寻找量子密码学相关资料

作者&投稿:邬顾 (若有异议请与网页底部的电邮联系)
量子密码学的密码学简介~

经典的密码学是一门古老的学科,它的起源可以追溯到几千年前的古埃及、古罗马时代。 早在四千年前,古埃及一些贵族墓碑上的铭文就已经具备了密码的两个基本要素:秘密性和信息的有意变形。尽管如此,密码学作为一门严格的科学建立起来还仅仅是近五十年的事。可以说,直到1949年以前, 密码研究更象是一门艺术而非科学。主要原因在于,在这个时期没有任何公认的客观标准衡量各种密码体制的安全性,因此也就无法从理论上深入研究信息安全问题。1949年,C.E.Shannon发表了《保密系统的通信理论》,把密码学建立在严格的数学基础之上。密码学从此才成为真正意义上的科学。

量子密码学有广义和狭义之分。狭义量子密码学主要指量子密钥分配等基于量子技术实现经典密码学目标的结果,广义量子密码学则是指能统一刻画狭义量子密码学和经典密码学的一个理论框架。 量子密码体系采用量子态作为信息载体,经由量子通道在合法的用户之间传送密钥。量子密码的安全性由量子力学原理所保证。所谓绝对安全性是指:即使在窃听者可能拥有极高的智商、可能采用最高明的窃听措施、可能使用最先进的测量手段,密钥的传送仍然是安全的。通常,窃听者采用截获密钥的方法有两类:一种方法是通过对携带信息的量子态进行测量,从其测量的结果来提取密钥的信息。但是,量子力学的基本原理告诉我们,对量子态的测量会引起波函数塌缩,本质上改变量子态的性质,发送者和接受者通过信息校验就会发现他们的通讯被窃听,因为这种窃听方式必然会留下具有明显量子测量特征的痕迹,合法用户之间便因此终止正在进行的通讯。第二种方法则是避开直接的量子测量,采用具有复制功能的装置,先截获和复制传送信息的量子态。然后,窃听者再将原来的量子态传送给要接受密钥的合法用户,留下复制的量子态可供窃听者测量分析,以窃取信息。这样,窃听原则上不会留下任何痕迹。但是,由量子相干性决定的量子不可克隆定理告诉人们,任何物理上允许的量子复制装置都不可能克隆出与输入态完全一样的量子态来。这一重要的量子物理效应,确保了窃听者不会完整地复制出传送信息的量子态。因而,第二种窃听方法也无法成功。量子密码术原则上提供了不可破译、不可窃听和大容量的保密通讯体系。在介绍量子密码学之前,先引进量子力学若干基础知识,其中之一是“测不准原理”。测不准原理是量子力学的基础原理。微观世界的粒子有许多共轭量,比如位置和速度,时间和能量就是一对共轭量,人们能对一对共轭量之一进行测量,但不能同时测得另一个与之共轭的量,比如对位置进行测量的同时,破坏了对速度进行测量的可能性。量子密码学便是利用量子的不确定性,构造一安全的通信通道,使任何在信道上的窃听行为不可能对通信本身产生影响,使达到窃听失败的目的,以保证信道的安全。根据量子力学,微观世界的粒子不可能确定它存在任何位置,它以不同的概率存在于若干不同的地方。同时还得介绍一物理概念,光子在传输过程会在上、下、左、右等方向上产生震荡,或按一角度震荡。当一大群光子被极化,它可在同一方向震荡,偏震器只允许被某一方向极化了的光子通过,其余则被挡住。比如一水平方向的偏震器只能让在水平方向极化的光子通过。将偏震器转90度,只有垂直方向极化了的光子能通过。

密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。

密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。

密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。

进行明密变换的法则,称为密码的体制。指示这种变换的参数,称为密钥。它们是密码编制的重要组成部分。密码体制的基本类型可以分为四种:错乱——按照规定的图形和线路,改变明文字母或数码等的位置成为密文;代替——用一个或多个代替表将明文字母或数码等代替为密文;密本——用预先编定的字母或数字密码组,代替一定的词组单词等变明文为密文;加乱——用有限元素组成的一串序列作为乱数,按规定的算法,同明文序列相结合变成密文。以上四种密码体制,既可单独使用,也可混合使用 ,以编制出各种复杂度很高的实用密码。

