线性代数:如何求特征值和特征向量?

作者&投稿:坚刷 (若有异议请与网页底部的电邮联系)
~

线性代数的学习中,掌握方法很重要。下面就为大家慢慢解析,如何求特征值和特征向量。

特征值和特征向量的相关定义

  • 01

    首先我们需要了解特征值和特征向量的定义,如下图;

  • 02

    齐次性线性方程组和非其齐次线性方程组的区别,如下图;

  • 03

    特征子空间的定义,如下图;

  • 04

    特征多项式的定义,如下图;

  • 05

    特征值的基本性质,如下图;

齐次线性方程组解法

  • 01

    齐次线性方程组的特征就是等式右边为0,以消元法简化;

  • 02

    在初等数学方程组中都是有唯一解的,而在线性代数中,我们把这种情况称为方程组“系数矩阵的秩为1”,记为r(A)=1,当矩阵的秩小于未知数的个数时,方程组有无数个解;当矩阵的秩等于未知数的个数时,方程组只有零解。
    由于上诉方程组有两个未知数,而r(A)=1<2,所以此组有无数个解。设 y=2 ,则 x=1;再设k为任意常数,则 x=k, y=2k为方程组的解,写成矩阵的形式为:

非齐次线性方程组解法

  • 01

    非齐次线性方程组因为不等于0,看起来很复杂,其实方法还是先用消元法简化步骤;

  • 02

    这一次进行初等行变换后,对于任意的非齐次线性方程组,当 r(A)=r(A|b)=未知数的个数时,非齐次线性方程组有唯一解;当 r(A)=r(A|b)<未知数的个数时,非齐次线性方程组有无数个解;当 r(A) ≠r(A|b) 时,非齐次线性方程组无解。
    可见 r(A)=r(A|b)=3,所以[A|b]有唯一解,写回方程组形式:

例题解析

  • 01

    求下列矩阵的特征值和特征向量;

  • 02

    求矩阵特征值和特征向量的一般解法;

  • 03

    试证明A的特征值唯有1和2;

  • 04

    证明性问题还是需要解出特征值。

关于特征值与特征向量的理解

  • 01

    对于特征值与特征向量,总结起来大概分为三种理解:




线性代数:如何求特征值和特征向量?
1、首先我们需要了解特征值和特征向量的定义,如下图;2、齐次性线性方程组和非其齐次线性方程组的区别,如下图;3、特征子空间的定义,如下图;4、特征多项式的定义,如下图;5、特征值的基本性质,如下图;6、齐次线性方程组的特征就是等式右边为0,以消元法简化;7、在初等数学方程组中都是有...

在线性代数中,如何快速求解一个矩阵的特征值与特征向量?
1.幂法(PowerMethod):幂法是一种迭代算法,用于求解矩阵的最大特征值及其对应的特征向量。首先选择一个初始向量作为特征向量的估计,然后通过不断将该向量乘以矩阵并取模长,得到新的估计向量。重复这个过程直到收敛为止。最后,最大特征值即为初始向量的模长的平方根,而对应的特征向量则为收敛后的估...

线性代数求特征值和特征向量
1、写出|λΕ-Α|式子的具体形式 ->进行行列式化简,写成因式的形式 ->令式子等于0 ->得到特征值。2、将特征值代入(λΕ-Α)X=0,写出X前面的矩阵。3、对矩阵进行归一性、排他性检验 4、找到“台阶”上的作为受约束向量、剩下的即为自由向量。5、写出该特征值对应的特征向量。求矩阵的全部特...

线性代数特征值和特征向量怎么求
求特征值的方法就是 行列式方程|A-λE|=0 解得λ 之后 再代入矩阵A-λE中 化简得到特征向量

特征值怎么求
并求解对应的特征向量。总结:特征值是矩阵的重要性质,可以通过求解特征方程来获得。求解特征值可以通过解特征方程,得到所有的特征值。特征值和特征向量在线性代数和相关领域有广泛的应用,特征值分解和矩阵对角化是常见的应用之一。同时,需要注意特征值可能出现重复的情况,需要特别处理。

线性代数特征方程求特征值
观察这个定义可以发现,特征值是一个数,特征向量是一个列向量,一个矩阵乘以一个向量就等于一个数乘以一个向量。广义特征值 如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν 其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-...

线性代数特征值
相似矩阵有相同特征值,因此A的特征值,就是B的特征值:而B是对角阵,因此特征值就是主对角线元素,即-1,2 下面求A的特征向量:A=PBP^(-1)

如何求解线性代数方程组的特征值?
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或...

线性代数 求特征值
矩阵 αβ^T 的秩为 1, 有两个0特征值,非零特征值是矩阵 αβ^T 的迹 -6 矩阵 αβ^T 的特征值是 0, 0, -6 矩阵 A = E - αβ^T 的特征值是 1, 1, 7, 最大特征值是 7

线性代数中求矩阵的特征值的方法是什么?
1、首先原矩阵A的特征值和其伴随矩阵A*的特征值是有关系的,因此我们不必先算出A*矩阵,再求其特征值;仅需求出A的特征值,就可得A*的特征值了 2、其实线性代数的本质是解方程组,如果你理解这句话,那么线性代数也就学好了。3、下面是A*特征值的推理 设 λ 是A的特征值,α是A的属于特征值...

