在碱性条件下测维生素c有哪些干扰物质

作者&投稿:播河 (若有异议请与网页底部的电邮联系)
测定食品中维生素C含量时往往会受哪些因素影响?有什么解决措施?~

几种常见的检测方法进行简要的叙述。 
维生素C的测定方法 1. 滴定分析法 
采用滴定法测定维生素C的原理主要是利用维生素C的氧化还原性质,通过化学反应,选择合适的指示剂,根据样品溶液颜色的变化判定终点。常见的方法有 2,6-二氯吲哚酚滴定法(又称染料法)和碘量法等。其中 2,6-二氯吲哚酚滴定法的基本原理是:在酸性环境中,红色的2,6-二氯吲哚酚与维生素C反应被还原为无色的酚亚胺,以2,6-二氯吲哚酚染料为滴定剂,用滴定剂自身的颜色变化指示终点,当溶液中的维生素 C刚好被全部氧化时,溶液呈浅红色, 30s内不褪色,即为滴定终点,其反应式如图2所示。滴定分析法快速、准确、方便,可用于测定水果中少
量的维生素C。但当样品中含有 Fe(II)、Sn(II)、Cu(I)、SO2、S2O32−
等离子和富含丹宁酸、甜菜苷时,由于这些物质本身也有还原性,也会与氧化剂发生氧化还原反应,而使测定结果不准确。因此滴定分析法往往只适用于测定不含 L-脱氢抗坏血酸( DHA)、花青素含量较低及不含还原性离子的样品。 
2. 光度计法 
光度法测定样品中维生素C含量的原理大多利用显色剂与维生素C发生的氧化还原反应,通过测定溶液的吸光度建立标准曲线来测定样品维生素C的含量。然而,由于总抗坏血酸的局限性,例如GB/T12392-1990只能测定脱氢抗坏血酸。而对于还原型抗坏血酸测定,GB5009.159-2003则采用抗坏血酸与固蓝盐B( Fast blue salt  B)反应生成黄色的草酰肼-2-羟基丁酰内酯衍生物,在最大吸收波长420nm测定吸光度来检测。采用亚甲蓝褪色光度法也能够方便的测定维生素C,具有良好的选择性。利用抗坏血酸对于Cu(II)具有专一的还原作用,在Cu(II)的存在下,抗坏血酸将 Cu(II)迅速还原成 Cu(I),Cu(I)与新亚铜灵(2,9-二甲苯-1,10菲绕啉)络合生成黄色水溶性物质,并在分光光度计下测定。此类方法结果可靠,重现性好,能准确测定维生素 C的含量,但如果待测液本身有颜色时,吸光度会受到影响,进而影响测定结果的准确性,且耗时较长。 
3. 电化学法 
电化学分析法是利用维生素C在电极上发生氧化反应而进行测定的。维生素 C在电极上失去  2个电子和 2个氢离子被氧化形成脱氢抗坏血酸,经过不可逆的水合作用形成脱氢古落糖酸。常用的工作电极有金属电极、石墨电极等,但维生素 C在此类电极氧化需要较高的氧化电位,在检测过程中易受到其它物质的干扰。近年来,采用修饰电极来降低氧化电位受到研究者的广泛重视,如纳米粒子金修饰的氧化钛膜电极(Au/Ti O2/Ti),聚吡咯修饰的分子印迹(MIP)石墨电极等,大大提高了检测方法的灵敏度和选择性。电化学分析法具有分析速度快,操作简便、成本低、试剂用量少等优点,还可以与液相色谱、毛细管电泳生物传感器等联用来提高测定方法的灵敏度。其缺点是对样品前处理要求较高,操作较为繁琐。4. 化学发光法(CL) 化学发光法(CL)是利用维生素C与高锰酸钾、K2Cr2O7、Fe或铁氰化合物等发生氧化反应,并与鲁原子吸收光谱法(AAS)间接测定维生素 C的含量米诺(Luminol)或光泽精(Lucigenin)化学发光体系进行反应偶合来测定体系的发光强度进行维生素C的测定。Kato等利用在维生素  C中加入  Fe-叶绿酸发光体系发生淬灭来测定微量的维生素C, 化学发光法具有易操作、线性范围宽和灵敏度高的优点,是一种有效的痕量分析方法。5.流动注射分析法(FIA) 流动注射分析法(FIA)是将有色(或无色但有紫外吸收)溶液作为载流,当被测样品注入载流时,发生化学反应,使载流溶液颜色变淡(或紫外吸收降低)。若载流吸光度的变化与被测物质量具有一定的函数关系,即可以此对被测样品进行定量。流动注射法具有试剂用量少,重现性好,样品自动注射,占用空间少等优点, 特别适用于在大量样品中测定某一种目标分析物。近年来,FIA技术用于维生素  C测定受到很多研究者的关注,实现了快速、自动分析测定维生素C。流动注射系统可以与光谱法、电化学分析、色谱法、荧光法结合,与传统方法相比,大大提高了灵敏度和准确度。6. 液相色谱法(HPLC) 液相色谱法(HPLC)由于其具有灵敏度高、重现性好、操作简便和能实现多种维生素的同时测定等优点已成为近年来应用最广的分离和测定维生素C的方法。基于样品前处理方法、测定色谱条件和检测器的不同采用HPLC测定维生素C含量的方法也不尽相同。常用于测定维生素 C的色谱柱以反相柱为主,检测器包括的紫外(UV)或二极管阵列(PDA)检测器和电化学(EC)检测器等。例如:Maia等采用0.2%的偏磷酸–甲醇–乙腈  (90:8:2)为流动相,C18柱为色谱柱,在254nm波长下对药品中的维生素C含量进行测定。Quiros等,以0.1%(V/V) 的甲酸溶液为流动相,Mediterranea sea 18为色谱柱,在254 nm波长下测定果汁和饮料中维生素 C含量。由于流动相常常要使用含有一定的离子强度的缓冲溶液,故基本无法使用液相色谱–质谱联用技术来测定维生素C的含量。7. 原子吸收光谱法(AAS) 已有一些报道大致分为两类:沉淀法和阳离子树脂交换法。沉淀法的原理是:在酸性介质中维生素C与  Cu及    SCN反应生成一价铜盐  CuCNS (沉淀),分离后用原子吸收法测铜含量而间接测定维生素C含量]。阳离子树脂交换法是通过维生素C换柱表面将高氧化态金属离子或氧化物 (Fe3+,  MnO2)还原为低氧化金属离子(Fe2+, Mn  ),通过流动注射在阳离子交