20世纪70年代以来,一些学者提出了公开密钥体制,即运用单向函数的数学原理,以实现加、脱密密钥的分离。加密密钥是公开的,脱密密钥是保密的。这种新的密码体制,引起了密码学界的广泛注意和探讨。

利用文字和密码的规律,在一定条件下,采取各种技术手段,通过对截取密文的分析,以求得明文,还原密码编制,即破译密码。破译不同强度的密码,对条件的要求也不相同,甚至很不相同。

中国古代秘密通信的手段,已有一些近于密码的雏形。宋曾公亮、丁度等编撰《武经总要》“字验”记载,北宋前期,在作战中曾用一首五言律诗的40个汉字,分别代表40种情况或要求,这种方式已具有了密本体制的特点。

1871年,由上海大北水线电报公司选用6899个汉字,代以四码数字,成为中国最初的商用明码本,同时也设计了由明码本改编为密本及进行加乱的方法。在此基础上,逐步发展为各种比较复杂的密码。

在欧洲,公元前405年,斯巴达的将领来山得使用了原始的错乱密码;公元前一世纪,古罗马皇帝凯撒曾使用有序的单表代替密码;之后逐步发展为密本、多表代替及加乱等各种密码体制。

二十世纪初,产生了最初的可以实用的机械式和电动式密码机,同时出现了商业密码机公司和市场。60年代后,电子密码机得到较快的发展和广泛的应用,使密码的发展进入了一个新的阶段。

密码破译是随着密码的使用而逐步产生和发展的。1412年,波斯人卡勒卡尚迪所编的百科全书中载有破译简单代替密码的方法。到16世纪末期,欧洲一些国家设有专职的破译人员,以破译截获的密信。密码破译技术有了相当的发展。1863年普鲁士人卡西斯基所著《密码和破译技术》,以及1883年法国人克尔克霍夫所著《军事密码学》等著作,都对密码学的理论和方法做过一些论述和探讨。1949年美国人香农发表了《秘密体制的通信理论》一文,应用信息论的原理分析了密码学中的一些基本问题。

自19世纪以来,由于电报特别是无线电报的广泛使用,为密码通信和第三者的截收都提供了极为有利的条件。通信保密和侦收破译形成了一条斗争十分激烈的隐蔽战线。

1917年,英国破译了德国外长齐默尔曼的电报,促成了美国对德宣战。1942年,美国从破译日本海军密报中,获悉日军对中途岛地区的作战意图和兵力部署,从而能以劣势兵力击破日本海军的主力,扭转了太平洋地区的战局。在保卫英伦三岛和其他许多著名的历史事件中,密码破译的成功都起到了极其重要的作用,这些事例也从反面说明了密码保密的重要地位和意义。

当今世界各主要国家的政府都十分重视密码工作,有的设立庞大机构,拨出巨额经费,集中数以万计的专家和科技人员,投入大量高速的电子计算机和其他先进设备进行工作。与此同时,各民间企业和学术界也对密码日益重视,不少数学家、计算机学家和其他有关学科的专家也投身于密码学的研究行列,更加速了密码学的发展。

现在密码已经成为单独的学科,从传统意义上来说,密码学是研究如何把信息转换成一种隐蔽的方式并阻止其他人得到它。
密码学是一门跨学科科目,从很多领域衍生而来:它可以被看做是信息理论,却使用了大量的数学领域的工具,众所周知的如数论和有限数学。
原始的信息,也就是需要被密码保护的信息,被称为明文。加密是把原始信息转换成不可读形式,也就是密码的过程。解密是加密的逆过程,从加密过的信息中得到原始信息。cipher是加密和解密时使用的算法。
最早的隐写术只需纸笔,现在称为经典密码学。其两大类别为置换加密法,将字母的顺序重新排列;替换加密法,将一组字母换成其他字母或符号。经典加密法的资讯易受统计的攻破,资料越多,破解就更容易,使用分析频率就是好办法。经典密码学现在仍未消失,经常出现在智力游戏之中。在二十世纪早期,包括转轮机在内的一些机械设备被发明出来用于加密,其中最著名的是用于第二次世界大战的密码机Enigma。这些机器产生的密码相当大地增加了密码分析的难度。比如针对Enigma各种各样的攻击,在付出了相当大的努力后才得以成功。