易门县18596206151: 线性代数特征向量怎么求? -
阿咳健胃: 将特征值代入特征方程,解出基础解系,就是特征向量. 系数矩阵化最简行1 0 -1 0 1 0 0 0 0 化最简形 1 0 -1 0 1 0 0 0 0 增行增列,求基础解系 1 0 -1 0 0 1 0 0 0 0 1 1 第1行, 加上第3行*1 1 0 0 1 0 1 0 0 0 0 1 1 化最简形 1 0 0 1 0 1 0 0 0 0 1 1得到基础解系: (1,0,1)T

易门县18596206151: 线性代数,特征值,特征向量的求解过程 -
阿咳健胃: 1.求特征值代入后, |λE-A|=0.|λE-A|= λ+1 -4 2 3 λ-4 0 3 -1 λ-3第三行乘以(-1)加到第二行得 λ+1 -4 2 0 λ-3 3-λ 3 -1 λ-3第二列加到第三列得 λ+1 -4 -2 0 λ-3 0 3 -1 λ-4行列式以第二行展开! =(λ-3)[(λ+1)(λ-4)-3*(-2)] =(λ-3)[(λ^2-3λ+2)]...

易门县18596206151: 线性代数 方阵的特征值与特征向量 求解过程 -
阿咳健胃: 图片中的解答不对,矩阵A有误. |A-λE|= 2-λ 1 0 1 2-λ 0 0 0 3-λ =(3-λ)[(2-λ)^2-1] =(1-λ)(3-λ)^2. 所以A的特征值为 1,3,3 (A-E)X=0 的基础解系为 a1=(1,-1,0)^T 所以A的属于特征值1的特征向量为 k1a1,k1≠0 (A-3E)X=0 的基础解系为 a2=(1,1,0)^T,a3=(0,0,1)^T 所以A的属于特征值3的特征向量为 k2a2+k3a3,k1,k2不全为0.

易门县18596206151: 【线性代数】求特征值和特征向量 -
阿咳健胃: |λI-A|= λ-5 2 -2 λ-1 = (λ-3)(λ-3)= 0 解得λ = 3(两重)将特征值3代入特征方程(λI-A)x=0-2 2 -2 2 第2行, 减去第1行*1 -2 2 0 0 第1行, 提取公因子-2 1 -1 0 0 增行增列,求基础解系 1 -1 0 0 1 1 第1行, 加上第2行*1 1 0 1 0 1 1得到属于特征值3的特征向量 (1,1)T

易门县18596206151: 如何求矩阵的特征值和特征向量? -
阿咳健胃: 1、设x是矩阵A的特征向量,先计算Ax;2、发现得出的向量是x的某个倍数;3、计算出倍数,这个倍数就是要求的特征高核值.求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方戚中掘程的全部根,...

易门县18596206151: 怎么求矩阵的特征值和特征向量 -
阿咳健胃:[答案] 对于任意方阵A,首先求出方程|λE-A|=0的解,这些解就是A的特征值,再将其分别代入方程(λE-A)X=0中,求得它们所对应的基础解系,则对于某一个λ,以它所对应的基础解系为基形成的线性空间中的任意一个向量,均为λ所对应的特征向量.

易门县18596206151: 线性代数特征值和特征向量的求法 -
阿咳健胃: lp87562514 ,你好:首先你要明白,只有方阵才有特殊值.设矩阵为[A],求|λE-A|=0的所有λ,这些λ就为矩阵A的特征值,其中有的是重的,有几次就叫几重特征值.然后再解(λE-A)x=0,得到的这些x(向量)就为矩阵A的属于λ特征值的特征向量.

易门县18596206151: 线性代数 求特征值特征向量 第三个求大神手写 速度 -
阿咳健胃: (3)先求特征多项式 得到4个特征值 2个为1,2个为-1再分别求特征值1和-1对应的特征向量 各对应2个过程如下图:

易门县18596206151: 特征向量怎么求 -
阿咳健胃:[答案] 1.先求出矩阵的特征值:|A-λE|=0 2.对每个特征值λ求出(A-λE)X=0的基础解系a1,a2,..,as 3.A的属于特征值λ的特征向量就是 a1,a2,...,as 的非零线性组合

易门县18596206151: 线性代数求特征值和特征向量 -
阿咳健胃: |λe-a| = |λ-1 -1 -3| | 0 λ-3 0| |-2 -2 λ| |λe-a| = (λ-3)* |λ-1 -3| |-2 λ| |λe-a| = (λ-3)(λ^2-λ-6) = (λ+2)(λ-3)^2 特征值 λ = -2, 3, 3 对于 λ = -2, λe-a = [-3 -1 -3] [ 0 -5 0] [-2 -2 -2] 行初等变换为 [ 1 1 1] [ 0 1 0] [ 0 2 0] 行初等变换为 [ 1 0 1] [ 0 1 0] [ 0 0 0] 得特征向量 ...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网