因为维生素C是抗坏血酸

雨滴计算通过百度搜索的维生素C不同的测定方法 目前研究维生素C测定方法的报道较多,有关维生素C的测定方法如荧光法、2,6-二氯靛酚滴定法、2,4-二硝基苯肼法、光度分析法、化学发光法、电化学分析法及色谱法等,各种方法对实际样品的测定均有满意的效果. 为了解国内VC含量测定方法及其应用方面的现状及发展态势.方法以"维生素C或抗坏血酸和测定"为检索词对1994~2002年中国期刊网全文数据库(CNKI)中的理工A、B和医药卫生专辑进行篇名检索,对所得有关维生素C含量测定的文献数据分别以年代、作者区域、载刊等级、样品类型、测定方法等进行计量分析.结果核心期刊载刊文献占文献总量的45.06%,其中光度法占65.69%,电化法占18.63%,色谱法占12.75%;复杂被测样品文献占文献总量的45.06%,其中光度法占60.92%,色谱法占19.54%,电化法占10.34%.结论目前国内维生素C含量测定仍以光度法为主流,但近年来色谱法,特别是HPLC法上升趋势尤为明显. 一.荧光法 1.原理样品中还原型抗坏血酸经活性炭氧化成脱氢型抗坏血酸后,与邻苯二胺(OPDA)反应生成具有荧光的喹喔啉(quinoxaline),其荧光强度与脱氢抗坏血酸的浓度在一定条件下成正比,以此测定食物中抗坏血酸和脱氢抗坏血酸的总量. 脱氢抗坏血酸与硼酸可形成复合物而不与OPDA反应,以此排除样品中荧光杂质所产生的干扰.本方法的最小检出限为0.022 g/ml. 2.适用范围本方法适用于蔬菜、水果及其制品中总抗坏血酸的测定 3. 注意事项 3.1 大多数植物组织内含有一种能破坏抗坏血酸的氧化酶,因此,抗坏血酸的测定应采用新鲜样品并尽快用偏磷酸-醋酸提取液将样品制成匀浆以保存维生C. 3.2 某些果胶含量高的样品不易过滤,可采用抽滤的方法,也可先离心,再取上清液过滤. 3.3活性炭可将抗坏血酸氧化为脱氢抗坏血酸,但它也有吸附抗坏血酸的作用,故活性炭用量应适当与准确,所以,应用天平称量.我们的实验结果证明,用2g活性炭能使测定样品中还原型抗坏血酸完全氧化为脱氢型,其吸附影响不明显. 二、2,6-二氯靛酚滴定法(还原型VC) 1、原理:还原型抗坏血酸还原染料2,6-二氯靛酚,该染料在酸性中呈红色,被还原后红色消失.还原型抗坏血酸还原2,6-二氯靛酚后,本身被氧化成脱氢抗坏血酸.在没有杂质干扰时,一定量的样品提取液还原标准2,6-二氯靛酚的量与样品中所含维生素C的量成正比.本法用于测定还原型抗坏血酸,总抗坏血酸的量常用2,4-二硝基苯肼法和荧光分光光度法测定. 2、注意事项 ⑴ 所有试剂的配制最好都用重蒸馏水; ⑵ 滴定时,可同时吸二个样品.一个滴定,另一个作为观察颜色变化的参考; ⑶ 样品进入实验室后,应浸泡在已知量的2%草酸液中,以防氧化,损失维生素C; ⑷ 贮存过久的罐头食品,可能含有大量的低铁离子(Fe2+),要用8%的醋酸代替2%草酸.这时如用草酸,低铁离子可以还原2,6-二氯靛酚,使测定数字增高,使用醋酸可以避免这种情况的发生; ⑸ 整个操作过程中要迅速,避免还原型抗坏血酸被氧化; ⑹ 在处理各种样品时,如遇有泡沫产生,可加入数滴辛醇消除; ⑺ 测定样液时,需做空白对照,样液滴定体积扣除空白体积. 3优点:它具有简便、快速、比较准确等优点,适用于许多不同类型样品的分析.缺点是不能直接测定样品中的脱氢抗坏血酸及结合抗坏血酸的含量,易受其他还原物质的干扰.如果样品中含有色素类物质,将给滴定终点的观察造成困难.在酸性环境中,抗坏血酸(还原型)能将染料2,6—DCIP还原成无色的还原型2,6—DCIP,而抗坏血酸则被氧化成脱氢抗坏血酸.氧化型2,6—DCIP在中性或碱性溶液中呈蓝色,但在酸性溶液中则呈粉红色.