传统密码学

Autokey密码
置换密码
二字母组代替密码 (by Charles Wheatstone)
多字母替换密码
希尔密码
维吉尼亚密码
替换密码
凯撒密码
ROT13
仿射密码
Atbash密码
换位密码
Scytale
Grille密码
VIC密码 (一种复杂的手工密码,在五十年代早期被至少一名苏联间谍使用过,在当时是十分安全的)

对传统密码学的攻击

频率分析
重合指数

现代算法,方法评估与选择工程

标准机构

the Federal Information Processing Standards Publication program (run by NIST to produce standards in many areas to guide operations of the US Federal government; many FIPS Pubs are cryptography related, ongoing)
the ANSI standardization process (produces many standards in many areas; some are cryptography related, ongoing)
ISO standardization process (produces many standards in many areas; some are cryptography related, ongoing)
IEEE standardization process (produces many standards in many areas; some are cryptography related, ongoing)
IETF standardization process (produces many standards (called RFCs) in many areas; some are cryptography related, ongoing)
See Cryptography standards

加密组织

NSA internal evaluation/selections (surely extensive, nothing is publicly known of the process or its results for internal use; NSA is charged with assisting NIST in its cryptographic responsibilities)
GCHQ internal evaluation/selections (surely extensive, nothing is publicly known of the process or its results for GCHQ use; a division of GCHQ is charged with developing and recommending cryptographic standards for the UK government)
DSD Australian SIGINT agency - part of ECHELON
Communications Security Establishment (CSE) — Canadian intelligence agency.

公开的努力成果

the DES selection (NBS selection process, ended 1976)
the RIPE division of the RACE project (sponsored by the European Union, ended mid-'80s)
the AES competition (a 'break-off' sponsored by NIST; ended 2001)
the NESSIE Project (evaluation/selection program sponsored by the European Union; ended 2002)
the CRYPTREC program (Japanese government sponsored evaluation/recommendation project; draft recommendations published 2003)
the Internet Engineering Task Force (technical body responsible for Internet standards -- the Request for Comment series: ongoing)
the CrypTool project (eLearning programme in English and German; freeware; exhaustive educational tool about cryptography and cryptanalysis)

加密散列函数 (消息摘要算法,MD算法)

加密散列函数
消息认证码
Keyed-hash message authentication code
EMAC (NESSIE selection MAC)
HMAC (NESSIE selection MAC; ISO/IEC 9797-1, FIPS and IETF RFC)
TTMAC 也称 Two-Track-MAC (NESSIE selection MAC; K.U.Leuven (Belgium) & debis AG (Germany))
UMAC (NESSIE selection MAC; Intel, UNevada Reno, IBM, Technion, & UCal Davis)
MD5 (系列消息摘要算法之一,由MIT的Ron Rivest教授提出; 128位摘要)
SHA-1 (NSA开发的160位摘要,FIPS标准之一;第一个发行发行版本被发现有缺陷而被该版本代替; NIST/NSA 已经发布了几个具有更长'摘要'长度的变种; CRYPTREC推荐 (limited))
SHA-256 (NESSIE 系列消息摘要算法, FIPS标准之一180-2,摘要长度256位 CRYPTREC recommendation)
SHA-384 (NESSIE 列消息摘要算法, FIPS标准之一180-2,摘要长度384位; CRYPTREC recommendation)
SHA-512 (NESSIE 列消息摘要算法, FIPS标准之一180-2,摘要长度512位; CRYPTREC recommendation)
RIPEMD-160 (在欧洲为 RIPE 项目开发, 160位摘要;CRYPTREC 推荐 (limited))
Tiger (by Ross Anderson et al)
Snefru
Whirlpool (NESSIE selection hash function, Scopus Tecnologia S.A. (Brazil) & K.U.Leuven (Belgium))

