勾股定理证明

作者&投稿:大复 (若有异议请与网页底部的电邮联系)
~ 勾股定理是怎么被证明出来的?
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识.其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5.这个原理是大禹在治水的时候就总结出来的呵.”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了.稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方.如图所示,我们图1 直角三角形用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的.其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多.如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年.其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52).所以现在数学界把它称为勾股定理,应该是非常恰当的.在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达.书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦.”把这段话列成算式,即为:弦=(勾2+股2)(1/2)亦即:c=(a2+b2)(1/2)中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:4*(ab/2)+(b-a)2=c2化简后便可得:a2+b2=c2亦即:c=(a2+b2)(1/2)图2 勾股圆方图赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义.事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的.十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续.”。
勾股定理的证明方法(10种以上)
【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 , 整理得 . 【证法2】(邹元治证明) 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90?, ∴ ∠AEH + ∠BEF = 90?. ∴ ∠HEF = 180?―90?= 90?. ∴ 四边形EFGH是一个边长为c的 正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90?, ∴ ∠EHA + ∠GHD = 90?. 又∵ ∠GHE = 90?, ∴ ∠DHA = 90?+ 90?= 180?. ∴ ABCD是一个边长为a + b的正方形,它的面积等于 . ∴ . ∴ .。
关于勾股定理的证明
勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。

这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。

从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。

右图剩下以c为边的正方形。于是 a^2+b^2=c^2。

这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。

2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA' ≌△AA'C 。

过C向A''B''引垂线,交AB于C',交A''B''于C''。 △ABA'与正方形ACDA'同底等高,前者面积为后者面积的一半,△AA''C与矩形AA''C''C'同底等高,前者的面积也是后者的一半。

由△ABA'≌△AA''C,知正方形ACDA'的面积等于矩形AA''C''C'的面积。同理可得正方形BB'EC的面积等于矩形B''BC'C''的面积。

于是, S正方形AA''B''B=S正方形ACDA'+S正方形BB'EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。

这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。

以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。

我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。

即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。

西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。

故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。

下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。

② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。

后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。

如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。

则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。

② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。

它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。

如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。

这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。

人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。

另:八年级数学勾股定理的证明(介绍16种证明的方法)(数学教案) ydgz/。
叙述并证明勾股定理.
证明:如图 左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的.右边的正方形是由1个边长为c的正方形和4个直角边分别为a、b,斜边为c的直角三角形拼成的.因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式 a 2 + b 2 +4* 1 2 ab= c 2 +4* 1 2 ab ,化简得a 2 +b 2 =c 2 .下面是一个错误证法:勾股定理:直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理证明:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP ∥ BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA=90°,QP ∥ BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一个矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可证Rt△QNF≌Rt△AEF.即a 2 +b 2 =c 2。
勾股定理证明方法带图,较难的,多种方法
刘徽在证明勾股定理时,也是用的以形证数的方法,只是具体的分合移补略有不同.刘徽的证明原也有一幅图,可惜图已失传,只留下一段文字:“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,即弦也.”后人根据这段文字补了一张图.大意是:三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方.以盈补虚,将朱方、青放并成弦方.依其面积关系有a^+b^=c^.由于朱方、青方各有一部分在弦方内,那一部分就不动了. 以勾为边的的正方形为朱方,以股为边的正方形为青方.以赢补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c的平方 ).由此便可证得a的平方+b的平方=c的平方. 这个证明是由三国时代魏国的数学家刘徽所提出的.在魏景元四年(即公元 263 年),刘徽为古籍《九章算术》作注释.在注释中,他画了一幅像图五(b)中的图形来证明勾股定理.由於他在图中以「青出」、「朱出」表示黄、紫、绿三个部分,又以「青入」、「朱入」解释如何将斜边正方形的空白部分填满,所以后世数学家都称这图为「青朱入出图」.亦有人用「出入相补」这一词来表示这个证明的原理.。
什么叫勾股定理有哪些方法可以用它证明题?
在任何一个直角三角形(RT△)中,两条直角边的长的平方和等于斜边长的平方,这就叫做勾股定理.即勾的平方加股的平方等于弦的平方 勾股定理(6张).(直角三角形两条直角边的平方和等于斜边的平方.)勾股定理是余弦定理的一个特例.这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”.(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”(驴桥定理——欧几里得《几何原本》第一篇的前5个命题是: 命题1:以已知线段为边,求作一等边三角形. 命题2:求以已知点为端点,作一线段与已知线段相等. 命题3:已知大小两线段,求在大线段上截取一线段与小线段相等. 命题4:两三角形的两边及其夹角对应相等,则这两个三角形全等. 命题5:等腰三角形两底角相等. 他们发现勾股定理的时间都比中国晚(中国是最早发现这一几何宝藏的国家).目前初二学生开始学习,教材的证明方法大多采用赵爽弦图,证明使用青朱出入图. 勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一. 直角三角形两直角边的平方和等于斜边的平方.如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2;+b^2;=c^2;. 勾股定理指出 直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方. 也就是说设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a²+b²=c². 勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一. 中国古代著名数学家商高说:“若勾三,股四,则弦五.”它被记录在了《九章算术》中. 推广 1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义.即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和. 2.勾股定理是余弦定理的特殊情况. 勾股定理。
【如何用小学的方法证明勾股定理?知道教下```谢谢】
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长玫秸?叫蜛BDE是由4个相等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子: 4*(ab/2)+(b-a)2=c2 化简后便可得: a2+b2=c2 亦即: c=(a2+b2)(1/2) 稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题. 再给出两种 1.做直角三角形的高,然后用相似三角形比例做出. 2.把直角三角形内接于圆.然后扩张做出一矩形.最后用一下托勒密定理.。


