勾股定理最简单的四种几何证明办法 图文

作者&投稿:暨星 (若有异议请与网页底部的电邮联系)
勾股定理的证明方法(最好是个附件,带图,方法越多越好)~

证法1
  作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。 过点C作AC的延长线交DF于点P.   ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,   ∴ ∠EGF = ∠BED,   ∵ ∠EGF + ∠GEF = 90°,   ∴ ∠BED + ∠GEF = 90°,   ∴ ∠BEG =180°―90°= 90°   又∵ AB = BE = EG = GA = c,   ∴ ABEG是一个边长为c的正方形。   ∴ ∠ABC + ∠CBE = 90°   ∵ RtΔABC ≌ RtΔEBD,   ∴ ∠ABC = ∠EBD.   ∴ ∠EBD + ∠CBE = 90°   即 ∠CBD= 90°   又∵ ∠BDE = 90°,∠BCP = 90°,   BC = BD = a.   ∴ BDPC是一个边长为a的正方形。   同理,HPFG是一个边长为b的正方形.   设多边形GHCBE的面积为S,则   A^2+B^2=C^2
证法2
  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形。 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.   过点Q作QP∥BC,交AC于点P.   过点B作BM⊥PQ,垂足为M;再过点   F作FN⊥PQ,垂足为N.   ∵ ∠BCA = 90°,QP∥BC,   ∴ ∠MPC = 90°,   ∵ BM⊥PQ,   ∴ ∠BMP = 90°,   ∴ BCPM是一个矩形,即∠MBC = 90°。   ∵ ∠QBM + ∠MBA = ∠QBA = 90°,   ∠ABC + ∠MBA = ∠MBC = 90°,   ∴ ∠QBM = ∠ABC,   又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,   ∴ RtΔBMQ ≌ RtΔBCA.   同理可证RtΔQNF ≌ RtΔAEF.即A^2+B^2=C^2
证法
  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再作一个边长为c的正方形。 把它们拼成如图所示的多边形.   分别以CF,AE为边长做正方形FCJI和AEIG,   ∵EF=DF-DE=b-a,EI=b,   ∴FI=a,   ∴G,I,J在同一直线上,   ∵CJ=CF=a,CB=CD=c,   ∠CJB = ∠CFD = 90°,   ∴RtΔCJB ≌ RtΔCFD ,   同理,RtΔABG ≌ RtΔADE,   ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE   ∴∠ABG = ∠BCJ,   ∵∠BCJ +∠CBJ= 90°,   ∴∠ABG +∠CBJ= 90°,   ∵∠ABC= 90°,   ∴G,B,I,J在同一直线上,   A^2+B^2=C^2.
证法4
  作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结   BF、CD. 过C作CL⊥DE,   交AB于点M,交DE于点L.   ∵ AF = AC,AB = AD,   ∠FAB = ∠GAD,   ∴ ΔFAB ≌ ΔGAD,   ∵ ΔFAB的面积等于,   ΔGAD的面积等于矩形ADLM   的面积的一半,   ∴ 矩形ADLM的面积 =.   同理可证,矩形MLEB的面积 =.   ∵ 正方形ADEB的面积   = 矩形ADLM的面积 + 矩形MLEB的面积   ∴ 即A^2+B^2=C^2
证法5(欧几里得的证法)
  《几何原本》中的证明   在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。   在正式的证明中,我们需要四个辅助定理如下:   如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。   其证明如下:   设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB²。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2;。 把这两个结果相加, AB^2;+ AC^2;; = BD×BK + KL×KC 。由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2;+ AC^2;= BC^2;。 此证明是于欧几里得《几何原本》一书第1.47节所提出的
证法6(欧几里德(Euclid)射影定理证法)
  如图1,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高   通过证明三角形相似则有射影定理如下:   (1)(BD)^2;=AD·DC,   (2)(AB)^2;=AD·AC ,   (3)(BC)^2;=CD·AC 。   由公式(2)+(3)得:(AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,   图1即 (AB)^2;+(BC)^2;=(AC)^2,这就是勾股定理的结论。    图1
证法七(赵爽弦图)
  在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:   4×(ab/2)+(b-a)^2;=c^2;    化简后便可得:a^2;+b^2;=c^2;   亦即:c=(a^2;+b^2;)1/2   勾股定理的别名 勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。   我国是发现和研究勾股定理最古老的国家之一。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在我国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。   在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。   在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.   前任美国第二十届总统伽菲尔德证明了勾股定理(1876年4月1日)。   1 周髀算经, 文物出版社,1980年3月, 据宋代嘉定六年本影印,1-5页。   2. 陈良佐: 周髀算经勾股定理的证明与出入相补原理的关系。 刊於《汉学研究》, 1989年第7卷第1期, 255-281页。   3. 李国伟: 论「周髀算经」“商高曰数之法出于圆方”章。 刊於《第二届科学史研讨会汇刊》, 台湾, 1991年7月, 227-234页。   4. 李继闵: 商高定理辨证。 刊於《自然科学史研究》,1993年第12卷第1期,29-41页 。   5. 曲安京: 商高、赵爽与刘徽关於勾股定理的证明。 刊於《数学传播》20卷, 台湾, 1996年9月第3期, 20-27页
证法8(达芬奇的证法)
   达芬奇的证法
三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式相等,就能得出一个新的关系式——勾股定理,所有勾股定理的证明方法都有这么个共同点。观察纸片一,因为要证的事勾股定理,那么容易知道EB⊥CF,又因为纸片的两边是对称的,所以能够知道四边形ABOF和CDEO都是正方形。然后需要知道的是角A'和角D'都是直角,原因嘛,可以看纸片一,连结AD,因为对称的缘故,所以∠BAD=∠FAD=∠CDA=∠EDA=45°,那么很明显,图三中角A'和角D'都是直角。   证明:   第一张中多边形ABCDEF的面积S1=S正方形ABOF+S正方形CDEO+2S△BCO=OF2+OE2+OF·OE   第三张中多边形A'B'C'D'E'F'的面积S2=S正方形B'C'E'F'+2△C'D'E'=E'F'2+C'D'·D'E'   因为S1=S2   所以OF2+OE2+OF·OE=E'F'2+C'D'·D'E'   又因为C'D'=CD=OE,D'E'=AF=OF   所以OF2+OE2=E'F'2   因为E'F'=EF   所以OF2+OE2=EF2   勾股定理得证。
证法9
  从这张图可以得到一个矩形和三个三角形,推导公式如下:
b ( a + b )= 1/2c^2; + ab + 1/2(b + a)(b - a)   矩形面积 =(中间三角形)+(下方)2个直角三角形+(上方)1个直   角三角形。   (简化) 2ab + 2b^2;= c^2; + b^2;- a^2;+ 2ab   2b^2; - b^2;+ a^2;= c^2;   a^2; + b^2;= c^2;   注:根据加菲尔德图进一步得到的图形。