公/私钥加密算法(也称 非对称性密钥算法)

ACE-KEM (NESSIE selection asymmetric encryption scheme; IBM Zurich Research)
ACE Encrypt
Chor-Rivest
Diffie-Hellman (key agreement; CRYPTREC 推荐)
El Gamal (离散对数)
ECC(椭圆曲线密码算法) (离散对数变种)
PSEC-KEM (NESSIE selection asymmetric encryption scheme; NTT (Japan); CRYPTREC recommendation only in DEM construction w/SEC1 parameters) )
ECIES (Elliptic Curve Integrated Encryption System; Certicom Corp)
ECIES-KEM
ECDH (椭圆曲线Diffie-Hellman 密钥协议; CRYPTREC推荐)
EPOC
Merkle-Hellman (knapsack scheme)
McEliece
NTRUEncrypt
RSA (因数分解)
RSA-KEM (NESSIE selection asymmetric encryption scheme; ISO/IEC 18033-2 draft)
RSA-OAEP (CRYPTREC 推荐)
Rabin cryptosystem (因数分解)
Rabin-SAEP
HIME(R)
XTR

公/私钥签名算法

DSA(zh:数字签名;zh-tw:数位签章算法) (来自NSA,zh:数字签名;zh-tw:数位签章标准(DSS)的一部分; CRYPTREC 推荐)
Elliptic Curve DSA (NESSIE selection digital signature scheme; Certicom Corp); CRYPTREC recommendation as ANSI X9.62, SEC1)
Schnorr signatures
RSA签名
RSA-PSS (NESSIE selection digital signature scheme; RSA Laboratories); CRYPTREC recommendation)
RSASSA-PKCS1 v1.5 (CRYPTREC recommendation)
Nyberg-Rueppel signatures
MQV protocol
Gennaro-Halevi-Rabin signature scheme
Cramer-Shoup signature scheme
One-time signatures
Lamport signature scheme
Bos-Chaum signature scheme
Undeniable signatures
Chaum-van Antwerpen signature scheme
Fail-stop signatures
Ong-Schnorr-Shamir signature scheme
Birational permutation scheme
ESIGN
ESIGN-D
ESIGN-R
Direct anonymous attestation
NTRUSign用于移动设备的公钥加密算法, 密钥比较短小但也能达到高密钥ECC的加密效果
SFLASH (NESSIE selection digital signature scheme (esp for smartcard applications and similar); Schlumberger (France))
Quartz

密码鉴定

Key authentication
Public key infrastructure
X.509
Public key certificate
Certificate authority
Certificate revocation list
ID-based cryptography
Certificate-based encryption
Secure key issuing cryptography
Certificateless cryptography

匿名认证系统

GPS (NESSIE selection anonymous identification scheme; Ecole Normale Supérieure, France Télécom, & La Poste)

秘密钥算法 (也称 对称性密钥算法)

