尺规作图三大几何问题如何产生的?并且如何解决的?有什么教育价值?

作者&投稿:狐哪 (若有异议请与网页底部的电邮联系)
尺规作图三大难题是什么????~

古希腊人用尺规作图,主要目的在于训练智力,培养逻辑思维能力,所以对作图的工具有严格的限制.他们规定作图只能用直尺和圆规,而他们所谓的直尺是没有刻度的.正是在这种严格的限制下,产生了种种难题.
尺规作图相传神话中的一个国王对儿子给他造的坟墓不满意,命令把坟墓扩大一倍,但是当时的工匠都不知如何解决.后来,德利安人为了摆脱某种瘟疫,遵照神谕,必须把阿波洛的立方体祭坛扩大一倍.据说,这个问题提到柏拉图那里,柏拉图又把它交给了几何学家.这就是著名的倍立方问题.除倍立方问题外,还有三等分任意角、化圆为方(作一正方形,使其面积等于给定的圆面积).
在数学史中,很难找到像这样长期被人关注的问题.两千多年以来,无数人的聪明才智倾注于这三个问题而毫无结果.但对这三个问题的深入探索,促进了希腊几何学的发展,引出了大量的发现.如圆锥曲线、许多二次和三次曲线以及几种超越曲线的发现等;后来又有关于有理域、代数数、超越数、群论和方程论若干部分的发展.直到19世纪,即距第一次提出这三个问题两千年之后,这三个尺规作图问题才被证实在所给的条件下是不可能解决的.

倍立方问题外,三等分任意角、化圆为方

传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。这就是古希腊三大几何问题之一的倍立方体问题。用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。另外两个著名问题是三等分任意角和化圆为方问题。   古希腊三大几何问题既引人入胜,又十分困难。问题的妙处在于它们从形式上看非常简单,而实际上却有着深刻的内涵。它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规。但直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。这一过程中隐含了近代代数学的思想。经过2000多年的艰苦探索,数学家们终于弄清楚了这3个古典难题是“不可能用尺规完成的作图题”。认识到有些事情确实是不可能的,这是数学思想的一大飞跃。   然而,一旦改变了作图的条件,问题则就会变成另外的样子。比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了。数学家们在这些问题上又演绎出很多故事。直到最近,中国数学家和一位有志气的中学生,先后解决了美国著名几何学家佩多提出的关于“生锈圆规”(即半径固定的圆规)的两个作图问题,为尺规作图添了精彩的一笔。   或描述如下:   这是三个作图题,只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这是不可能的:   1.立方倍积,即求作一立方体的边,使该立方体的体积为给定立方体的两倍。   2.化圆为方,即作一正方形,使其与一给定的圆面积相等。   3.三等分角,即分一个给定的任意角为三个相等的部分。
编辑本段立方倍积
  关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。”由此可见这神是很喜欢数学的。居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一稜的长度都是旧祭坛稜长的二倍,但是瘟疫不但没停止,反而更形猖獗,
使他们都又惊奇又惧怕。结果被一个学者指出了错误:「稜二倍起来体积就成了八倍,神所要的是二倍而不是八倍。」大家都觉得这个说法很对,於是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟疫仍不见消灭。人们困扰地再去问神,这次神回答说:「你们所做的祭坛体积确是原来的二倍,但形状却并不是正方体了,我所希望的是体积二倍,而形状仍是正方体。」居民们恍然大悟,就去找当时大学者柏拉图(Plato)请教。由柏拉图和他的弟子们热心研究,但不曾得到解决,并且耗费了後代许多数学家们的脑汁。而由于这一个传说,立方倍积问题也就被称为提洛斯问题。
编辑本段化圆为方
  方圆的问题与提洛斯问题是同时代的,由希腊人开始研究。有名的阿基米得把这问题化成下述的形式:已知一圆的半径是r,圆周就是2πr,面积是πr2。由此若能作一个直角三角形,其夹直角的两边长分别为已知圆的周长2πr及半径r,则这三角形的面积就是   (1/2)(2πr)(r)=πr2   与已知圆的面积相等。由这个直角三角形不难作出同面积的正方形来。但是如何作这直角三角形的边。即如何作一线段使其长等于一已知圆的周长,这问题阿基米德可就解不出了。
编辑本段三等分角
  三等分任意角的题也许比那两个问题出现更早,早到历史上找不出有关的记载来。但无疑地它的出现是很自然的,就是我们自己在现在也可以想得到的。纪元前五、六百年间希腊的数学家们就已经想到了二等分任意角的方法,正像我们在几何课本或几何画中所学的:以已知角的顶点为圆心,用适当的半径作弧交角两的两边得两个交点,再分别以这两点为圆心,用一个适当的长作半径画弧,这两弧的交点与角顶相连就把已知角分为二等分。二等分一个已知角既是这么容易,很自然地会把问题略变一下:三等分怎么样呢?这样,这一个问题就这么非常自然地出现了。
编辑本段三大几何难题的结果及其意义
  化圆为方,立方倍积和三等分角这三大古希腊几何作图难题的结果又是如何被证明的呢?带着问题让我们来探究一下。   (1)化圆为方问题的结果   我们都知道化圆为方是由古希腊著名学者阿纳克萨戈勒斯提出的,但是阿纳克萨戈勒斯一生也未能解决自己提出的问题。   实际上,这个化圆为方问题中的正方形的边长是圆面积的算数平方根。我们假设圆的半径为单位1,那么正方形的边长就是根号π。   直到1882年,化圆为方的问题才最终有了合理的答案。德国数学家林德曼(Lindemann,1852~1939)在这一年成功地证明了圆周率π=3.1415926......是超越数,并且尺规作图是不可能作出超越数来,所以用尺规作图的方式解决化圆为方的问题才被证明是不可能实现的。 德国数学家林德曼
(2)倍立方积和三等分角问题的结果   直到1830年,18岁的法国数学家伽罗华首创了后来被命名为“伽罗华理论” 理论,该理论能够证明倍立方积和三等分角问题都是尺规作图不能做到的问题。1837年,法国数学家汪策尔(Wantzel,1814~1848)终于给出三等分角和倍立方积的问题都是尺规作图不可能问题的证明。
(3)三大几何作图难题的意义   虽然三大几何作图难题都被证明是不可能由尺规作图的方式做到的,但是为了解决这些问题,数学家们进行了前赴后继的探索,最后得到了不少新的成果,发现了许多新的方法。同时,它反映了数学作为一门科学,它是一片浩瀚深邃的海洋,仍有许多未知的谜底等待这我们去发现。