因此,当用2,6—DICP滴定含有抗坏血酸的酸性溶液时,在抗坏血酸未被全部氧化前,滴下的2,6—DCIP 立即被还原成无色,一旦溶液中的抗坏血酸全部被氧化时,则滴下微量过剩的2,6—DCIP 便立即使溶液显示淡粉红色或微红色,此时即为滴定终点,表示溶液中的抗坏血酸刚刚全部被氧化.依据滴定时2,6—DCIP 标准溶液的消耗量 (ml),可以计算出被测样品中抗坏血酸的含量.氧化型2,6—DCIP与还原型抗坏血酸常在稀草酸或偏磷酸溶液中进行反应.即先将样品溶于一定浓度的酸性溶液中或经抽提后,再用2,6—DCIP标准溶液滴定至终点. 食物和生物材料中常含有其他还原物质,其中有些还原物质可使2,6—DCIP还原脱色.为了消除这些还原物质对定量测定的干扰,可用抗坏血酸氧化酶处理,破坏样品中还原型抗坏血酸后,再用2,6—DCIP 滴定样品中其他还原物质.然后从滴定未经酶处理样品时2,6—DCIP标准溶液的总消耗量中,减去滴定非抗坏血酸还原物质2,6—DCIP 标准溶液的消耗量,即为滴定抗坏血酸实际所消耗的2,6—DCIP标准溶液的体积,由此可以计算出样品中抗坏血酸的含量.另外,还可利用抗坏血酸和其他还原物质与2,6—DCIP反应速度的差别,并通过控制样品溶液在pH1 — 3 范围内,进行快速滴定,可以消除或减少其他还原物质的作用,一般在这样的条件下,干扰物质与2,6—DCIP的反应是很慢的或受到抑制.生物体液(如血液、尿等)中的抗坏血酸的测定比较困难,因为这些样品中抗坏血酸的含量很低,并且存在许多还原物质的干扰,同时还必须预先进行脱蛋白处理.在生物体液中含有巯其、亚硫酸盐及硫代硫酸盐等物质,它们都能与DCIP反应,但反应速度比抗坏血酸慢得多.样品中巯基物质对定量测定的干扰,通常可以藉加入对—氯汞苯甲酸(简称PCMB)而得到消除. 三、2,4-二硝基苯肼法 1.原理总抗坏血酸包括还原型、脱氢型和二酮古乐糖酸.样品中还原型抗坏血酸经活性炭氧化为脱氢抗坏血酸,再与2,4-二硝基苯肼作用生成红色脎,脎的含量与总抗坏血酸含量成正比,进行比色测定. 2.适用范围本方法适用于蔬菜、水果及其制品中总抗坏血酸的测定. 这是脎比色法,单独评价是因为目前它作为Vc测定的国标法之一,是一种全量测定法,它跟以前的苯肼法原理相近.首先将样品中的还原型V氧化为脱氢型V,然后与2,4—二硝基苯肼作用,生成红色的脎,将脎溶于硫酸后进行比色.最近国标中该法强调空白,每个样品及标准系列均需作对应空白,这样消除色泽、背景不一的误差.在实际杨梅汁Vc测定中,操作时间长,操作要求较严格,试剂较多,就一般实验室而言是目前可以采用的方法. 四 碘量法 1、维生素C的原理维生素C包括氧化型、还原型和二酮古乐糖酸三种.当用碘滴定维生素C时,所滴定的碘被维生素C还原为碘离子.随着滴定过程中维生素C全被氧化,所滴入的碘将以碘分子形式出现.碘分子可以使含指示剂(淀粉)的溶液产生蓝色,即为滴定终点. 2、注意事项(1)看到红棕色出现时要放慢滴定的速度. (2)以显蓝色在30s内不褪色为滴定终点. 五L-抗坏血酸(维生素C)测定试剂盒(酶学方法) 1.应用于食品,饮料及生物制品检测 2.比色方法此方法用于检测水果和蔬菜(如马铃薯),水果和蔬菜产品(如西红柿酱、泡菜、果酱、果汁),婴儿食品,啤酒,饮料,流食,粉状和烘烤剂,肉产品,奶制品,葡萄酒,还有动物饲料,医药品(如维生素配制、阵痛药、退烧药)和生物样品中的L-抗坏血酸(维生素C), 3.分析物 L-抗坏血酸不定量的分布于动物和植物中.人类不能自身生产L-抗坏血酸,因此必须由外源(vitamin C)提供.一般情况下来源于水果和蔬菜中,出于技术原因,L-抗坏血酸曾被用于食品工业中的抗氧化剂.