流密码
A5/1, A5/2 (GSM移动电话标准中指定的密码标准)
BMGL
Chameleon
FISH (by Siemens AG)
二战'Fish'密码
Geheimfernschreiber (二战时期Siemens AG的机械式一次一密密码, 被布莱奇利(Bletchley)庄园称为STURGEON)
Schlusselzusatz (二战时期 Lorenz的机械式一次一密密码, 被布莱奇利(Bletchley)庄园称为[[tunny)
HELIX
ISAAC (作为伪随机数发生器使用)
Leviathan (cipher)
LILI-128
MUG1 (CRYPTREC 推荐使用)
MULTI-S01 (CRYPTREC 推荐使用)
一次一密 (Vernam and Mauborgne, patented mid-'20s; an extreme stream cypher)
Panama
Pike (improvement on FISH by Ross Anderson)
RC4 (ARCFOUR) (one of a series by Prof Ron Rivest of MIT; CRYPTREC 推荐使用 (limited to 128-bit key))
CipherSaber (RC4 variant with 10 byte random IV, 易于实现)
SEAL
SNOW
SOBER
SOBER-t16
SOBER-t32
WAKE
分组密码
分组密码操作模式
乘积密码
Feistel cipher (由Horst Feistel提出的分组密码设计模式)
Advanced Encryption Standard (分组长度为128位; NIST selection for the AES, FIPS 197, 2001 -- by Joan Daemen and Vincent Rijmen; NESSIE selection; CRYPTREC 推荐使用)
Anubis (128-bit block)
BEAR (由流密码和Hash函数构造的分组密码, by Ross Anderson)
Blowfish (分组长度为128位; by Bruce Schneier, et al)
Camellia (分组长度为128位; NESSIE selection (NTT & Mitsubishi Electric); CRYPTREC 推荐使用)
CAST-128 (CAST5) (64 bit block; one of a series of algorithms by Carlisle Adams and Stafford Tavares, who are insistent (indeed, adamant) that the name is not due to their initials)
CAST-256 (CAST6) (128位分组长度; CAST-128的后继者,AES的竞争者之一)
CIPHERUNICORN-A (分组长度为128位; CRYPTREC 推荐使用)
CIPHERUNICORN-E (64 bit block; CRYPTREC 推荐使用 (limited))
CMEA — 在美国移动电话中使用的密码,被发现有弱点.
CS-Cipher (64位分组长度)
DESzh:数字;zh-tw:数位加密标准(64位分组长度; FIPS 46-3, 1976)
DEAL — 由DES演变来的一种AES候选算法
DES-X 一种DES变种,增加了密钥长度.
FEAL
GDES —一个DES派生,被设计用来提高加密速度.
Grand Cru (128位分组长度)
Hierocrypt-3 (128位分组长度; CRYPTREC 推荐使用))
Hierocrypt-L1 (64位分组长度; CRYPTREC 推荐使用 (limited))
International Data Encryption Algorithm (IDEA) (64位分组长度-- 苏黎世ETH的James Massey & X Lai)
Iraqi Block Cipher (IBC)
KASUMI (64位分组长度; 基于MISTY1, 被用于下一代W-CDMA cellular phone 保密)
KHAZAD (64-bit block designed by Barretto and Rijmen)
Khufu and Khafre (64位分组密码)
LION (由流密码和Hash函数构造的分组密码, by Ross Anderson)
LOKI89/91 (64位分组密码)
LOKI97 (128位分组长度的密码, AES候选者)
Lucifer (by Tuchman et al of IBM, early 1970s; modified by NSA/NBS and released as DES)
MAGENTA (AES 候选者)
Mars (AES finalist, by Don Coppersmith et al)
MISTY1 (NESSIE selection 64-bit block; Mitsubishi Electric (Japan); CRYPTREC 推荐使用 (limited))
MISTY2 (分组长度为128位: Mitsubishi Electric (Japan))
Nimbus (64位分组)
Noekeon (分组长度为128位)
NUSH (可变分组长度(64 - 256位))
Q (分组长度为128位)
RC2 64位分组,密钥长度可变.
RC6 (可变分组长度; AES finalist, by Ron Rivest et al)
RC5 (by Ron Rivest)
SAFER (可变分组长度)
SC2000 (分组长度为128位; CRYPTREC 推荐使用)
Serpent (分组长度为128位; AES finalist by Ross Anderson, Eli Biham, Lars Knudsen)
SHACAL-1 (256-bit block)
SHACAL-2 (256-bit block cypher; NESSIE selection Gemplus (France))
Shark (grandfather of Rijndael/AES, by Daemen and Rijmen)
Square (father of Rijndael/AES, by Daemen and Rijmen)
3-Way (96 bit block by Joan Daemen)
TEA(小型加密算法)(by David Wheeler & Roger Needham)
Triple DES (by Walter Tuchman, leader of the Lucifer design team -- not all triple uses of DES increase security, Tuchman's does; CRYPTREC 推荐使用 (limited), only when used as in FIPS Pub 46-3)
Twofish (分组长度为128位; AES finalist by Bruce Schneier, et al)
XTEA (by David Wheeler & Roger Needham)
多表代替密码机密码
Enigma (二战德国转轮密码机--有很多变种,多数变种有很大的用户网络)
紫密(Purple) (二战日本外交最高等级密码机;日本海军设计)
SIGABA (二战美国密码机,由William Friedman, Frank Rowlett, 等人设计)
TypeX (二战英国密码机)
Hybrid code/cypher combinations
JN-25 (二战日本海军的高级密码; 有很多变种)
Naval Cypher 3 (30年代和二战时期英国皇家海军的高级密码)
可视密码