尺规作图问题的等分任意角和任意圆是可以的!罗龙云就可以做到。圆化方及倍立方已被罗龙云证明是不成立的。


尺规作图著名问题
尺规作图不能完成的问题是指在几何学中,由于欧几里得几何的局限性,无法仅用直尺和圆规解决的一些难题。历史上有四个著名的问题,挑战了古人的智慧和数学技术:1. 几何三大问题: - 三等分角问题:将任意角分成相等的三部分,虽然早在古希腊时期提出,但直到1837年,法国数学家万芝尔才证明其不可能...

古希腊的“几何作图三大难题”是什么?
1.内容 这三个题目是三分角、倍立方及圆化方,其内容分述如下。三分角:用直尺及圆规把任给的一角三等分。倍立方:给定一立方体(即其一边已知),用直尺及圆规做另一立方体(即做其一边)使其体积为原立方体的两倍。圆化方:用直尺及圆规做一正方形使其面积等于一给定圆的面积。这三个已经被现代...

平面几何三大难题是尺规作图能的问题,为什么?
这个问题的解决比前两个难题更加复杂和困难,涉及到了高深的数学知识,需要更加深入的研究和思考。楼主您解决平面几何三大难题的过程中,可以看出您有较强的数学素养和探索精神,对于解决问题具有强烈的求知欲和坚定的决心。您在解决问题时不仅从理论上探究,还从实践中寻找答案,甚至深入研究代数与作图的相互...

古希腊三大几何问题详细资料大全
数学家们在这些问题上又演绎出很多故事。中国数学家和一位有志气的中学生,先后解决了美国著名几何学家佩多提出的关于“生锈圆规”(即半径固定的圆规)的两个作图问题,为尺规作图添了精彩的一笔。 或描述如下: 这是三个作图题,只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这是不可能的: ...

无理数是怎样产生的,尺规作图的三大不能问题是什么
但是他始终无法证明不是无理数,后来希伯斯将无理数透露给外人——此知识外泄一事触犯学派章程——因而被处死,其罪名等同于“渎神”。尺规作图的三大不能问题:1、三等分任意角问题 2、求作立方体,使其体积等于已知立方体积的两倍 3、求作一个正方形,使其面积等于已知圆的面积 ...

几何学中3大尺规作图不能问题
1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。

数学史上的三次危机?无理数是怎样产生的?尺规作图三大不可能问题?
在2400年前的古希腊已提出这些问题,直至1837年,法国数学家万芝尔才首先证明“三等分角”和“倍立方”为尺规作图不能问题。1882年德国数学家林德曼证明π是超越数后,“化圆为方”也被证明为尺规作图不能问题。【尺规作图不能问题的另类做法】■总述 人们用尺规解几何三大作图题屡遭失败之后,一方面...

