勾股定理证明方法所有

作者&投稿:致律 (若有异议请与网页底部的电邮联系)
勾股定理的十六种证明方法~

加菲尔德证法、加菲尔德证法变式、青朱出入图证法、欧几里得证法、毕达哥拉斯证法、华蘅芳证法、赵爽弦图证法、百牛定理证法、商高定理证法、商高证法、刘徽证法、绉元智证法、梅文鼎证法、向明达证法、杨作梅证法、李锐证法
例,如下图:

设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
设△ABC为一直角三角形,其直角为∠CAB。
其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB=FB,BD=BC,所以△ABD≌△FBC。
因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。
因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。
因此四边形BDLK=BAGF=AB²。
同理可证,四边形CKLE=ACIH=AC²。
把这两个结果相加,AB²+AC²=BD×BK+KL×KC
由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC
由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。
扩展资料
性质:

1、勾股定理的证明是论证几何的发端;
2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;
4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;
5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值,这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。

1、做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从下图可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a的平方加b的平方,加4乘以二分之一ab等于c的平方,加4乘以二分之一ab,整理得a的平方加b的平方等于c的平方。

2、以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上。
∵ RtΔHAE ≌ RtΔEBF,
∴ ∠AHE = ∠BEF.
∵ ∠AEH + ∠AHE = 90º,
∴ ∠AEH + ∠BEF = 90º.
∴ ∠HEF = 180º―90º= 90º.
∴四边形EFGH是一个边长为c的
正方形. 它的面积等于c2.
∵ RtΔGDH ≌ RtΔHAE,
∴ ∠HGD = ∠EHA.
∵ ∠HGD + ∠GHD = 90º,
∴ ∠EHA + ∠GHD = 90º.
又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD是一个边长为a + b的正方形,它的面积等于a+b的平方。
∴a加b的平方等于4乘二分之一ab,加上c的平方。 .
∴a的平方加b的平方等于c的平方。

3、以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于二分之一ab。把这四个直角三角形拼成如图所示形状。
∵ RtΔDAH ≌ RtΔABE,
∴ ∠HDA = ∠EAB.
∵ ∠HAD + ∠HAD = 90º,
∴ ∠EAB + ∠HAD = 90º,
∴ ABCD是一个边长为c的正方形,它的面积等于c2.
∵ EF = FG =GH =HE = b―a ,
∠HEF = 90º.
∴ EFGH是一个边长为b―a的正方形,它的面积等于b减a的平方。
∴ 4乘二分之一ab加上,b减a的平方等于c的平方。
∴ a^2+b^2=c^2(说明a^2为a的平方)。

4、以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于二分之一ab。把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.
∵ RtΔEAD ≌ RtΔCBE,
∴ ∠ADE = ∠BEC.
∵ ∠AED + ∠ADE = 90º,
∴ ∠AED + ∠BEC = 90º.
∴ ∠DEC = 180º―90º= 90º.
∴ ΔDEC是一个等腰直角三角形,
它的面积等于二分之一c^2.
又∵ ∠DAE = 90º, ∠EBC = 90º,
∴ AD∥BC.
∴ ABCD是一个直角梯形,它的面积等于1/2(a+b)^2.
∴1/2(a+b)^2=2x1/2ab+1/2c^2. .
∴a^2+b^2=c^2.

5、做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180º―90º= 90º.
又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形.
∴ ∠ABC + ∠CBE = 90º.
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90º.
即 ∠CBD= 90º.
又∵ ∠BDE = 90º,∠BCP = 90º,
BC = BD = a.
∴ BDPC是一个边长为a的正方形.
同理,HPFG是一个边长为b的正方形.
设多边形GHCBE的面积为S,则
a^2+b^2=S+2 x 1/2xab
c^2=S+2x1/2 x ab
∴ a^2+b^2=c^2.

