勾股定理最本质的证法是什么?

作者&投稿:仲长昌 (若有异议请与网页底部的电邮联系)
勾股定理的最简单的证明方法是什么?~

简单的勾股定理的证明方法如下:



拓展资料:
勾股定理的使用方法:
1、确保三角形是直角三角形。 勾股定理只适用于直角三角形中,所以,在应用定理之前,你需要先确定三角形是否是直角三角形,这一点非常重要。幸好,区分直接三角形和别的三角形的方法只有一个,那就是看一个三角形中是否有一个90度的角。
2、确定变量a,b,c对应的三角形的边。在勾股定理中,a,b表示直角三角形的两条直角边,而c用来表示斜边,即直角对应的那条最长的边。所以,先给两条直角边分别标注上a,b(具体的对应关系没有要求),而斜边标注上c。
3、确定你所要求的边。使用勾股定理可以求出直角三角形的任意一条边的长度,但前提是知道另外两条边的长度。先确定哪一条边的长度是未知的——a,b或者c。
4、代入。将两条已知边的长度带入到公式a2 + b2 = c2中,其中a和b对应的是两直角边的长度,而c代表斜边长度。在上面的例子中,我们知道一条直角边和斜边的长度(3和5),然后将3和5代入到公式中,有32 + b2 = 2。
5、计算平方。首先,计算两条已知边长度的平方值。或者,你也可以先不计算出来,然后保留平方,带到式子中直接计算平方和。在上述例子中,3和5的平方分别是9和25,所以方程可以改写为9 + b2 = 25。
6、将未知变量移到等号一边。如果有必要的话,运用基本的代数操作,将未知变量移动到等号一侧,而将已知变量移动到等号的另一侧。如果你要求的是斜边长,那么就不需要再移动变量了。在上述例子中,方程式是9 + b2 = 25。两边同时减去9,等式变为b2= 16。
7、求开方。现在等式两边一边是数字,另一边是变量,然后同时求两边的平方根。在上述例子中b2 = 16,两边同时求平方根,有b = 4。因此,未知边的长度就是4。
参考资料来源:百度百科-勾股定理

证法一:
这是最简单精妙的证明方法之一,几乎不用文字解释,可以说是无字证明。如图所示,左边是4个相同的直角三角形与中间的小正方形拼成的一个大正方形。

图形变换后面积没有变化,左边大正方形的边长是直角三角形的斜边c,面积是c2;右边图形可分割为两个正方形,它们的边长分别为直角三角形的两条直角边a和b,面积就是a2+b2,于是a2+b2=c2。
图中左边的“弦图”最早出现在公元222年的中国数学家赵爽所著《勾股方圆图注》,赵爽是我国数学史上证明勾股定理的第一人。2002年8月,在北京召开的国际数学家大会,标志着中国数学进入崭新的时代,大会会徽就是这个“弦图”,寓意中国古代数学取得的重要成果。
证法二:
这一解法应该是来历最有趣的证明方法之一,是由美国第20任总统茄菲尔德(JamesA.Garfield,1831~1881)用下图证明出的。

这位总统并不是一位数学家,他甚至都不曾学习过数学。他只是非正式地自学过几何知识,很喜欢摆弄基础图形,当他还是众议院议员时,想出了这个精巧的证明,1876年发表在《新英格兰教育杂志》(New England Journal of Education)上。总统先生的证明如下:
首先,图中的梯形面积为:

组成梯形的三个三角形的面积为:

因此就有如下等式:

即得a2+b2=c2。
接下来的两个证明非常简单易懂,被认为是所有证明中最短、最简单的证明,因为从开始到结束只用了几行。但这些证明依赖于相似三角形的概念,要全面展开这个概念还需要大量的基础工作,这里就不再赘述。
证法三:


证法四:
这一证法涉及到圆内相交弦定理:m·n=p·q(如左图),再看AB和CD垂直的情况,相交弦定理仍然成立(如右图),因此(c-a)(c+a)=b2。即得c2-a2=b2于是,a2+b2=c2。

勾股定理中的数学思想

数学思想是解决数学问题的灵魂,正确运用数学思想也是解题成功的关键。在运用勾股定理解题时,尤其应注重数学思想的运用。那么勾股定理解题时,蕴含了哪些数学思想呢?现就勾股定理中的常用的数学思想举例说明。

一、方程思想

例1 如图1,在矩形ABCD中,AD=6,AB=8,△ABD沿BD对折,交DC于F,求CF的长?