你画一正方形ABCD,在里面再画一内接正方形A'B'C'D'。
就会出现4个全等直角三角形,然后你用大正方形的面积减小正方形的面积等于4个三角型面积,化简一下就得出勾股定律。

勾股定理的证明方法一:切割定理证明

勾股定理的证明方法二:直角三角形内切圆证明

勾股定理的证明方法三:反证法证明

勾股定理的证明方法四:杨作玫证明

扩展资料:

公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。

以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。

后刘徽在刘徽注中亦证明了勾股定理。在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。

参考资料来源:百度百科-勾股定理



勾股定理最简单的四种几何证明办法:

【方法1】

【方法2】

【方法3】

【方法4】

扩展资料:

在我国数学上,早就有勾3股4弦5的说法,这是勾股定律的一个特例,勾3a,股4a,弦5a都符合勾股定律。

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长c,存在下面这个关系:a²+b²=c²

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

参考资料来源:勾股定理_百度百科




这些都是比较直观易懂的



最新勾股定理魏氏证法是上世纪70年代数学天才魏德武读小学期间在一次观摩木工师傅制作一把木质楼梯的过程中深受启发,其证法简捷、明了是其它所有勾股定理证法中无与伦比的首选方法:取四块全等直角三角形边长分别为a、b、c的楼梯脚板,然后分别组成二块全等长方形面积。 即:ab+ad=2ab,再将原二块全等长方形面积进行形变,转化成一块大正方形面积减去中间一块小正方形面积;根据前后二块全等长方形面积不变的原理,构筑一个等量关系,即:2ab=c^2-(b-a)^2,化简得a^2+b^2=.:c^2。这样既不要割补也无需求证,就可轻而易举得到一块任意直角三角形三条边的数量关系。古人通常把直角三角形的二条直角边分别说成勾和股,所以魏氏勾股定理证法因此而得名。

这个经典的定理证明,网上非常全,需要可以搜


购股定理证法
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴ 全等形的面积...

什么是沟股定理?
满足这个等式的正整数a、b、c叫做一组勾股数。 例如(3、4、5),(5、12、13),(6、8、10),(7、24、25)等一组一组的数,每一组都能满足a2+b2=c2,因此它们都是勾股数组(其中3、4、5是最简单的一组勾股数)。显然,若直角三角形的边长都为正整数,则这三个数便构成一组勾股数...