它是一种相对敏感的物质,L-抗坏血酸的检测非常适用于从原始水果和蔬菜中加工食品的质量评定. L-抗坏血酸用于医药品生产中的组成部分,如维生素产品和阵痛药,另外,它还用于动物饲料添加剂中. 4.原理 L-抗坏血酸 (x-H2) + MTT+ PMS—> dehydroascorbate (x) + MTT-formazan + H+X L-抗坏血酸 + ? O2 AAO——> dehydroascorbate + H2OX 5.特异性在给定的条件下,此方法特别针对于L-抗坏血酸.合成的D-阿拉伯抗坏血酸/阿拉伯糖型抗坏血酸能作为抗氧化剂,也能反应,但反应速度较慢. 6.灵敏度测定灵敏度为0.005个吸光度单位,样品体积为1.600ml,此相当于0.1mg/l样品溶液中的L-抗坏血酸浓度.0.015个吸光度单位的差异能造成0.3 mg/l检测限,样品最大体积为1.600 ml.. 7.线性测定的线性范围为0.5 ugL-抗坏血酸(0.3mgL-抗坏血酸/l样品溶液体积为1.600ml)到20 ugL-抗坏血酸(0.2gL-抗坏血酸/l样品溶液体积为0.100ml) 8.精密度在用一个样品做重复实验时,可能会产生0.005-0.010个吸光度单位的差异.标准的相对偏差(变异系数)大约为1-3%.当分析检测数据时,要考虑到L-抗坏血酸的水溶液稳定性较差,尤其是重金属离子或氧存在时. 9.干扰及错误来源粮食的成分不经常干扰实验.高浓度的酒精和D-山梨酸醇能降低反应速度,大量的亚硫酸盐必须通过添加甲醛来去除.醋酸抑制酶AAO.金属和 亚硫酸盐离子可以导致L-抗坏血酸的自发分解. 10.试剂盒包括内容 1.磷酸盐/柠檬酸缓冲液 ———— pH值大约3.5;MTT 2.AAO(坑坏血酸-氧化酶)—— 每板约17 U AAO 3. PMS 溶液六.磷钼蓝分光光度法测定维生素C 基于在一定的反应条件下,维生素C可以定量地将磷钼酸锭还原成磷钼蓝,提出了一种新的测定维生素C的分光光度法.该方法很方便、快速地测定生物、药物等试样中的维生素C,准确度和重复性均达到令人满意的程度. 1 适用范围本标准适用于果品、蔬菜及其加工制品中还原型抗坏血酸的测定(不含二价铁、二价锡、一价铜、二氧化硫、亚硫酸盐或硫代硫酸盐),不适用于深色样品. 2 测定原理染料2,6-二氯靛酚的颜色反应表现两种特性,一是取决于其氧化还原状态,氧化态为深蓝色,还原态变为无色;二是受其介质的酸度影响,在碱性溶液中呈深蓝色,在酸性介质中呈浅红色. 用蓝色的碱性染料标准溶液,对含维生素 C的酸性浸出液进行氧化还原滴定,染料被还原为无色,当到达滴定终点时,多余的染料在酸性介质中则表现为浅红色,由染料用量计算样品中还原型抗坏血酸的含量. 七.二甲苯-二氯靛酚比色法 1 适用范围测定深色样品中还原型抗坏血酸. 2 测定原理用定量的 2,6-二氯靛酚染料与试样中的维生素 C进行氧化还原反应,多余的染料在酸性环境中呈红色,用二甲苯萃取后比色,在一定范围内,吸光度与染料浓度呈线性相关,收剩余染料浓度用差减法计算维生素 C含量. 八.近红外漫反射光谱分析法(NIRDRSA) 自1965年首次应用于复杂农业样品分析后,因其具 有样品处理简单、分析速度快等优点,逐渐受到分析界的重视.此法已广泛应用于石油、纺 织、农业、食品、药物分析等领域[1,2].在药物分析中,NIRDRSA可以进行定性 鉴别、定量分析等工作. 维生素C是一种不稳定的二烯醇化合物,其药典[3]含量测定方法为碘量法.我 们采用近红外漫反射光谱技术直接测定维生素C含量,样品无需预处理,方法简便,结果可 靠. 这是因为,近红外谱区光的频率与有机分子中C-H,O-H,N-H等振动的合频与各级倍频的 频率一致,因此通过有机物的近红外光谱可以取得分子中C-H,O-H,N-H的特征振动信息 .