解:由题意得:△ABD≌△EBD,

所以∠ABD=∠EBD。

又因为AB‖DC,

所以∠ABD=∠BDC,

所以∠EBD=∠BDC,

所以BF=DF。

设CF=x,

则BF=DF=8-x。

在Rt△BCF中,



解得,

所以

二、分类讨论思想

例2 一个等腰三角形的周长为14cm,一边长4cm,求底边上的高。

解:(1)若4cm为腰长时,则底边长为6cm,则底边上的高。

(2)若4cm为底边长时,则腰长为5cm,则底边上的高。

所以底边上的高。

三、数形结合思想

例3 如图2,在一棵树的10米 高处有两只猴子,其中一只爬下树直向离树20米的池塘,而另一只爬到树顶后直扑池塘,如果两只猴子经过的距离相等,问这棵树有多高?

解:设BD=x米,由题意得,

CD=(20-x)米,AC=10米。

在Rt△ACD中,∠CAD=90°,

所以

即,

解方程得米。

则这棵树的高度为()米。

答:这棵树的高度为()米。

四、转化思想

例4 如图3,长方体的长AB=15cm,宽BC=10cm,高BF=20cm,一只蚂蚁如果要沿着长方体表面从点A爬到点G,需要爬行的最短路程是多少?

解:有三种情况:

(1)如图4:

路径AG则为蚂蚁爬行的最短路程,

在Rt△ACG中,

∠ACG=90°,AC=25cm,CG=20cm,则

(2)如图5:

路径AG则为蚂蚁爬行的最短路程,

在Rt△ABG中,

∠ABG=90°,AB=15cm,BG=30cm,则

(3)如图6:

路径AG则为蚂蚁爬行的最短路程,

在Rt△AFG中,

∠AFG=90°,AF=35cm,FG=10cm,则

因为

所以蚂蚁爬行的最短路程为:

勾股定理是人类的瑰宝,数学的奇葩,勾股定理中蕴含了丰富的数学思想,现撷取了勾股定理中的部分数学思想,以起抛砖引玉的作用。

1.中国方法
画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。

左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是
a2+b2=c2。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。
2.希腊方法
直接在直角三角形三边上画正方形,如图。
容易看出,
△ABA’ ≌△AA’’ C。
过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。
△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。
于是,
S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,
即 a2+b2=c2。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。
这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:
⑴ 全等形的面积相等;
⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。
这是完全可以接受的朴素观念,任何人都能理解。
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:
如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。
赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。
西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。
如图,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比较以上二式,便得
a2+b2=c2。
这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。
在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。
如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD • BA, ①
由△CAD∽△BAC可得AC2=AD • AB。 ②
我们发现,把①、②两式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,这就是
a2+b2=c2。
这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。
在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:
设△ABC中,∠C=90°,由余弦定理
c2=a2+b2-2abcosC,
因为∠C=90°,所以cosC=0。所以
a2+b2=c2。
这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。
人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

你说的这个就是费马大定理:xˇn+yˇn=zˇn (n为n次幂)
数学史上对于天才的数学家费马曾有一段轶事,说是费马在证明费马大定理时,正好写到那一页的页尾时,纸面不够用了,所以有关费马大定理的这本书出版时,只给出了结论,而没有证明过程。于是几百年来人们一直在努力寻找那个因为一时纸不够而没有被记录下来的灵感……然而有幸的是,这个问题在1999年时,已由一个英国的年轻数学家用另外一种方法,即计算机辅助的办法证明了。
关于那个数学上著名的“四色原理”也是在大约同一时期完成的。于是这两个困绕了人类几百年的问题终于有了解答结果。
至于继续探讨初等解法的问题,就象2006年菲尔茨数学奖获得者,证明了“庞加莱猜想”的勇士,唯一华裔,澳大利亚数学家陶哲轩所说,“对于大多数学业余爱好者,需要发展新的数学工具”。

变态,千年的文化就这样被你糟蹋了。勾股定理本身就取决于图形的定理,没有什么最基本的证法,就像π为什么是一个无理数,这就是数与型的特性,如果要说它的最本质的论证就是图形的性质

值得一提的是 勾股定理不仅是一个重要的几何定理 更重要的是 在历史上 由它所发展出了重要的物理数的概念 在勾股定理出来之前 人们相信 数只包括只有整数和整数比(如1是整数.1/3就是整数的比),勾股定理后 人们发现 等边长为一的等腰直角三角形的弦长既不是整数也不是整数与整数的比值 人们在此基础上发现了无理数 扩大了对数的认识范围 并由此奠定了现代高等数学的重要基础
赵爽
•东汉末至三国时代吴国人

•为《周髀算经》作注,并著有《勾股圆方图说》。

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。
中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”


勾股定理的多种证明方法
勾股定理的多种证明方法:

什么是勾股定理?怎么算,请举个例子说明
勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。(如下图所示,即a² + b² = c²)例子:以上图的直角三角形为例,a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。由勾股定理得,a + b = c → 3 +4 = c 即,9...

勾股定理的证明方法
年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了 367 种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证 明方法已有 500 余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何 定理无法比拟的。1.课本方法:画两个边长为 (a+b)的正方形,...

