轨迹方程的几种常用求法

作者&投稿:端木禄 (若有异议请与网页底部的电邮联系)
轨迹方程的求法~

几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3  已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P为线段AB的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4  已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=1664-4Q4b2=0,即a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a2.

求动点的轨迹方程要根据题设条件灵活地选择方法.常用的方法有两大类,一类是直接求法,包括利用圆锥曲线的定义等;另一类是间接求法,主要包括相关点法和参数法.
  一、 直接法
  一般情况下,动点在运动时,总是满足一定的条件的(即动中有静,变中有不变),可设动点的坐标为(x,y),然后选择适当的公式(如两点间的距离公式,点到直线的距离公式,两点连线的斜率公式,两直线(向量)的夹角公式,定比分点坐标公式,三角形面积公式等),或一些包含等量关系的定理、定义等,将题设条件转化成x,y之间的关系式(等式),从而得到动点的轨迹方程.这种求轨迹方程的方法称为直接法.
  例1 已知定点a(-1,0),b(2,0),动点m满足2∠mab=∠mba,求点m的轨迹方程.
  解析 直接设点m为(x,y),先将2∠mab=∠mba转化成直线ma,mb的斜率的关系式,便可得点m的轨迹方程.
  图1
  如图1,设∠mab=α,则∠mba=2α,显然0≤α<90°.
  (1) 当2α≠90°时,
  若m点在x轴上方,
  则有tanα=kma=yx+1,tan(π-2α)=kmb=yx-2.
  若点m在x轴下方,则有tan(π-α)=kma=yx+1,tan2α=kmb=yx-2.
  于是总有-yx-2=2y1+x1-y2(1+x)2,注意到|ma|>|mb|,可得x2-y23=1(x≥1).
  若点m在x轴上,则点m为线段ab上的点,所以有y=0(-1<x<2).
  (2) 当2α=90°时,△mab为等腰直角三角形,点m为(2,±3).
  综上,点m的轨迹方程为x2-y23=1(x≥1)或y=0(-1<x<2=.
  二、 定义法
  若动点在运动时满足的条件符合某种已知曲线的定义,则可以设出其轨迹的标准方程,然后利用待定系数法求出其轨迹方程.这种求轨迹方程的方法称为定义法,利用定义法求轨迹方程要熟知常见曲线的定义、特征.
  例2 设动点p到点a(-1,0)和b(1,0)的距离分别为d1,d2(d1d2≠0),∠apb=2θ.若存在常数λ(0<λ<1),使得d1d2sin2θ=λ恒成立.
  证明:动点p的轨迹c为双曲线,并求出c的方程.
  图2
  解析 如图2,在△pab中,|ab|=2.
  由余弦定理,可得22=d21+d22-2d1d2cos2θ,即4=(d1-d2)2+4d1d2sin2θ,
  又d1d2sin2θ=λ(常数),0<λ<1,
  则有|d1-d2|
  =4-4d1d2sin2θ=21-λ(常数)<2=|ab|,
  所以点p的轨迹c是以a,b为焦点,实轴长2a=21-λ的双曲线,