关于勾股定理
=c² 勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。 勾股定理其实是余弦定理的一种特殊形式。 我国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。沟股定理都是在假设的前提下设定的,只是为了把定理讲清楚而已。

沟股定理
勾股定理指出:直角三角形两直角边(即“勾”,“股”)边长平方和等於斜边(即“弦”)边长的平方。勾股数,又名毕氏三元数,是由三个正整数组成的数组,能符合勾股定理(毕式定理)之中, a^2 + b^2 = c^2 , a, b, c 的整数解。而且,基于勾股定理的逆定理,任何边长是勾股数组的三角形...

股市常用定理有哪些
见多识广、数学速算能力强;第五,有乐观的工作生活状态,对理性投资有足够的耐心与信心,这是最关键的股市常用定理。2、行情性质判断定理。大盘行情时间跨度判断定理:短线行情炒消息,中线行情炒题材,长线行情炒业绩。个股行情时间跨度判断定理:短线套利炒量能,中线套利炒送配,长线套利炒成长。大盘大量...

勾股定理最简单公式不要说的太复杂
勾的平方加股的平方等于炫的平方

勾股定理是什么?初几学?
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。初二上学期第一单元开始学习勾股定理。勾股定理,直角三角形的两条直角边的平方和等于斜边的平方.A²+B²=C²C=√(A²+B²)√(120²+90²)=√22500=√150²=150 ...

沟股定理是怎样证明出来的?
有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition( 《毕达哥拉斯命题》)一书中总共提到367种证明方式。有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理...

谁能教我初三数学中的钩股定理和平行四边形啊
勾股定理是要在直角三角形里,已知两边求地三边的,大概的公式是根号(a方+b方)=c方,平行四边形的性质是对角相等,对边平行且相等,对角线互相平分,记住就行

勾股定律,勾0.6米弦1米股是多少
句股定理中,已经知道句是0.6,弦是1,所以股就是0.8

四会市15080977640: 最简单的勾股定理的证明方法是什么? -
乐盲济得: 简单的勾股定理的证明方法如下: 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 发现四个直角三角形和一个边长为a的正方形和一个边...

四会市15080977640: 怎样证明勾股定理? -
乐盲济得: 勾股定理的证明方法 广西桂平市大洋中学 覃祖海 勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上...

四会市15080977640: 叙述并证明勾股定理(用几何方法) -
乐盲济得: 勾股定理可叙述为:直角三角形两条直角边的平方和等于斜边的平方;证明方法之一: 如图,由S大正方形-S小正方形=4*S三角形, 可得c*c - (b-a)*(b-a)=4*a*b/2, 化简即得:a*a+b*b=c*c

四会市15080977640: 勾股定理的证明方法有那些? -
乐盲济得: 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名.首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊.1.中国方法:画两个边长为(a+b)的正方形,如图...

四会市15080977640: 谁能帮我找到证明勾股定理的四种方法,最好不要图,初二课本上的. -
乐盲济得: 勾股定理的证明方法 山东 马永庆 【证法1】(传说中毕达哥拉斯的证明) 图1 图2 如图所示,作8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形....

四会市15080977640: 勾股定理证明法(不少于4种)
乐盲济得: 最初的证明是分割型的.设a、b为直角三角形的直角边,c为斜边.考虑下图两个边长都是a+b的正方形A、B.将A分成六部分,将B分成五部分.由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角...

四会市15080977640: 勾股定理最简证明方法 -
乐盲济得: 我觉得最简单是相似法三角形ABC CD高 C=90 SACD/SABC=(AC/AB)²(直角三角形面积比等于边长比的平方) SBCD/SABC=(BC/AB)² 相加1=(AC²+BC²)/AB² 即AC²+BC²=AB² 注意:不要用三角函数证明勾股定理,因为三角函数...

四会市15080977640: 勾股定理的证明方法有哪些呀 -
乐盲济得: 图一 在图一中,D ABC 为一直角三角形,其中 Ð A 为直角.我们在边 AB、BC 和 AC 之上分别画上三个正方形 ABFG、BCED 和 ACKH.过 A 点画一直线 AL 使其垂直於 DE 并交 DE 於 L,交 BC 於 M.不难证明,D FBC 全等於 D ABD(S.A....

四会市15080977640: 勾股定理的证明 -
乐盲济得: 勾股定理的证明: 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.这两个正方形全等,故面积相等. 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等.从左右两图中都把...

四会市15080977640: 勾股定理有多少种证明方法/ -
乐盲济得: 勾股定理有500多种证明方法,最著名的有5种: 【证法1】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网