结果无限接近一定值 2.71828...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数. 计算对数函数 的导数,得 ,当 a=e 时, 的导数为 ...

东宝区19260251799: 无理数是怎样产生的,尺规作图的三大不能问题是什么 -
市所盐酸: 传说中,无理数最早由毕达哥拉斯学派弟子希伯斯发现.他以几何方法证明无法用整数及分数表示.而毕达哥拉斯深信任意数均可用整数及分数表示,不相信无理数的存在.但是他始终无法证明不是无理数,后来希伯斯将无理数透露给外人——此知识外泄一事触犯学派章程——因而被处死,其罪名等同于“渎神”. 尺规作图的三大不能问题:1、三等分任意角问题 2、求作立方体,使其体积等于已知立方体积的两倍 3、求作一个正方形,使其面积等于已知圆的面积

东宝区19260251799: 无理数的发现 -
市所盐酸: “无理数”的由来 公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可子希勃索斯公度的(若正方形边长是1,则对角线的长不是一...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网