  从而a=1-λ,c=1,故b2=c2-a2=λ,
  则c的方程为x21-λ-y2λ=1.
  三、 代入法
  若所求轨迹上的动点p(x,y)与另一个已知轨迹(曲线)c:f(x,y)=0上的动点q(x1,y1)存在着某种联系,则可以把点q的坐标用点p的坐标表示出来,然后代入曲线c的方程f(x,y)=0中并化简,即得动点p轨迹方程.这种求轨迹方程的方法叫做代入法(又称相关点法).
  例3 已知定点a(4,0)和曲线c:x2+y2=4上的动点b,点p分ab之比为2∶1,求动点p的轨迹方程.
  解析 要求动点p(x,y)的轨迹方程,即要建立关于p的坐标x,y的等量关系,而直接建立x,y的等量关系十分困难,但可以先寻找动点b(x0,y0)的坐标x0,y0之间的关系,再利用已知的p与b之间的关系(即x,y与x0,y0之间关系)得到关于x,y的方程.
  设动点p为(x,y),b为(x0,y0).
  因为ap=2pb,所以x=4+2x01+2,y=2y01+2,所以x0=3x-42,y0=3y2.
  又因为点b在曲线c上,所以3x-422+94y2=4,即x-432+y2=169.
  所以点p的轨迹方程为x-432+y2=169.
  点评 代入法的主要步骤:
  (1) 设所求轨迹上的任意一点为p(x,y),相对应的已知曲线上的点为q(x1,y1);
  (2) 建立关系式x1=g(x,y),y1=h(x,y);
  (3) 将这两上式子代入已知曲线方程中并化简,即得所求轨迹的方程.
  四、 参数法
  根据题设条件,用一个参数分别表示出动点(x,y)的坐标x和y,或列出两个含同一个参数的动点(x,y)的坐标x和y之间的关系式,这样就间接地把x和y联系起来了,然后联立这两个等式并消去参数,即可得到动点的轨迹方程.这种求轨迹的方法称为参数法.
  例4 已知动点m 在曲线c:13x2+13y2-15x-36y=0上,点n在射线om上,且|om|·|on|=12,求动点n的轨迹方程.
  解析 点n在射线om上,而在同一条以坐标原点为端点的射线上的任意两点(x1,y1),(x2,y2)的坐标的关系为x1x2=y1y2=k,k为常数且k>0,故可采用参数法求点n的轨迹方程.
  设n为(x,y),则m为(kx,ky),k>0.
  因为|om|·|on|=12,所以k2(x2+y2)·x2+y2=12,
  所以k(x2+y2)=12.
  又点m在曲线c上,所以13k2x2+13k2y2-15kx-36ky=0.
  由以上两式消去k,得5x+12y-52=0,
  所以点n的轨迹方程为5x+12y-52=0.
  点评 用参数法求轨迹方程的步骤为:先引进参数,用此参数分别表示动点的横、纵坐标x,y;再消去参数,得到关于x,y的方程,即为所求的轨迹方程.注意参数的取值范围对动点的坐标x和y的取值范围的影响.
  另外,求动点的轨迹方程时,还应注意下面几点:
  (1) 坐标系要建立得适当.这样可以使运算过程简单,所得到的方程也比较简单.
  (2) 根据动点所要满足的条件列出方程是最重要的一环.要做好这一步,应先认真分析题设条件,综合利用平面几何知识,列出几何关系(等式),再利用解析几何中的一些基本概念、公式、定理等将几何关系(等式)坐标化.
  (3) 化简所求得的轨迹方程时,如果所做的变形不是该方程的同解变形,那么必须注意在该变形过程中是增加了方程的解,还是减少了方程的解,并在所得的方程中删去或补上相应的点,这时一般不要求写出证明过程.

