最简单的勾股定理的证明方法是什么?

作者&投稿:禾士 (若有异议请与网页底部的电邮联系)
勾股定理的最简单的证明方法是什么?~

简单的勾股定理的证明方法如下:



拓展资料:
勾股定理的使用方法:
1、确保三角形是直角三角形。 勾股定理只适用于直角三角形中,所以,在应用定理之前,你需要先确定三角形是否是直角三角形,这一点非常重要。幸好,区分直接三角形和别的三角形的方法只有一个,那就是看一个三角形中是否有一个90度的角。
2、确定变量a,b,c对应的三角形的边。在勾股定理中,a,b表示直角三角形的两条直角边,而c用来表示斜边,即直角对应的那条最长的边。所以,先给两条直角边分别标注上a,b(具体的对应关系没有要求),而斜边标注上c。
3、确定你所要求的边。使用勾股定理可以求出直角三角形的任意一条边的长度,但前提是知道另外两条边的长度。先确定哪一条边的长度是未知的——a,b或者c。
4、代入。将两条已知边的长度带入到公式a2 + b2 = c2中,其中a和b对应的是两直角边的长度,而c代表斜边长度。在上面的例子中,我们知道一条直角边和斜边的长度(3和5),然后将3和5代入到公式中,有32 + b2 = 2。
5、计算平方。首先,计算两条已知边长度的平方值。或者,你也可以先不计算出来,然后保留平方,带到式子中直接计算平方和。在上述例子中,3和5的平方分别是9和25,所以方程可以改写为9 + b2 = 25。
6、将未知变量移到等号一边。如果有必要的话,运用基本的代数操作,将未知变量移动到等号一侧,而将已知变量移动到等号的另一侧。如果你要求的是斜边长,那么就不需要再移动变量了。在上述例子中,方程式是9 + b2 = 25。两边同时减去9,等式变为b2= 16。
7、求开方。现在等式两边一边是数字,另一边是变量,然后同时求两边的平方根。在上述例子中b2 = 16,两边同时求平方根,有b = 4。因此,未知边的长度就是4。
参考资料来源:百度百科-勾股定理

勾股定理的证明方法一:切割定理证明

勾股定理的证明方法二:直角三角形内切圆证明

勾股定理的证明方法三:反证法证明

勾股定理的证明方法四:杨作玫证明

扩展资料:
公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。
以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。
后刘徽在刘徽注中亦证明了勾股定理。在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。
参考资料来源:百度百科-勾股定理

证法一: 

这是最简单精妙的证明方法之一,几乎不用文字解释,可以说是无字证明。如图所示,左边是4个相同的直角三角形与中间的小正方形拼成的一个大正方形。

图形变换后面积没有变化,左边大正方形的边长是直角三角形的斜边c,面积是c2;右边图形可分割为两个正方形,它们的边长分别为直角三角形的两条直角边a和b,面积就是a2+b2,于是a2+b2=c2。

图中左边的“弦图”最早出现在公元222年的中国数学家赵爽所著《勾股方圆图注》,赵爽是我国数学史上证明勾股定理的第一人。2002年8月,在北京召开的国际数学家大会,标志着中国数学进入崭新的时代,大会会徽就是这个“弦图”,寓意中国古代数学取得的重要成果。

证法二: 

这一解法应该是来历最有趣的证明方法之一,是由美国第20任总统茄菲尔德(JamesA.Garfield,1831~1881)用下图证明出的。

这位总统并不是一位数学家,他甚至都不曾学习过数学。他只是非正式地自学过几何知识,很喜欢摆弄基础图形,当他还是众议院议员时,想出了这个精巧的证明,1876年发表在《新英格兰教育杂志》(New England Journal of Education)上。总统先生的证明如下:

首先,图中的梯形面积为:

组成梯形的三个三角形的面积为:

因此就有如下等式:

即得a2+b2=c2。  

接下来的两个证明非常简单易懂,被认为是所有证明中最短、最简单的证明,因为从开始到结束只用了几行。但这些证明依赖于相似三角形的概念,要全面展开这个概念还需要大量的基础工作,这里就不再赘述。

证法三:

证法四: 

这一证法涉及到圆内相交弦定理:m·n=p·q(如左图),再看AB和CD垂直的情况,相交弦定理仍然成立(如右图),因此(c-a)(c+a)=b2。即得c2-a2=b2于是,a2+b2=c2。



简单的勾股定理的证明方法如下:

做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形。

发现四个直角三角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长为(a+b)的正方形;四个直角三角形和一个边长为c的正方形也刚好凑成边长为(a+b)的正方形。

所以可以看出以上两个大正方形面积相等。 列出式子可得:

拓展资料:

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。



参考资料:勾股定理_百度百科



我见过最简单的证明勾股定理的方法是利用射影定理:

已知:△ABC是直角三角形,∠C=90°。
求证:AC²+BC²=AB²
证明:过点C作CD⊥AB,垂足为D,则AD、BD分别是AC、BC在斜边AB上的射影。
由射影定理可得:
AC²=AD·AB , BC²=BD·AB
∴AC²+BC²=AD·AB +BD·AB=AB·(AD+BD)=AB²

勾股定理魏德武证法简明易懂,让人一目了然。用四块全等直角三角板,将每块直角三角形的三边长分别用小写a、b、c来表示,然后依次拼成两块长方形面积(ab+ab=2ab),再将其拆开重新组合,通过形变转化成边长为c的正方形面积,根据两块长方形面积前后不变的原理,无需割补,也不用求证就可轻而易举地得到一个恒等式,即:2ab=c^2-(b-a)^2化简得c^2=a^2+b^2。这就是举世无双最简的勾股定理魏氏证法!

勾股定理魏德武证法到目前为止,可以说其证法是所有勾股定理证法中最简捷、最实用的首选方法,学者一看就懂,一学就会。用四块全等直角三角形边长分别为a、b、c,组成二块长方形面积(ab+ad=2ab),再将二块长方形面积分开,从新组成一块边长为c的正方形,通过形变将原有的四块全等直角三角形面积转换成c^2-(b-a)^2进行计算,。根据前后面积不变的原理构筑一对恒等式2ab=c^2-(b-a)^2化简后得c^2=a^2+b^2。这样既不要割补也不需求证,,就可轻而易举地导出直角三角形三边的内在关系。


勾股定理最简单的四种几何证明办法 图文
勾股定理的证明方法一:切割定理证明 勾股定理的证明方法二:直角三角形内切圆证明 勾股定理的证明方法三:反证法证明 勾股定理的证明方法四:杨作玫证明

勾股定理的5种证明方法
1、做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从下图可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a的平方加b的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理...

勾股定理的三种证明方法
代数法是通过代数运算来证明勾股定理的方法。具体步骤如下:假设有一个直角三角形,三个边分别为a、b、c,其中c为斜边。利用勾股定理展开,即a²+b²=c²。将c²移到等式右边,得到a²+b²-c²=0。因为a²+b²=c²成立,所以a²+...

勾股定理的四种证明方法?
勾股定理的四种证明方法有加菲尔德证法,赵爽弦图,青朱出入图,欧几里得证法。1、加菲尔德证法。在直角梯形ABDE中,加菲尔德证法变式该证明为加菲尔德证法的变式。如果将大正方形边长为c的小正方形沿对角线切开,则回到了加菲尔德证法。相反,若将上图中两个梯形拼在一起,就变为了此证明方法。2、赵爽弦...

勾股定理的10种证明方法
赵爽证明 勾股定理的10种证明方法:1876年美国总统Garfield证明 勾股定理的10种证明方法:项明达证明 勾股定理的10种证明方法:欧几里得证明 勾股定理的10种证明方法:杨作玫证明 勾股定理的10种证明方法:切割定理证明 勾股定理的10种证明方法:直角三角形内切圆证明 勾股定理的10种证明方法:反证法证明 ...