有密级的 密码 (美国)

EKMS NSA的电子密钥管理系统
FNBDT NSA的加密窄带话音标准
Fortezza encryption based on portable crypto token in PC Card format
KW-26 ROMULUS 电传加密机(1960s - 1980s)
KY-57 VINSON 战术电台语音加密
SINCGARS 密码控制跳频的战术电台
STE 加密电话
STU-III 较老的加密电话
TEMPEST prevents compromising emanations
Type 1 products

破译密码

被动攻击
选择明文攻击
选择密文攻击
自适应选择密文攻击
暴力攻击
密钥长度
唯一解距离
密码分析学
中间相会攻击
差分密码分析
线性密码分析
Slide attack cryptanalysis
Algebraic cryptanalysis
XSL attack
Mod n cryptanalysis

弱密钥和基于口令的密码

暴力攻击
字典攻击
相关密钥攻击
Key derivation function
弱密钥
口令
Password-authenticated key agreement
Passphrase
Salt

密钥传输/交换

BAN Logic
Needham-Schroeder
Otway-Rees
Wide Mouth Frog
Diffie-Hellman
中间人攻击

伪的和真的随机数发生器

PRNG
CSPRNG
硬件随机数发生器
Blum Blum Shub
Yarrow (by Schneier, et al)
Fortuna (by Schneier, et al)
ISAAC
基于SHA-1的伪随机数发生器, in ANSI X9.42-2001 Annex C.1 (CRYPTREC example)
PRNG based on SHA-1 for general purposes in FIPS Pub 186-2 (inc change notice 1) Appendix 3.1 (CRYPTREC example)
PRNG based on SHA-1 for general purposes in FIPS Pub 186-2 (inc change notice 1) revised Appendix 3.1 (CRYPTREC example)

匿名通讯
Dining cryptographers protocol (by David Chaum)
匿名投递
pseudonymity
匿名网络银行业务
Onion Routing

法律问题

Cryptography as free speech
Bernstein v. United States
DeCSS
Phil Zimmermann
Export of cryptography
Key escrow and Clipper Chip
Digital Millennium Copyright Act
zh:数字版权管理;zh-tw:数位版权管理 (DRM)
Cryptography patents
RSA (now public domain}
David Chaum and digital cash
Cryptography and Law Enforcement
Wiretaps
Espionage
不同国家的密码相关法律
Official Secrets Act (United Kingdom)
Regulation of Investigatory Powers Act 2000 (United Kingdom)

术语

加密金钥
加密
密文
明文
加密法
Tabula recta

书籍和出版物

密码学相关书籍
密码学领域重要出版物

密码学家

参见List of cryptographers

密码技术应用

Commitment schemes
Secure multiparty computations
电子投票
认证
数位签名
Cryptographic engineering
Crypto systems

杂项

Echelon
Espionage
IACR
Ultra
Security engineering
SIGINT
Steganography
Cryptographers
安全套接字层(SSL)
量子密码
Crypto-anarchism
Cypherpunk
Key escrow
零知识证明
Random oracle model
盲签名
Blinding (cryptography)
数字时间戳
秘密共享
可信操作系统
Oracle (cryptography)