求动点的轨迹方程要根据题设条件灵活地选择方法.常用的方法有两大类,一类是直接求法,包括利用圆锥曲线的定义等;另一类是间接求法,主要包括相关点法和参数法.
  一、 直接法
  一般情况下,动点在运动时,总是满足一定的条件的(即动中有静,变中有不变),可设动点的坐标为(x,y),然后选择适当的公式(如两点间的距离公式,点到直线的距离公式,两点连线的斜率公式,两直线(向量)的夹角公式,定比分点坐标公式,三角形面积公式等),或一些包含等量关系的定理、定义等,将题设条件转化成x,y之间的关系式(等式),从而得到动点的轨迹方程.这种求轨迹方程的方法称为直接法.
  例1 已知定点a(-1,0),b(2,0),动点m满足2∠mab=∠mba,求点m的轨迹方程.
  解析 直接设点m为(x,y),先将2∠mab=∠mba转化成直线ma,mb的斜率的关系式,便可得点m的轨迹方程.
  图1
  如图1,设∠mab=α,则∠mba=2α,显然0≤α<90°.
  (1) 当2α≠90°时,
  若m点在x轴上方,
  则有tanα=kma=yx+1,tan(π-2α)=kmb=yx-2.
  若点m在x轴下方,则有tan(π-α)=kma=yx+1,tan2α=kmb=yx-2.
  于是总有-yx-2=2y1+x1-y2(1+x)2,注意到|ma|>|mb|,可得x2-y23=1(x≥1).
  若点m在x轴上,则点m为线段ab上的点,所以有y=0(-1<x<2).
  (2) 当2α=90°时,△mab为等腰直角三角形,点m为(2,±3).
  综上,点m的轨迹方程为x2-y23=1(x≥1)或y=0(-1<x<2=.
  二、 定义法
  若动点在运动时满足的条件符合某种已知曲线的定义,则可以设出其轨迹的标准方程,然后利用待定系数法求出其轨迹方程.这种求轨迹方程的方法称为定义法,利用定义法求轨迹方程要熟知常见曲线的定义、特征.
  例2 设动点p到点a(-1,0)和b(1,0)的距离分别为d1,d2(d1d2≠0),∠apb=2θ.若存在常数λ(0<λ<1),使得d1d2sin2θ=λ恒成立.
  证明:动点p的轨迹c为双曲线,并求出c的方程.
  图2
  解析 如图2,在△pab中,|ab|=2.
  由余弦定理,可得22=d21+d22-2d1d2cos2θ,即4=(d1-d2)2+4d1d2sin2θ,
  又d1d2sin2θ=λ(常数),0<λ<1,
  则有|d1-d2|
  =4-4d1d2sin2θ=21-λ(常数)<2=|ab|,
  所以点p的轨迹c是以a,b为焦点,实轴长2a=21-λ的双曲线,
  从而a=1-λ,c=1,故b2=c2-a2=λ,
  则c的方程为x21-λ-y2λ=1.
  三、 代入法
  若所求轨迹上的动点p(x,y)与另一个已知轨迹(曲线)c:f(x,y)=0上的动点q(x1,y1)存在着某种联系,则可以把点q的坐标用点p的坐标表示出来,然后代入曲线c的方程f(x,y)=0中并化简,即得动点p轨迹方程.这种求轨迹方程的方法叫做代入法(又称相关点法).
  例3 已知定点a(4,0)和曲线c:x2+y2=4上的动点b,点p分ab之比为2∶1,求动点p的轨迹方程.
  解析 要求动点p(x,y)的轨迹方程,即要建立关于p的坐标x,y的等量关系,而直接建立x,y的等量关系十分困难,但可以先寻找动点b(x0,y0)的坐标x0,y0之间的关系,再利用已知的p与b之间的关系(即x,y与x0,y0之间关系)得到关于x,y的方程.
  设动点p为(x,y),b为(x0,y0).
  因为ap=2pb,所以x=4+2x01+2,y=2y01+2,所以x0=3x-42,y0=3y2.
  又因为点b在曲线c上,所以3x-422+94y2=4,即x-432+y2=169.
  所以点p的轨迹方程为x-432+y2=169.
  点评 代入法的主要步骤:
  (1) 设所求轨迹上的任意一点为p(x,y),相对应的已知曲线上的点为q(x1,y1);
  (2) 建立关系式x1=g(x,y),y1=h(x,y);
  (3) 将这两上式子代入已知曲线方程中并化简,即得所求轨迹的方程.
  四、 参数法
  根据题设条件,用一个参数分别表示出动点(x,y)的坐标x和y,或列出两个含同一个参数的动点(x,y)的坐标x和y之间的关系式,这样就间接地把x和y联系起来了,然后联立这两个等式并消去参数,即可得到动点的轨迹方程.这种求轨迹的方法称为参数法.
  例4 已知动点m 在曲线c:13x2+13y2-15x-36y=0上,点n在射线om上,且|om|·|on|=12,求动点n的轨迹方程.
  解析 点n在射线om上,而在同一条以坐标原点为端点的射线上的任意两点(x1,y1),(x2,y2)的坐标的关系为x1x2=y1y2=k,k为常数且k>0,故可采用参数法求点n的轨迹方程.
  设n为(x,y),则m为(kx,ky),k>0.
  因为|om|·|on|=12,所以k2(x2+y2)·x2+y2=12,
  所以k(x2+y2)=12.
  又点m在曲线c上,所以13k2x2+13k2y2-15kx-36ky=0.
  由以上两式消去k,得5x+12y-52=0,
  所以点n的轨迹方程为5x+12y-52=0.
  点评 用参数法求轨迹方程的步骤为:先引进参数,用此参数分别表示动点的横、纵坐标x,y;再消去参数,得到关于x,y的方程,即为所求的轨迹方程.注意参数的取值范围对动点的坐标x和y的取值范围的影响.
  另外,求动点的轨迹方程时,还应注意下面几点:
  (1) 坐标系要建立得适当.这样可以使运算过程简单,所得到的方程也比较简单.
  (2) 根据动点所要满足的条件列出方程是最重要的一环.要做好这一步,应先认真分析题设条件,综合利用平面几何知识,列出几何关系(等式),再利用解析几何中的一些基本概念、公式、定理等将几何关系(等式)坐标化.
  (3) 化简所求得的轨迹方程时,如果所做的变形不是该方程的同解变形,那么必须注意在该变形过程中是增加了方程的解,还是减少了方程的解,并在所得的方程中删去或补上相应的点,这时一般不要求写出证明过程.