参考资料:百度百科-勾股定理

证法1
  作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。 过点C作AC的延长线交DF于点P.   ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,   ∴ ∠EGF = ∠BED,   ∵ ∠EGF + ∠GEF = 90°,   ∴ ∠BED + ∠GEF = 90°,   ∴ ∠BEG =180°―90°= 90°   又∵ AB = BE = EG = GA = c,   ∴ ABEG是一个边长为c的正方形。   ∴ ∠ABC + ∠CBE = 90°   ∵ RtΔABC ≌ RtΔEBD,   ∴ ∠ABC = ∠EBD.   ∴ ∠EBD + ∠CBE = 90°   即 ∠CBD= 90°   又∵ ∠BDE = 90°,∠BCP = 90°,   BC = BD = a.   ∴ BDPC是一个边长为a的正方形。   同理,HPFG是一个边长为b的正方形.   设多边形GHCBE的面积为S,则   A^2+B^2=C^2
证法2
  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形。 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.   过点Q作QP∥BC,交AC于点P.   过点B作BM⊥PQ,垂足为M;再过点   F作FN⊥PQ,垂足为N.   ∵ ∠BCA = 90°,QP∥BC,   ∴ ∠MPC = 90°,   ∵ BM⊥PQ,   ∴ ∠BMP = 90°,   ∴ BCPM是一个矩形,即∠MBC = 90°。   ∵ ∠QBM + ∠MBA = ∠QBA = 90°,   ∠ABC + ∠MBA = ∠MBC = 90°,   ∴ ∠QBM = ∠ABC,   又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,   ∴ RtΔBMQ ≌ RtΔBCA.   同理可证RtΔQNF ≌ RtΔAEF.即A^2+B^2=C^2
证法
  作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再作一个边长为c的正方形。 把它们拼成如图所示的多边形.   分别以CF,AE为边长做正方形FCJI和AEIG,   ∵EF=DF-DE=b-a,EI=b,   ∴FI=a,   ∴G,I,J在同一直线上,   ∵CJ=CF=a,CB=CD=c,   ∠CJB = ∠CFD = 90°,   ∴RtΔCJB ≌ RtΔCFD ,   同理,RtΔABG ≌ RtΔADE,   ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE   ∴∠ABG = ∠BCJ,   ∵∠BCJ +∠CBJ= 90°,   ∴∠ABG +∠CBJ= 90°,   ∵∠ABC= 90°,   ∴G,B,I,J在同一直线上,   A^2+B^2=C^2.
证法4
  作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结   BF、CD. 过C作CL⊥DE,   交AB于点M,交DE于点L.   ∵ AF = AC,AB = AD,   ∠FAB = ∠GAD,   ∴ ΔFAB ≌ ΔGAD,   ∵ ΔFAB的面积等于,   ΔGAD的面积等于矩形ADLM   的面积的一半,   ∴ 矩形ADLM的面积 =.   同理可证,矩形MLEB的面积 =.   ∵ 正方形ADEB的面积   = 矩形ADLM的面积 + 矩形MLEB的面积   ∴ 即A^2+B^2=C^2
证法5(欧几里得的证法)
  《几何原本》中的证明   在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。   在正式的证明中,我们需要四个辅助定理如下:   如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。   其证明如下:   设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB²。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2;。 把这两个结果相加, AB^2;+ AC^2;; = BD×BK + KL×KC 。由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2;+ AC^2;= BC^2;。 此证明是于欧几里得《几何原本》一书第1.47节所提出的
证法6(欧几里德(Euclid)射影定理证法)
  如图1,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高   通过证明三角形相似则有射影定理如下:   (1)(BD)^2;=AD·DC,   (2)(AB)^2;=AD·AC ,   (3)(BC)^2;=CD·AC 。   由公式(2)+(3)得:(AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,   图1即 (AB)^2;+(BC)^2;=(AC)^2,这就是勾股定理的结论。    图1
证法七(赵爽弦图)
  在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:   4×(ab/2)+(b-a)^2;=c^2;    化简后便可得:a^2;+b^2;=c^2;   亦即:c=(a^2;+b^2;)1/2   勾股定理的别名 勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。   我国是发现和研究勾股定理最古老的国家之一。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在我国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。   在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。   在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.   前任美国第二十届总统伽菲尔德证明了勾股定理(1876年4月1日)。   1 周髀算经, 文物出版社,1980年3月, 据宋代嘉定六年本影印,1-5页。   2. 陈良佐: 周髀算经勾股定理的证明与出入相补原理的关系。 刊於《汉学研究》, 1989年第7卷第1期, 255-281页。   3. 李国伟: 论「周髀算经」“商高曰数之法出于圆方”章。 刊於《第二届科学史研讨会汇刊》, 台湾, 1991年7月, 227-234页。   4. 李继闵: 商高定理辨证。 刊於《自然科学史研究》,1993年第12卷第1期,29-41页 。   5. 曲安京: 商高、赵爽与刘徽关於勾股定理的证明。 刊於《数学传播》20卷, 台湾, 1996年9月第3期, 20-27页
证法8(达芬奇的证法)
   达芬奇的证法
三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式相等,就能得出一个新的关系式——勾股定理,所有勾股定理的证明方法都有这么个共同点。观察纸片一,因为要证的事勾股定理,那么容易知道EB⊥CF,又因为纸片的两边是对称的,所以能够知道四边形ABOF和CDEO都是正方形。然后需要知道的是角A'和角D'都是直角,原因嘛,可以看纸片一,连结AD,因为对称的缘故,所以∠BAD=∠FAD=∠CDA=∠EDA=45°,那么很明显,图三中角A'和角D'都是直角。   证明:   第一张中多边形ABCDEF的面积S1=S正方形ABOF+S正方形CDEO+2S△BCO=OF2+OE2+OF·OE   第三张中多边形A'B'C'D'E'F'的面积S2=S正方形B'C'E'F'+2△C'D'E'=E'F'2+C'D'·D'E'   因为S1=S2   所以OF2+OE2+OF·OE=E'F'2+C'D'·D'E'   又因为C'D'=CD=OE,D'E'=AF=OF   所以OF2+OE2=E'F'2   因为E'F'=EF   所以OF2+OE2=EF2   勾股定理得证。
证法9
  从这张图可以得到一个矩形和三个三角形,推导公式如下:
b ( a + b )= 1/2c^2; + ab + 1/2(b + a)(b - a)   矩形面积 =(中间三角形)+(下方)2个直角三角形+(上方)1个直   角三角形。   (简化) 2ab + 2b^2;= c^2; + b^2;- a^2;+ 2ab   2b^2; - b^2;+ a^2;= c^2;   a^2; + b^2;= c^2;   注:根据加菲尔德图进一步得到的图形。