为什么有尺规作图呢?
貌以简单其实难 从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,2000多年来从事几何三大难题的研究颇不乏人。也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等等。可是,所有这些方法,不是不符合尺规作图法,便是近似...

关于尺规作图
三等分角是古希腊平面几何里尺规作图领域中的著名问题,与化圆为方及倍立方问题并列为尺规作图三大难题。尺规作图是古希腊人的数学研究课题之一,是对具体的直尺和圆规画图可能性的抽象化,研究是否能用规定的作图法在有限步内达到给定的目标。三等分角问题的内容是:“能否仅用尺规作图法将任意角度三...

古代的三大几何难题是哪三大
第二个是三等分一个角的问题。并不难,例如60度,若能三等分则可以做出20度的角;第三个问题是倍立方。 1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。1837年旺策尔给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼也证明了π的超越性即π不为任何整数系数多次...

思明区17068732883: 古希腊三大几何难题的产生发展解决及其意义 -
溥功济脉: 1.立方倍积,即求作一立方体的边,使该立方体的体积为给定立方体的两倍. 2.化圆为方,即作一正方形,使其与一给定的圆面积相等. 3.三等分角,即分一个给定的任意角为三个相等的部分. 化圆为方,立方倍积和三等分角这三大古希腊几何...

思明区17068732883: 历史上三大作图难题是什么? -
溥功济脉: 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺.用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来.有些问题看起来好像很简单,但真正做出来却很困难,这些问题...

思明区17068732883: 古希腊三大几何问题是什么? -
溥功济脉: 传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行.人们百思不得其解,不得不求教于当时最伟大的学者柏拉图...

思明区17068732883: “几何三大问题”是什么啊?
溥功济脉: 这是三个作图题,只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这是不可能的: 1.立方倍积,即求作一立方体的边,使该立方体的体积为给定立方体的两倍. 2.化圆为方,即作一正方形,使其与一给定的圆面积相等. 3.三等分角,即分一个给定的任意角为三个相等的部分.

思明区17068732883: 几何作图三大难题及解决方法 -
溥功济脉: 由于你的问题涉及到了太多知识,本人也无法清楚地说出来. 一般来说,尺规作图就是用没有刻度的直尺和圆规作图,其难点,就在于图形的性质,各种平面图形和各种线段(角平分线、中线、高线等)所包含的意义,以及作图时的方法和应注意的地方. 具体的解决方法,可以买辅导书(包括辅导报)或上网查阅等.

思明区17068732883: 无理数是怎样产生的,尺规作图的三大不能问题是什么 -
溥功济脉: 传说中,无理数最早由毕达哥拉斯学派弟子希伯斯发现.他以几何方法证明无法用整数及分数表示.而毕达哥拉斯深信任意数均可用整数及分数表示,不相信无理数的存在.但是他始终无法证明不是无理数,后来希伯斯将无理数透露给外人——此知识外泄一事触犯学派章程——因而被处死,其罪名等同于“渎神”. 尺规作图的三大不能问题:1、三等分任意角问题 2、求作立方体,使其体积等于已知立方体积的两倍 3、求作一个正方形,使其面积等于已知圆的面积

思明区17068732883: 数学史上的三次危机?无理数是怎样产生的?尺规作图三大不可能问题? -
溥功济脉: 第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派.第二次数学危机的解决使微积分更完善第三次数学危机,发生在十九世纪末.当时英国数学家罗素把集合分成两种.教材以古希腊的数学家计算面...

思明区17068732883: 尺规作图三大难题是什么?几何的尺规作图有三大难题,是用尺规无法做成的,求 -
溥功济脉:[答案] 倍立方问题外,三等分任意角、化圆为方

思明区17068732883: 古希腊的三大几何问题是什么? -
溥功济脉:[答案] 采用尺规作图: 1 三等分一个角,不可能是因为不能作出一般三次方程的根 2 立方倍积,不可能是因为作不出2的立方根 3 化圆为方,不可能是因为作不出圆周率! 其实还有个是作正十七边形,这个由德国高斯解决了,所以三个不肯能问题就指以上...

思明区17068732883: 世界三大几何难题之一 -
溥功济脉: 古典难题的挑战——几何三大难题及其解决 位于欧洲南部的希腊,是著名的欧洲古国,几何学的故乡.这里的古人提出的三大几何难题,在科学史上留下了浓浓的一笔.这延续了两千多年才得到解决的世界性难题,也许是提出三大难题的古希腊...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网