求轨迹方程的五种方法
求轨迹方程的五种方法是直译法、定义法、相关点法、参数法,交轨法。一、方法释义 1、直译法 直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。2、定义法 如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做...

求解轨迹方程问题的常见方法有什么?
求解轨迹方程问题的常见方法有以下几种:1. 直接法:根据已知条件,直接列出轨迹方程。这种方法适用于简单的问题,可以直接观察到轨迹的特点和规律。2. 几何法:通过几何图形的变换和推理,推导出轨迹方程。这种方法适用于几何图形较为复杂的情况,可以通过观察图形的特点和性质,得出轨迹方程。3. 参数法:...

求轨迹方程的方法有哪些?
求轨迹方程的方法主要有以下几种:1. 直接法:这是最基本的方法,适用于简单的几何图形。例如,已知一个点的运动轨迹是直线或曲线,可以直接写出其轨迹方程。2. 参数法:当轨迹的参数形式已知时,可以通过消去参数得到轨迹方程。例如,已知一个点在平面内以原点为中心,半径为r的圆周上运动,其参数方程...

求曲线方程的五种方法 你知道几种
1、直接法:设曲线上动点坐标为X后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。2、代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它...

轨迹方程的几种常用求法
求动点的轨迹方程要根据题设条件灵活地选择方法.常用的方法有两大类,一类是直接求法,包括利用圆锥曲线的定义等;另一类是间接求法,主要包括相关点法和参数法.一、 直接法 一般情况下,动点在运动时,总是满足一定的条件的(即动中有静,变中有不变),可设动点的坐标为(x,y),然后选择适当的...

轨迹方程怎么求?
1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P...

求轨迹方程的常见方法,6种方法和3个注意事项
参数法:通过引入参数建立x和y的关系,消去参数后得到轨迹方程。交轨法(参数法变种):用于求解两动曲线交点的轨迹,常通过消去参数实现。注意事项确保轨迹方程的完备性和纯粹性,即方程的解构成曲线,且曲线上的所有点都是方程的解。解题时需明确求解的是方程还是轨迹的性质,可能还需描述轨迹的几何特征...

求轨迹方程的方法
1、直译法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直译法。用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。2、定义法:运用解析几何中一些常用定义(...

轨迹方程怎么求?
几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义...

求轨迹方程的基本步骤
求轨迹方程的基本步骤为设点、列方程、解方程、化简、检验。

黄埔区18320662378: 求轨迹方程有什么方法? -
凭界齐铭:[答案] 高考中会用到的几种方法总结如下: 求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法. (1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹...

