割之又割以至于不可割深刻含义

作者&投稿:雀冠 (若有异议请与网页底部的电邮联系)

圆周率的历史(我国古代)
这个值 不太准确,但它简单 易理解。公元263 年,中国数 学家刘徽 用“割圆术”计算圆 周率,他先从圆内 接正六 边形,逐次分割 一直算 到圆内接 正192边形。他说“割之 弥细,所失 弥少,割之 又割,以至于 不可割,则与圆 周合体而 无所失矣。”,包含了 求极限的 思想。刘徽给 ...

为什么说刘徽是中国传统数学最具代表性人物?
他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值.刘徽提出的计算圆周率的科学方法,...

数学家刘徽在计算圆周率方面做了哪些贡献?
刘徽割圆术的基本思想是:割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣。就是说分割越细,误差就越小,无限细分就能逐步接近圆周率的实际值。他很清楚圆内接正多边形的边数越多,所求得的圆周率值越精确这一点。刘徽用割圆的方法,从圆内接正六边形开始算起,将边数一倍一倍地...

在发展史上最具有意义的数学发明
如果进一细分,作出圆内接二十四边形,那么又可求出更精确一些的圆周率近似值。 「 割之弥细,所失弥少。割之又割,以至于不可割,则与圆合体而无所失矣 」。 刘徽从圆内接正六边形开始,不断倍增图形的边数,边数愈多,多边形的面积便愈接近圆的面积,这就是刘徽所创的「割圆术」了。 刘徽从圆内接正六边形一直割...

微积分的起源
作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很...

请详细列举中国数学史上三位数学家的功绩?
刘徽数学成就中最突出的是“割圆术”(圆内接正多边形面积无限逼近圆面积)。在刘徽之前,通常认为“周三径一”,即圆周率取为3。刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,通过计算圆内接正3072边形的面积,求出圆周率为3927\/1250(=3.1416)(阿基米德...

中国的欧几里得中国数学之称的是
他利用割圆术科学地求出了圆周率π≈3.1416的结果。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小。用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形...

天才 奥数冠军的故事
,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值.刘徽提出的计算圆周率的科学方法,奠定了此后千余年中国圆周率计算在世界上的领先地位. 刘徽在数学上的贡献极多,在开方不尽的问题中提出“求...

数学广角
如果进一细分,作出圆内接二十四边形,那么又可求出更精确一些的圆周率近似值。 「 割之弥细,所失弥少。割之又割,以至于不可割,则与圆合体而无所失矣 」。 刘徽从圆内接正六边形开始,不断倍增图形的边数,边数愈多,多边形的面积便愈接近圆的面积,这就是刘徽所创的「割圆术」了。 刘徽从圆内接正六边形一直割...

刘徽的人物介绍
他利用割圆术科学地求出了圆周率π=3.1416的结果。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,...

张嘉18761769396问: 割之弥细,所失弥小,割之又割,以至于不可割,则与周合体,而无所失.是讲了什么事情 -
太子河区倍清回答: 刘徽指出:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体而无所失矣.”(《九章算术》方田章圆田术刘徽注)这就是说,圆内接正多边形的边数无限增加的时候,它的周长的极限是圆周长,它的面积的极限是圆面积. 这句...

张嘉18761769396问: "割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体而无所失矣”蕴含的数学思想 -
太子河区倍清回答:[答案] 刘徽指出:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体而无所失矣.”(《九章算术》方田章圆田术刘徽注)这就是说,圆内接正多边形的边数无限增加的时候,它的周长的极限是圆周长,它的面积的极限是圆面积. 这句话说明的...

张嘉18761769396问: “割之弥细,所失弥少,割之又割,以至于不可割……”这句话是古代数学家____________说的. -
太子河区倍清回答:[答案] 思路解析:刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.答案:刘徽

张嘉18761769396问: “割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”是出自谁之口 -
太子河区倍清回答:[答案] 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念...

张嘉18761769396问: 有限与无限转化是数学中一种重要思想方法,如在《九章算术》方田章圆田术(刘徽注)中:“割之又割以至于不可割,则与圆合体而无所失矣.”说明“割圆... -
太子河区倍清回答:[答案] 设0. • 3 • 6=x,则0.00 • 3 • 6= 1 100x, 则0.36+ 1 100x=x, 解得x= 4 11, 故答案为: 4 11

张嘉18761769396问: 割之弥细,所失越少,割之又割,以至于不可割,则与圆周合体而不可割矣蕴含怎样的数学思想 -
太子河区倍清回答: 比如说一段弧线你想求他的长度 如果你把它分成无数小份然后累加起来 这样就无限接近于弧线真实长度 望采纳

张嘉18761769396问: 《九章算术》第一章中,对圆的面积计算有这样的记载:半周半径相乘得积步.你能解释这句话的意思吗? -
太子河区倍清回答: “圜,一中同长也”.意思是说:圆只有一个中心,圆周上每一点到中心的距离相等.早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系.认识了圆,人们也...

张嘉18761769396问: 刘徽是如何计算圆周率的? -
太子河区倍清回答: 刘徽在他的《九章算术》“圆田术注”中,论证了圆面积公式,给出了著名的圆周率计算方法——“割圆术”,并利用它计算出在当时相当精确的圆周率值.割圆术也成为数学史上伟大的创造之一. 刘徽从圆内接正六边形开始,使边数逐次加倍...

张嘉18761769396问: 求圆周率的计算方法!要解题思路! -
太子河区倍清回答:[答案] 割圆术 刘徽割圆术示意图片. 割圆术(cyclotomic method) 所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周... 刘徽形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣. 即通过圆内接正...

张嘉18761769396问: 中国第一位数学家是谁 -
太子河区倍清回答: 刘徽


本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网