勾股定理的证明方法
简单的勾股定理的证明方法如下:做8个全等的直角三角形,设它们的两条直角边长分别为碰游a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,段神把它们像上图那样拼成两衫袜雹个正方形。发现四个直角三或帆角形和一个边长为a的正方形和一个边长为b的正方形,刚好可以组成边长握吵亏为(a+...

勾股定理的12种证法
勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期...

勾股定理16种证明方法
勾股定理16种证明方法 勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方,即在以a、b为直角边,c为斜边的三角形中有a^2+b^2=c^2。 方法 1\/16 证法一(邹元治证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使A、E、B三点共线,B、F、C 三点共线,C、G、D三点共线...

勾股定理的证明方法最简单的6种
勾股定理的证明方法最简单的6种如下:一、正方形面积法 这是一种很常见的证明方法,具体使用的是面积来证明的。以三角形的三边分别作三个正方形,发现两个较小的正方形面积之和等于较大的那个三角形。勾股定理得到证明。二、赵爽弦图 赵爽弦图是指用四个斜边长为c,较长直角边为a,较短直角边为c的...

勾股定理的最简单的证明方法是什么?
简单的勾股定理的证明方法如下:

伊宁县18562636422: 最简单的勾股定理的证明方法是什么? -
濮乔曲克: 简单的勾股定理的证明方法如下: 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 发现四个直角三角形和一个边长为a的正方形和一个边...

伊宁县18562636422: 求勾股定理最简单的证明方法,一定是最简单的方法. -
濮乔曲克: 设两直角边和斜边分别由向量a、b、c表示,且有c=a+b,∵a*b=0 ∴│c│^2=│a+b│^2=│a│^2+│b│^2+2a*b=│a│^2+│b│^2 向量的方法不是初步方法,但最简单.

伊宁县18562636422: 怎样证明勾股定理? -
濮乔曲克: 勾股定理的证明方法 广西桂平市大洋中学 覃祖海 勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上...

伊宁县18562636422: 勾股定理最简证明方法 -
濮乔曲克: 我觉得最简单是相似法三角形ABC CD高 C=90 SACD/SABC=(AC/AB)²(直角三角形面积比等于边长比的平方) SBCD/SABC=(BC/AB)² 相加1=(AC²+BC²)/AB² 即AC²+BC²=AB² 注意:不要用三角函数证明勾股定理,因为三角函数...

伊宁县18562636422: 勾股定理的证明方法 -
濮乔曲克: 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名. 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊. 1.中国方法:画两个边长为(a+b)的正方形,如图,...

伊宁县18562636422: 勾股定理的证明方法有几种? -
濮乔曲克:[答案] 由三百多种. 最简单的方法是: 构造一个正方形ABCD, 分别在AB、BC、CD、DA上截取AE=BF=CG=DH=a, 则可设EB=FC=GD=HA=b, 设HE=c, 易证:△AEH≌△BFE≌△CGF≌△DHG, ∴EF=FG=GH=c, ∴易证四边形EFGH是正方形. 由面积关...

伊宁县18562636422: 勾股定理如何证明,简单点的,我笨.麻烦详细一点,我理解能力不强,愿把这微不足道的5分献给大家. -
濮乔曲克:[答案] 勾3股4弦5 赵爽用形数结合得到方法,给出了勾股定理的详细证明.以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(...

伊宁县18562636422: 如何用小学的方法证明勾股定理?知道教下```谢谢 -
濮乔曲克:[答案] 最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长玫秸?叫蜛BDE是由4个相等的直角三角形再加上中间的那个小正...

伊宁县18562636422: 最简单的勾股定理得证明方法是什么? -
濮乔曲克: 毕达哥拉斯的证法

伊宁县18562636422: 验证勾股定理的两种方法 -
濮乔曲克: 勾股定理勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和.如果直角三角形两直角边分别为a、b,斜边为c,那么a�0�5+b�0�5=c�0�5...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网