勾股定理现有多少种证明方法?
同理可证,矩形MLEB的面积 =.∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 ∴ 即a²;+b²;=c²;证法5(欧几里得的证法)《几何原本》中的证明 在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线...

初中数学:勾股定理的详细推导过程或新法
勾股定理指出 直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。也就是说设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方 a^2+b^2=c^2 勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。

勾股定理最简单怎么证
商高答说:我已经实践总结些解直角三角形(矩)条直角边(勾)等于3另条直角边(股)等于4候斜边(弦)必定5叫做勾股弦定理禹治水候总结定理 说禹治水代久远确切考证周公与商高则确定公元前1100左右西周期比毕达哥拉斯要早五百其所说勾3股4弦5勾股定理应用特例 我古代数家仅早发现并应用勾股定理且早...

勾股定理的历史,证明方法和应用
1、勾股定理是直角三角形三边存在的一种特殊关系,它的证明方法很多,用面积法证明比较简捷,用面积法证题是一种重要的证题方法,涉及到距离或垂线段时运用面积法解题较方便。 2、勾股定理的应用非常广泛,在进行几何计算时,常常要用到代数知识的方法,有的几何题为了应用勾股定理,可以作高(或垂线段)构造直角三角形。

关于勾股定理的证明方法
点拔:合理添作辅助线HM、HN,转移相等线段并利用勾股定理是证得本题结论的关健。例13 在△ABC中,如图1-13,△ABC中,如图1-13,∠BAC=90°,AB=AC,P为BC上一点。求证: 。点悟:从结论中 考虑,应该将PA放置到Rt△中去,为此考虑过A点作垂线段或过P点作垂线段构造Rt△,这样得到两种证法。证法(一):如图1...

勾股定理三边关系的证明方法
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。 一种证明方法的图示:左右两正方形面积相等,各扣除四块蓝色三角形后面积仍相等 勾股定理的美妙证明 证明[广西梁卷明的证法]:如图1,分别以AC、CB、BA为边长作正方形ACNM、正方形CBSQ、正方形BAPR,则易知⊿ABC≌⊿RBS,从而点Q必在SR上...

勾股定理的理论?带例子的
同理可证,矩形MLEB的面积 =. ∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 ∴即a^2+b^2=c^2 证法5(欧几里得的证法) 《几何原本》中的证明 在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上...

盘山县15999267658: 勾股定理的三种证明方法是什么啊 -
宫砖博静:[答案] 一,毕达哥拉斯证法 二,赵爽证法 三,将直角三角形与其它三角形拼成直角梯形,然后就根据梯形面积证出勾股定理.

盘山县15999267658: 最简单的勾股定理的证明方法是什么? -
宫砖博静: 简单的勾股定理的证明方法如下: 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 发现四个直角三角形和一个边长为a的正方形和一个边...

盘山县15999267658: 勾股定理的证明方法? -
宫砖博静: 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名. 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊. 1.中国方法:画两个边长为(a+b)的正方形,如图,...

盘山县15999267658: 勾股定理的证法 -
宫砖博静: △ABA' ≌△AA'C . 过C向A''B''引垂线,交AB于C',交A''B''于C''. △ABA'与正方形ACDA'同底等高,前者面积为后者面积的一半,△AA''C与矩形AA''C''C'同底等高,前者的面积也是后者的一半.由△ABA'≌△AA''C,知正方形ACDA'的面积等于矩形AA''C''C'的面积.同理可得正方形BB'EC的面积等于矩形B''BC'C''的面积. 于是, S正方形AA''B''B=S正方形ACDA'+S正方形BB'EC, 即 a2+b2=c2.

盘山县15999267658: 数学勾股定理的证明方法,至少七种.最好是比较常见的,不是也没关系.一定要带图,证明清楚. -
宫砖博静:[答案] 证法1 作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠...

盘山县15999267658: 勾股定理有几种证法?
宫砖博静: 勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今...

盘山县15999267658: 验证勾股定理的两种方法 -
宫砖博静: 勾股定理勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和.如果直角三角形两直角边分别为a、b,斜边为c,那么a�0�5+b�0�5=c�0�5...

盘山县15999267658: 勾股定理的达芬奇证法? -
宫砖博静:[答案] 三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式相等,就能得出一个新的关系式——勾股定理,所有勾股定理的证明方法都有这么个共同点. ...

盘山县15999267658: 请教勾股定理证明请数学老师给出证明勾股定理的最理想方法!用文字描述的也可以! -
宫砖博静:[答案] 画一个边长为a的正方形,将4个全等三角形按如图所示的位置放置,则中间小正方形的边长为(c-b).由大正方形的面积等于小正方形面积与4个直角三角形面积的和,得 c^2=(b-a)^2+4*1/2ab  ...

盘山县15999267658: 勾股定理怎么证? -
宫砖博静: 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名. 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊. 1.中国方法:画两个边长为(a+b)的正方形,如图,...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网