免费/开源的密码系统(特指算法+协议+体制设计)

PGP (a name for any of several related crypto systems, some of which, beginning with the acquisition of the name by Network Associates, have not been Free Software in the GNU sense)
FileCrypt (an open source/commercial command line version of PGP from Veridis of Denmark, see PGP)
GPG (an open source implementation of the OpenPGP IETF standard crypto system)
SSH (Secure SHell implementing cryptographically protected variants of several common Unix utilities, First developed as open source in Finland by Tatu Ylonen. There is now OpenSSH, an open source implementation supporting both SSH v1 and SSH v2 protocols. There are also commercial implementations.
IPsec (因特网协议安全IETF标准,IPv6 IETF 标准的必须的组成部分)
Free S/WAN (IPsec的一种开源实现

其它军事学分支学科

军事学概述、射击学、弹道学、内弹道学、外弹道学、中间弹道学、终点弹道学、导弹弹道学、军事地理学、军事地形学、军事工程学、军事气象学、军事医学、军事运筹学、战役学、密码学、化学战


量子密码学就业工资
量子密码学就业工资在一万五到三万左右,要求是。1、硕士及以上学历,密码学、量子计算或数学相关专业。2、具备密码学专业知识,且具备量子计算专业知识或快速学习能力。3、熟悉C++、python等编程语言,具备独立完成算法代码实现的基本能力。4、具备较好的独立完成文献调研和算法理论整理的能力。5、具有较强...

寻找量子密码学相关资料
与此同时,各民间企业和学术界也对密码日益重视,不少数学家、计算机学家和其他有关学科的专家也投身于密码学的研究行列,更加速了密码学的发展。 现在密码已经成为单独的学科,从传统意义上来说,密码学是研究如何把信息转换成一种隐蔽的方式并阻止其他人得到它。 密码学是一门跨学科科目,从很多领域衍生而来:它可以被...

量子信息学量子密码术
在1984年,他们提出了著名的BB84量子密码方案,这一方案的诞生标志着量子密码术进入了全新的阶段。通过利用量子态的特殊性质,BB84方案使得信息传输在理论上具备了前所未有的安全保障,为密码学的未来开辟了新的道路。

量子密码学的原理是什么?
量子密码学主要基于量子力学的什么原理如下:利用量子力学原理对量子态进行操控的一种通信形式,可以有效解决信息安全问题。量子通信是利用量子叠加态和纠缠效应进行信息传递的新型通信方式,基于量子力学中的不确定性、测量坍缩和不可克隆三大原理提供了无法被窃听和计算破解的绝对安全性保证,主要分为量子隐形传...

量子密码学的量子密码学简介
量子密码学有广义和狭义之分。狭义量子密码学主要指量子密钥分配等基于量子技术实现经典密码学目标的结果,广义量子密码学则是指能统一刻画狭义量子密码学和经典密码学的一个理论框架。 量子密码体系采用量子态作为信息载体,经由量子通道在合法的用户之间传送密钥。量子密码的安全性由量子力学原理所保证。所谓...

量子密码学有什么好处?
QKD是一种基于量子力学原理的加密通信技术,它通过利用量子态的特性来实现安全的密钥分发。在传统的加密通信中,密钥的分发需要依赖于公共信道,这往往易受到窃听者的攻击。而QKD则利用了量子的不可克隆性和测量不可逆性,确保了密钥的安全性。QKD的基本原理是使用量子比特来传递密钥,发送方和接收方通过...

量子密码学的密码学简介
经典的密码学是一门古老的学科,它的起源可以追溯到几千年前的古埃及、古罗马时代。 早在四千年前,古埃及一些贵族墓碑上的铭文就已经具备了密码的两个基本要素:秘密性和信息的有意变形。尽管如此,密码学作为一门严格的科学建立起来还仅仅是近五十年的事。可以说,直到1949年以前, 密码研究更象是一...