由于近红外光谱的谱带较宽,谱图重叠严重,不能用特征峰等简单方法分析,需要运用计 算机技术与化学计量学方法.本实验应用的是偏最小二乘法(PLS)[4],首先利用 定标集建立预测模型,然后将预测集作为未知样本,根据预测模型进行预测. 对所选择的谱区范围,采用对反射吸光度的MSC(散射校正)预处理,对25个样品进行交叉 验证,即选择一个样品,从校正集中除去该样品对应的光谱和浓度数据,并设光谱主成分数 为1,循环迭代样品数和主成分数,计算预测残差平方和,确定所需主成分数.若主成分选择 过小,会丢失样品信息,过大会造成过度拟合.当主因子为2时,预测残差平方和值最小, 为2.029,故选择主因子数为2,建立最佳PLS校正数学模型. 九 电位滴定法 1.原理:根据滴定过程中电池电动势的变化来确定反应终点. Pt为指示电极,甘汞作参比电极 E池=E+-E-+E液接电位=EI2/I-+k(常数) 2.原理(具体来说:) 随着滴定剂的加入,由于发生化学反应,待测离子浓度将不断变化;从而指示电极电位发生相应变化;导致电池电动势发生相应变化;计量点附近离子浓度发生突变;引起电位的突变,因此由测量工作电池电动势的变化就能确定终点. 3.计算式:(与碘量法相同) Wvc=C(I2)V(I2)M(vc)/m(vc ) *100% 4.优点:解决了滴定分析中遇到有色或浑浊溶液时无法指示终点的问题用线性电位滴定法分析抗坏血酸,抗坏血酸回收率为99.80%~101.5%,相对标准偏差为0.61%;分析维生素C片中的抗坏血酸,相当标示量为98.90%~100.5%,相对标准偏差不大于0.48%,说明线性电位滴定法分析维生素C片中的抗坏血酸含量是可行的. 十 .分光光度法 1. 原理:维生素C在空气中尤其在碱性介质中极易被氧化成脱氢抗坏血酸,pH>5,脱氢抗坏血酸内环开裂,形成二酮古洛糖酸.脱氢抗坏血酸,二酮古洛糖酸均能和2,4-二硝基苯肼生成可溶于硫酸的脎脎在500nm波长有最大吸收根据样品溶液吸光度,由工作曲线查出VC的浓度,即可求出VC的含量十一 库仑滴定法 1.原理:库仑滴定法属于恒电流库仑分析. 是在特定的电解液中,以电极反应产物为滴定剂(电生滴定剂,相当于化学滴定中的标准浓液)与待测物质定量作用,借助指示剂或电位法确定滴定终点. 2.基本依据--法拉第电解定律:电解时,电极上发身化学反应的物质质量与通过电解池的电量Q成正比 即: m=MQ/zF = MI t /zF 3..化学反应:阴极反应: 2H+2e-=H2 阳极反应: 2I-=I2+2e- 4.终点指示:多种方法 (1)化学指示剂--I2 (2)电位法 (3)双铂极电流指示法 5.计算式:Wvc=MvcQ/zFm样式中: F--- 法拉第常数(96487C) Z---电极反应中转移的电子数注意:使电解效率100% 6.优点: 1)无需标准化的试剂溶液,免去了大量的标准物质的准备工作(配制,标定) 2)只需要一个高质量的供电器,计时器,小铂丝电极,且易于实现自动化控制 3)若电流维持一个定值,可大大缩短了电解时间 4)电量容易控制及准确测量;方法灵敏度,准确度较高 5)滴定剂来自电解时的电极产物,可实现容量分析中不易实现的滴定过程,如Cu+,Br2,Cl2产生后立即与待测物反应. 7.缺点(难点):要求电解过程没有副反应和漏电现象,即使电解电极上只进行生成滴定剂的反应,且电流的效率是100% 8.注:电流效率=i样÷i总= i样÷( i样+ i容+i杂)因为:实际电解过程中存在影响电流效率的因素,如,杂质,溶剂,电极自身在电极上的反应等 十二 紫外快速测定法原理 维生素C的2,6—二氯酚靛酚容量法,操作步骤较繁琐,而且受其它还原性物质、样品色素颜色和测定时间的影响.