黄埔区18320662378: 曲线与方程中求轨迹方程有哪几种方法? -
凭界齐铭:[答案] 直接法 由题设所给的动点满足的几何条件列出等式,再把坐标代入并化简,得到所求轨迹方程,这种方法叫做直接法. 例1 已知动点P到定点F(1,0)和直线x=3的距离之和等于4,求点P的轨迹方程. 设点P的坐标为(x,y),则由题意可得 . (1)当x≤3时...

黄埔区18320662378: 轨迹方程的几种常用求法 -
凭界齐铭: 求动点的轨迹方程要根据题设条件灵活地选择方法.常用的方法有两大类,一类是直接求法,包括利用圆锥曲线的定义等;另一类是间接求法,主要包括相关点法和参数法. 一、 直接法 一般情况下,动点在运动时,总是满足一定的条件的(即动...

黄埔区18320662378: 圆锥曲线的轨迹方程求法有几种求法. -
凭界齐铭:[答案] 基本上有如下几种方法:1、定义法:设动点,寻找其变化的等量关系,再转化为方程.如:已知A(2,3)、B(-3,4),求使得PA⊥PB的动点P的轨迹方程.2、代入法:寻找和动点有关的其他点的变化,再代入此点的运动轨迹方程.如:已...

黄埔区18320662378: 求轨迹方程有哪几种方法?至少说出五种.例:定义,转化... -
凭界齐铭:[答案] 直接法由题设所给的动点满足的几何条件列出等式,再把坐标代入并化简,得到所求轨迹方程,这种方法叫做直接法.例1 已知动点P到定点F(1,0)和直线x=3的距离之和等于4,求点P的轨迹方程.设点P的坐标为(x,y),则由题意可...

黄埔区18320662378: 求动点轨迹方程的主要方法是什么? -
凭界齐铭:[答案] 动 点 轨迹 方程 的求法 一、直接法 按 求 动 点 轨迹 方程 的一般步骤 求 ,其过程 是 建系设 点 ,列出几何等式,坐标代换,化简整理, 主要 用于 动 点 具有的几何条件比较明显时. 例1(1994年全国)已知直角坐标平面上 点 Q(2,0)和圆C:, 动 点 M到...

黄埔区18320662378: 高中数学,轨迹方程怎么求 -
凭界齐铭: 求轨迹方程有很多方法,一楼说的是其中一种直接法,就是求哪个点就设哪个点的坐标为(x,y),其它点都设为(x1,y1)、(x2,y2)等等之类,然后用未知表示已知,代到已知的方程当中;还有比较常见的方法是几何法,就是看要求的点的轨迹满不满足特定的定义如圆、椭圆、双曲线、抛物线等等,另外理科生也会用参数法,就是引入一个参数如k、m等等,然后把参数消掉,得到轨迹方程.先给你介绍这几种理论方法吧,具体问题还得具体分析.

黄埔区18320662378: 轨迹方程的求法轨迹方程 都有哪些方法解啊 看着一头雾水的.复制可以.段落少点 = = 不然看着头疼 -
凭界齐铭:[答案] 几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1(1)求和定圆x2+y2=k2的圆周的距离等于k...

黄埔区18320662378: 轨迹方程的求法 -
凭界齐铭: 解:设P点坐标(x',y'),Q点坐标(x,y) 因为P,Q关于(1,1)点对称 所以1/2*(x+x')=1 1/2*(y+y')=1 得x'=2-x y'=2-y 代入原抛物线 (2-y)^2=6*(2-x) 4-4y+y^2=12-6x y^2-4y+6x-8=0为所求Q点轨迹方程

黄埔区18320662378: 高一数学 怎样求轨迹方程
凭界齐铭: 求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法 (1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程 (2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求 (3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程 (4)参数法 若动点的坐标(x,y)中的x,y分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程 求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念建议你把课本中这方面的例题摘出来,做一做,体会其中的解题思路.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网