A的平方加B的平方等于C的平方

可以用图形来证明


什么是勾股定理?怎么算,请举个例子说明
由勾股定理得,a + b = c → 3 +4 = c 即,9 + 16 = 25 = c²c = √25 = 5 所以我们可以利用勾股定理计算出c的边长为5。勾股定理的逆定理:勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:如果a² + b² = c² ,...

如何用数学证明勾股定理?
在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。1定律内容 在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角...

勾股定理的证明方法有多少种据说有四百多
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪...

有没有勾股定理的证明方法,10种以上,txt格式(带图)
展开全部 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各...

勾股定理证明
把这段话列成算式,即为:弦=(勾2+股2)(1\/2)亦即:c=(a2+b2)(1\/2)中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股...

关于勾股定理的知识
一.知识点归纳总结 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方.表示方法:如果直角三角形的两直角边分别为 a,b,斜边为 c,那么 a2 + b2 = c2 .2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法:3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所...

勾股定理全定理?
勾股定理指出 直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。 也就是说设直角三角形两直角边为a和b,斜边为c,那么 a的平方+b的平方=c的平方 a^2+b^2=c^2 勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。

勾股定理所有验证方法
说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。举例:如直角三角形的两个直角边分别为3、4,则斜边c^2= a^2+b^2=9+16=25即c=5 则说明斜边为5。勾股定理的种证明方...

勾股定理常用3个公式是什么?
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方,中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理的内容 勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一...

一个直角三角形两条直角边分别为3和4请问斜边多长
一、相关知识:1.勾股定理:在任何一个直角三角形中, 两直角边的平方和等于斜边的平方 这一特性叫做勾 股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a²+b²=c² 。2.勾股定理的证明①中学课本的证明②赵爽弦图的...

包头市15623926414: 勾股定理的所有证明方法共有多少个,是哪些?一一列举出来. -
朝显沐欣:[答案] 最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长玫秸 叫蜛BDE是由4个相等的直角三角形再加上...

包头市15623926414: 最简单的勾股定理的证明方法是什么? -
朝显沐欣: 简单的勾股定理的证明方法如下: 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 发现四个直角三角形和一个边长为a的正方形和一个边...

包头市15623926414: 勾股定理的证明方法有那些? -
朝显沐欣: 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名.首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊.1.中国方法:画两个边长为(a+b)的正方形,如图...

包头市15623926414: 勾股定理有多少种证明方法/ -
朝显沐欣: 勾股定理有500多种证明方法,最著名的有5种: 【证法1】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点...

包头市15623926414: 怎样证明勾股定理? -
朝显沐欣: 勾股定理的证明方法 广西桂平市大洋中学 覃祖海 勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上...

包头市15623926414: 什么叫勾股定理 有哪些方法可以用它证明题? -
朝显沐欣:[答案] 在任何一个直角三角形(RT△)中,两条直角边的长的平方和等于斜边长的平方,这就叫做勾股定理.即勾的平方加股的平方等于弦的平方 勾股定理(6张).(直角三角形两条直角边的平方和等于斜边的平方.)勾股定理是余弦定理的一个特例.这个定...

包头市15623926414: 勾股定理的证明方法有几种? -
朝显沐欣:[答案] 由三百多种. 最简单的方法是: 构造一个正方形ABCD, 分别在AB、BC、CD、DA上截取AE=BF=CG=DH=a, 则可设EB=FC=GD=HA=b, 设HE=c, 易证:△AEH≌△BFE≌△CGF≌△DHG, ∴EF=FG=GH=c, ∴易证四边形EFGH是正方形. 由面积关...

包头市15623926414: 勾股定理证明方法带图,较难的,多种方法 -
朝显沐欣:[答案] 刘徽在证明勾股定理时,也是用的以形证数的方法,只是具体的分合移补略有不同.刘徽的证明原也有一幅图,可惜图已失传,只留下一段文字:“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂.开方除之,...

包头市15623926414: 勾股定理的证明方法有哪些呀 -
朝显沐欣: 图一 在图一中,D ABC 为一直角三角形,其中 Ð A 为直角.我们在边 AB、BC 和 AC 之上分别画上三个正方形 ABFG、BCED 和 ACKH.过 A 点画一直线 AL 使其垂直於 DE 并交 DE 於 L,交 BC 於 M.不难证明,D FBC 全等於 D ABD(S.A....

包头市15623926414: 证明钩股定理的几中方法? -
朝显沐欣: 勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和. 据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明! 勾股定理是几何学中的明珠,所...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网