紫外快速测定法,是根据维生素C具有对紫外产生吸收和对碱不稳定的特性,于243nm处测定样品液与碱处理样品液两者消光值之差,通过查标准曲线,即可计算样品中维生素C的含量. 十三 光电比浊法的原理原理在酸性介质中,抗坏铁酸与亚硒酸(H2SeO3)能定量地进行氧化还原反应.1mol的抗铁酸能将2mol的亚硒酸还原成硒.在一定条件下,生成的元素硒在溶液中形成稳定的悬浊液.当抗铁酸的浓度在0-4mg/25-50ml的范围内,该溶液生成的浊度与抗坏铁酸的含量成正比.将试液置分光光度计上测其浊度可以定量地测定抗坏铁酸. 十四荧光分析法的原理原理用酸洗活性炭将抗坏铁酸氧化为顺式脱氢抗坏铁酸,然后与邻苯二胺缩合成一种荧光性化合物.样品中其它荧光杂质的干扰可以通过向氧化后的样品中加入硼酸,使脱氢抗坏铁酸形成 硼酸脱氢抗坏铁酸的络合物,它不与邻二苯胺生成荧光化合物.这样可以测定其它荧光杂质的空白荧光强度而加以校正十五 原子吸收间接测定法原理这是最近报导的一种Vc测定法,其原理是在酸性介质中还原型Vc可将Cu2+定量地还原为Cu+并与SCN—反应生成CuSCN沉淀,在高速离心机下有效地分离出沉淀,小心洗涤后再经浓硝酸溶解,用原子吸收法测定铜含量,即可推知样品中维生素C的含量.该法实验仪器较昂贵,主要问题是操作过程中反应完全与否,沉淀物洗涤、离心反复多次,极容易带来误差.该法优点是能不受果蔬自身颜色的干扰,有一定的发展前景.根据试验,发现此法结果偏低,还有待于进一步优化改善. 十六.金纳米微粒分光光度法测定维生素C的方法本发明公开了一种用金纳米微粒分光光度法测定维生素C的方法.于5mL比色管中,依次加入0.1-2.0mL浓度为95.64μg/mL的HAuCl↓[4]溶液,0.02-0.50mL浓度为1%的柠檬酸三钠溶液,再加入0.001-2.0mL浓度为0.38mg/mL的维生素C溶液,混匀,加二次蒸馏水定容至刻度,再充分混匀,在分光光度计上,于520nm处测定吸收值,同时作空白试验.本发明测定方法简单、快捷,所用仪器价廉,试剂易得十七 L-半胱氨酸修饰电极测定维生素C的方法研究了L-半胱氨酸修饰电极的制备方法和其电化学行为,并用于维生素C的测定,发现该电极对VC有明显的电催化作用,在pH=10.0的NH4Cl-NH3·H2O缓冲溶液中,VC在L-半胱氨酸修饰电极上产生一灵敏的氧化峰,峰电流与VC的浓度在1.0×10-3~1.0×10-6mol/L的范围内呈良好的线形关系,相关系数为0.9962,其最低检测限可达1.0×10-6mol/L,与紫外光谱法测定的结果一致. 测定维生素C有多种方法,包括采用I2或二氯靛酚(DPI)进行氧化还原滴定.一般来说,滴定法是一种快速、简便、准确的技术,它通过滴定剂和被滴定物质的等当量反应,精确测定被测物质的含量.DPI对于维生素C具有良好的选择性,是一种理想的氧化剂. 十八 梅特勒-托利多仪器法传统的滴定法是手工滴定,根据指示剂颜色的变化确定终点,通过测量滴定剂的消耗量,计算被测物质的含量.手工滴定有很多不足:手工控制误差较大,计算复杂,针对不同的反应需要特殊指示剂.梅特勒-托利多的自动电位滴定仪解决了这一问题,通过测量滴定反应中电位的变化确定终点,全自动操作、计算,测量快速,结果准确.梅特勒-托利多的滴定仪配有记忆卡软件包,存储有成熟滴定方法,可方便快速解决实际应用问题,并且稍作改动就能作为新的测定的实验方法. 除此之外,还有双光束剩余染料差减比色法,2_6_二氯靛酚钠动力学分光光度法、聚中性红修饰电极方法、示波溴量法、流动注射化学发光抑制法、磷钼钨杂多酸作显色剂快速检测方法、溶氧测定装置测定水果蔬菜中抗坏血酸含量的方法等.在此不做介绍.