量子密码的延伸阅读
若以量子密码学制作金钥,则此金钥具有不可复制性,因此是绝对安全的。如果不幸被骇客撷取,则因为测量过程中会改变量子状态,骇客盗得的会是毫无意义的资料。分别来自德国与英国的研究小组在最新一期的Nature期刊上表示,科学家藉由金钥(Key),在相距23.4公里的两地,以波长为850nm的雷射,在空气中互相...

量子密码学的密码学目的
密码学中的信息代码称为密码,尚未转换成密码的文字信息称为明文,由密码表示的信息称为密文,从明文到密文的转换过程称为加密,相反的过程称为解密, 解密要通过所谓的密钥进行。因此,一个密码体制的安全性只依赖于其密钥的保密性。在设计、建立一个密码体制时,必须假定破译对手能够知道关于密码体制的...

近代密码学与其应用本书简介
第五章:基本数论与公钥编码 - 公钥密码学的里程碑,涉及基础数学概念和应用。第六章:讯息验证与哈希函数 - 详细讨论验证算法如MD5和SHA-1,以及生日攻击法和生物辨识系统。第七章:签名、认证与验证 - 数位签名的运作,包括DSS和验证机制的讨论。第八章:量子编码系统 - 探讨量子密码系统、量子运算...

梨树区13422599280: 什么叫量子密码? -
福柄通经: 不好意思 复制给你 量子密码学量子密码学(Quantum Cryptography)经典的密码学是一门古老的学科,它的起源可以追溯到几千年前的古埃及、古罗马时代. 早在四千年前,古埃及一些贵族墓碑上的铭文就已经具备了密码的两个基本要素:...

梨树区13422599280: 请问量子超密编码及意义,谢谢!!!!! -
福柄通经: 【工作原理】 理论上,量子密码术工作在以下模式(这个观点是由Bennett和Brassard于1984年开发的传统模式,其他的模式也存在):假设两个人想安全地交换信息,命名为Alice和Bob.Alice通过发送给Bob一个键来初始化信息,这个键可...

梨树区13422599280: 求曾贵华的《量子密码学》的电子书,科学出版社的 -
福柄通经: 作者:曾贵华著 页数:280 出版社:北京市:科学出版社 出版日期:2006.06 简介:本书深入系统地论述了量子密码的基本概念、实现原理、物理基础和信息论基础等知识和应用等.

梨树区13422599280: 量子密码的安全性基于量子力学的什么原理 -
福柄通经: 量子信息(quantum information) 是关于量子系统“状态”所带有的物理信息. 量子通讯(Quantum Teleportation) 是指利用量子纠缠效应进行信息传递的一种新型的通讯方式. 量子计算是一种依照量子力学理论进行的新型计算,量子计算的基础和原理以及重要量子算法为在计算速度上超越图灵机模型提供了可能.

梨树区13422599280: 密码学用到的数学知识 -
福柄通经: 基础的数学方面主要是微积分,高等代数,概率论,离散数学,组合数学,数论,量子密码学可能会用到量子力学

梨树区13422599280: 因为量子计算机的到来,对传统密码学会有什么影响 -
福柄通经: 量子计算机(quantum computer),是一种全新的基于量子理论的计算机,遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置.量子计算机的概念源于对可逆计算机的研究.量子计算机应用的是量子比特,可以同时处...

梨树区13422599280: 密码子的破译 -
福柄通经: 最早提出遗传密码这一名词的是量子力学奠基人之一,奥地利物理学家施勒丁格(E.Schrodinger,1944).第一个提出遗传密码具体设想的是美国物理学家G.Gamov,他通过推算提出了三联体密码子的概念,并且进一步推论一种氨基酸可能不止...

梨树区13422599280: 椭圆曲线(ellipticcurve)或量子密码术(quantu?
福柄通经: 希望我的回答对你有用. 诸如椭圆曲线(ellipticcurve)或量子密码术(quantumcryptography)等一些技术都展示了相当可观的前景,但是它们对于常规使用仍可能过于深奥

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网