勾股定理怎么证明的?
先证明定理的前半部分,Rt△ABC中,∠ACB=90°,∠A=30°,那么BC=AB\/2 ∵∠A=30° ∴∠B=60°(直角三角形两锐角互余)取AB中点D,连接CD,根据 直角三角形斜边中线定理可知CD=BD ∴△BCD是等边三角形(有一个角是60°的等腰三角形是等边三角形)∴BC=BD=AB\/2 再证明定理的后半部分,...

什么是勾股定理?怎么算,请举个例子说明
勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。(如下图所示,即a² + b² = c²)例子:以上图的直角三角形为例,a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。由勾股定理得,a + b = c → 3 +4 = c 即,9...

勾股定理的十六种证明方法
加菲尔德证法、加菲尔德证法变式、青朱出入图证法、欧几里得证法、毕达哥拉斯证法、华蘅芳证法、赵爽弦图证法、百牛定理证法、商高定理证法、商高证法、刘徽证法、绉元智证法、梅文鼎证法、向明达证法、杨作梅证法、李锐证法 例,如下图:设△ABC为一直角三角形,其中A为直角。从A点划一直线至...

勾股定理怎么证明
勾股定理用证明四边形是正方形的方法。以a b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。勾股定理,是一个基本的几何定理,指...

勾股定理的证明方法 带图!!!
勾股定理的证明方法如下,共5种方法:

最简单的勾股定理的证明方法是什么?
图中左边的“弦图”最早出现在公元222年的中国数学家赵爽所著《勾股方圆图注》,赵爽是我国数学史上证明勾股定理的第一人。2002年8月,在北京召开的国际数学家大会,标志着中国数学进入崭新的时代,大会会徽就是这个“弦图”,寓意中国古代数学取得的重要成果。证法二:这一解法应该是来历最有趣的证明...

勾股定理的证明方法
勾股定理现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。欧几里得证法 在欧几里得的《几何原本》一书中给出勾股定理...

勾股定理的证明方法
勾股定理的证明方法如下:求证:勾股定理,即直角三角形的两条直角边的平方和等于斜边的平方。证明:分两种情况来讨论,即两条直角边长度不相等与相等。两条直角边长度不相等。如图,分别设直角三角形的边长为a、b、c,(a

勾股定理证明方法24种
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。公元前十一世纪,数学家商高(西周初年人)就提出“勾三、股四、弦五”。编写于公元前一世纪以前的...

怎样证明勾股定理
有关勾股定理知识点拓展:勾股定理是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。直角三角形两直角边(即“勾”,“股...

富源县19118083406: 最简单的勾股定理的证明方法是什么? -
宁勉速效: 简单的勾股定理的证明方法如下: 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 发现四个直角三角形和一个边长为a的正方形和一个边...

富源县19118083406: 数学勾股定理的证明方法,至少七种.最好是比较常见的,不是也没关系.一定要带图,证明清楚. -
宁勉速效:[答案] 证法1 作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使... 证法5(欧几里得的证法) 《几何原本》中的证明 在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立.设...

富源县19118083406: 叙述并证明勾股定理. -
宁勉速效:[答案]证明:如图 左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的.右边的正方形是由1个边长为c的正方形和4个直角边分别为a、b,斜边为c的直角三角形拼成的.因为这两个正方形的...

富源县19118083406: 勾股定理的八种证明方法 -
宁勉速效: 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名. 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊. 1.中国方法:画两个边长为(a+b)的正方形,如图,...

富源县19118083406: 勾股定理的证明 -
宁勉速效: 勾股定理的证明: 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.这两个正方形全等,故面积相等. 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等.从左右两图中都把...

富源县19118083406: 勾股定理的证明方法? -
宁勉速效: 中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数...

富源县19118083406: 勾股定理的证明方法?
宁勉速效: 勾股定理的证明: 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名. 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊. 1.中国方法:画两个边长为(a+b)的正方形,如图,...

富源县19118083406: 勾股定理有几种证明方法?? -
宁勉速效: 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名. 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊. 1.中国方法:画两个边长为(a+b)的正方形,如图,...

富源县19118083406: 勾股定理的证明方法
宁勉速效: 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名. 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊. 1.中国方法:画两个边长为(a+b)的正方形,如图,...

富源县19118083406: 勾股定理的证明(罕见的)
宁勉速效: 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊. 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.这两个正方形全等,故面积相等. 左图与右图各有四个与原直角三角形全等的三角形...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网