在碱性条件下测维生素c有哪些干扰物质
雨滴计算通过百度搜索的维生素C不同的测定方法 目前研究维生素C测定方法的报道较多,有关维生素C的测定方法如荧光法、2,6-二氯靛酚滴定法、2,4-二硝基苯肼法、光度分析法、化学发光法、电化学分析法及色谱法等,各种方法对实际样品的测定均有满意的效果. 为了解国内VC含量测定方法及其应用方面的现状及发展态势.方法以...

测定维生素c的溶液中为什么要加入稀醋酸
维生素c还原性很强,在碱性溶液中易被空气氧化。因为维生素C在酸性介质中较为稳定,所以要加入稀醋酸。维生素C在空气中极易被氧化,在碱性条件下更甚,该反应在稀醋酸中进行,可减少维生素C的副反应。增强碘在溶液中的氧化性。乙酸,也叫醋酸、冰醋酸,化学式CH3COOH,是一种有机一元酸,为食醋主要成分。

用不同pH环境提取的维生素C溶液在测定结果上有何区别
首先维生素C是酸性的, 酸性条件下较稳定,碱性环境会一定程度中和,测定结果当然不同。

维生素C含量测定中为何要加入稀醋酸?用新沸过的冷水溶解供试品有何...
维生素c还原性很强,在碱性溶液中易被空气氧化。因为维生素C在酸性介质中较为稳定,所以要加入稀醋酸。维生素C在空气中极易被氧化,在碱性条件下更甚,该反应在稀醋酸中进行,可减少维生素C的副反应。增强碘在溶液中的氧化性。维生素C在空气中极易被氧化,在碱性条件下更甚,该反应在稀醋酸中进行,可...

维生素B1其荧光反应为什么要在碱性条件下进行
维生素B1其荧光反应要在碱性条件下进行是因为维生素b1在碱性溶液中被铁氰化钾氧化成噻嘧色素,这种噻嘧色素可溶于正丁醇及异丁醇等有机溶剂中,并且可在紫外光照射下产生蓝色荧光,在一定条件下,其荧光强弱与噻嘧色素成正比,即与溶液中维生素b1的含量成正比.

为什么检测维生素B2左旋要在碱性条件下?发生什么反应吗?
5、维生素B3不足:舌苔厚重,嘴唇浮肿,舌痛,唇痛,头皮特多,口腔黏膜露露干燥。应多进食酵母。6、维生素B12:行动易失平衡,身体会有间歇性不定位置痛楚,手指及有麻刺感,应多进食动物肝脏及酵母。7、维生素C不足:无过度劳累、环境急剧改变或其他器质性疾病等客观原因,但却常感疲劳,常易感冒、...

维生素C含量测定中为何要加入稀醋酸?用新沸过的冷水溶解供试品有何...
在测定维生素C的含量时,一项关键步骤是使用稀醋酸。这是因为维生素C具有极强的还原性,容易与氧气发生反应而变质。在高温条件下,这种反应速度会显著加快。因此,首先要确保使用的是新沸过的冷水,其目的是去除水中的氧气,以减缓维生素C的氧化过程。新沸水溶解供试品的策略是至关重要的,它不仅是为了...

碘量法测定维生素c为什么加稀醋酸
是为了减慢维生素C受空气中氧的氧化作用。维生素C在碱性溶液中极易被空气氧化,因此,在碱性条件下更甚。而稀醋酸可以减少维生素C的副反应,增强碘在溶液中的氧化性。

维生素C与2,6-二氯酚靛酚在碱性条件下呈什么颜色,滴定终点是什么颜色...
氧化型的2,6-二氯酚靛酚在酸性溶液中呈红色,在中性或碱性溶液中呈蓝色.所以,当用2,6-二氯酚靛酚滴定含有抗坏血酸的酸性溶液时,在抗坏血酸全部被氧化后,再滴下的2,6-二氯酚靛酚将立即使溶液呈淡红色,从而显示到达滴定终点.

测定维生素c的溶液中为什么要加入稀hac
应该是调节pH,达到最好的测试效果。

曲阜市17076463724: 实验中哪些成分可能降解维生素c -
御闹小儿: 实验中哪些成分可能降解维生素c3、被测介质的物理化学性质和状态,如强酸、强碱、粘稠、易凝固结晶和气化等工况;4、操作条件的变化,如介质温度、压力、浓度的变化.有时还要考虑到从开车到参数达到正常生产时,气相和液相浓度和密度的变化;5、被测对象容器的结构、形状、尺寸、容器内的设备附件及各种进出口料管口都要考虑,如塔、溶液槽、反应器、锅炉汽包、立罐、球罐等;6、其他要求,如环保及卫生等要求;7、工程仪表选型要有统一的考虑,要求尽可能地减少品种规格,减少备品备件,以利管理;

曲阜市17076463724: 用不同ph环境提取的维生素c溶液在测定结果上有何区别 -
御闹小儿: 首先维生素c是酸性的, 酸性条件下较稳定,碱性环境会一定程度中和,测定结果当然不同.

曲阜市17076463724: 说明维生素c含量测定的原理与其他碘量法有什么不同 -
御闹小儿: 1.原理:维生素C结构中有二烯醇结构,具有强还原性,在醋酸酸性条件下,可被碘定量氧化.根据消耗碘滴定液的体积,即可计算维生素C的含量.2.采用酸性介质的理由是:酸性介质中维生素C受空气中氧的氧化速度减慢.3.采用新煮沸的蒸馏水的理由是:减少蒸馏水中溶解氧对测定的影响.

曲阜市17076463724: Vc注射液含量测定时为什么要在酸性条件下进行 -
御闹小儿: 先讲含量测定原理:维生素C可以和碘发生反应,淀粉做指示剂,当有维生素C时,碘滴进去就会和维生素C反应,所以溶液中没有碘单质,不会变蓝,只有当VC消耗完时,再滴一滴进去就会变蓝.这就是含量测定原理.下面讲酸性条件的原因:维生素C可以和碘发生反应,在酸性条件下更容易些,就是说氢质子多了容易进行,这样整个滴定过程就会较快,防止VC被空气中氧气氧化,滴定终点也容易观察.但是又不能用强酸,因为强酸容易破坏VC,所以加少量稀醋酸.

曲阜市17076463724: 直接碘量法测维生素c的计算公式 -
御闹小儿: 直接碘量法测维生素c的计算公式: 碘量法以碘作为氧化剂,或以碘化物(如碘化钾)作为还原剂进行滴定,用于测定物质含量.极微量的碘与多羟基化合物淀粉相遇,也能立即形成深蓝色的配合物,这一性质在碘量法中得到应用. 碘量法分...

曲阜市17076463724: 怎样验证维生素C的酸碱性? -
御闹小儿: 你拿到的是维生素 C 的溶液还是固体药剂呢?固体药剂是片剂还是粉剂? 甲、维生素 C 水溶液 常温下直接滴入紫色石蕊试液,发现其变红. 要求维生素 C 水溶液浓度不能太稀.如果太稀请采取氮气氛围保护,通过加热来把水蒸出一部分. 乙...

曲阜市17076463724: 维生素C 为什么在碱性溶液中不能稳定存在 -
御闹小儿: 维生素C 为什么在碱性溶液中不能稳定存在 维生素C具有酸性,称作坑坏血酸,易被氧化而生成脱氢坏血酸.在碱性溶液中,脱氢坏血酸分子中的内酯环容易被水解成二酮古洛酸.

曲阜市17076463724: 维生素C是人体必需的一种营养素,它能提高免疫力,预防癌症,但维生素C是相当脆弱的维生素,在碱性条件下易被破坏.维生素C的化学式为C6H8O6.下列... -
御闹小儿:[选项] A. 维生素C由碳、氢、氧元素组成 B. 维生素C中碳、氢、氧元素的质量比为3:4:3 C. 维生素C最好不要与pH>7的食物同食 D. 缺乏维生素C易患坏血病

曲阜市17076463724: 维生素C的结构与测定 -
御闹小儿: ——中山大学营养学教授、 博士生导师 蒋卓勤 维生素C是人体需求最大的维生素、作用最 为广泛的维生素之一,对人体健康至关重要.维生素C又叫抗坏血酸,是一种水溶性维生 素,容易从体内流失.人体不能自行制造维生 素C,因此必须每...

曲阜市17076463724: 维生素C含量的测定思考题答案是什么? -
御闹小儿:[答案] 在酸性条件下是,氧化剂这时氧化性比较强(比中性和碱性时强),能快速氧化Vc.不然滴定时有滞后效应,影响滴定终点的判断.“在碱性条件下更易被氧化”,回答的人肯定没好好学氧化还原这一章. 用凉开水是因为凉开水里含有的氧气几乎没有,...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网