古代几何作图三大难题

作者&投稿:钞非 (若有异议请与网页底部的电邮联系)
古代的三大几何难题是哪三大?~

平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。
三大几何问题是:
1.化圆为方-求作一正方形使其面积等於一已知圆;
2.三等分任意角;
3.倍立方-求作一立方体使其体积是一已知立方体的二倍。
圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π(1)2=π,所以化圆为方的问题等於去求一正方形其面积为π,也就是用尺规做出长度为π1/2的线段(或者是π的线段)。
三大问题的第二个是三等分一个角的问题。对於某些角如90。、180。三等分并不难,但是否所有角都可以三等分呢?例如60。,若能三等分则可以做出20。的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360。/18=20。)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。
第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。
这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。
1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。

古典难题的挑战——几何三大难题及其解决 位于欧洲南部的希腊,是著名的欧洲古国,几何学的故乡。这里的古人提出的三大几何难题,在科学史上留下了浓浓的一笔。这延续了两千多年才得到解决的世界性难题,也许是提出三大难题的古希腊人所不曾预料到的。 一.三大难题的提出 实际中存在着各种各样的几何形状,曲和直是最基本的图形特征。相应地,人类最早会画的基本几何图形就是直线和圆。画直线就得使用一个边缘平直的工具,画圆就得使用一端固定而另一端能旋转的工具,这就产生了直尺和圆规。 古希腊人说的直尺,指的是没有刻度的直尺。他们在大量的画图经历中感觉到,似乎只用直尺、圆规这两种作图工具就能画出各种满足要求的几何图形,因而,古希腊人就规定,作图时只能有限次地使用直尺和圆规这两种工具来进行,并称之为尺规作图法。 漫长的作图实践,按尺规作图的要求,人们作出了大量符合给定条件的图形,即便一些较为复杂的作图问题,独具匠心地经过有限步骤也能作出来。到了大约公元前6世纪到4世纪之间,古希腊人遇到了令他们百思不得其解的三个作图问题。 1.三等分角问题:将任一个给定的角三等分。 2.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。 3.化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。 这就是著名的古代几何作图三大难题,它们在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。 二.貌以简单其实难 从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,2000多年来从事几何三大难题的研究颇不乏人。也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等等。可是,所有这些方法,不是不符合尺规作图法,便是近似解答,都不能算作问题的解决。 其间,数学家还把问题作种种转化,发现了许多与三大难题密切相关的一些问题,比如求等于圆周的线段、等分圆周、作圆内接正多边形等等。可是谁也想不出解决问题的办法。三大作图难题就这样绞尽了不少人的脑汁,无数人做了无数次的尝试,均无一人成功。后来有人悟及正面的结果既然无望,便转而从反面去怀疑这三个问题是不是根本就不能由尺规作出? 数学家开始考虑哪些图形是尺规作图法能作出来的,哪些不能?标准是什么?界限在哪里?可这依然是十分困难的问题。 三.高斯的发现 历史的车轮转到了17世纪。法国数学家笛卡尔创立解析几何,为判断尺规作图可能性提供了从代数上进行研究的手段,解决三大难题有了新的转机。 最先突破的是德国数学家高斯。他于1777年4月30日出生于不伦瑞克一个贫苦的家庭。他的祖父是农民,父亲是打短工的,母亲是泥瓦匠的女儿,都没受过学校教育。由于家境贫寒,冬天傍晚,为节约燃料和灯油,父亲总是吃过晚饭就要孩子睡觉。高斯爬上小阁楼偷偷点亮自制的芜菁小油灯,在微弱的灯光下读书。他幼年的聪慧博得一位公爵的喜爱,15岁时被公爵送进卡罗琳学院,1795年又来到哥庭根大学学习。由于高斯的勤奋,入学后第二年,他就按尺规作图法作出了正17边形。紧接着高斯又证明了一个尺规作图的重大定理:如果一个奇素数P是费尔马数,那么正P边形就可以用尺规作图法作出,否则不能作出。 由此可以断定,正3边、5边、17边形都能作出,而正7边、11边、13边形等都不能作出。 高斯一生不仅在数学方面做出了许多杰出的成绩,而且在物理学、天文学等方面也有重要贡献。他被人们赞誉为“数学王子”。高斯死后,按照他的遗愿,人们在他的墓碑上刻上一个正17边形,以纪念他少年时代杰出的数学发现。 四.最后的胜利 解析几何诞生之后,人们知道直线和圆,分别是一次方程和二次方程的轨迹。而求直线与直线、直线与圆、圆与圆的交点问题,从代数上看来不过是解一次方程或二次方程组的问题,最后的解是可以从方程的系数(已知量)经过有限次的加、减、乘、除和开平方求得。因此,一个几何量能否用直尺圆规作出的问题,等价于它能否由已知量经过加、减、乘、除、开方运算求得。这样一来,在解析几何和高斯等人已有经验的基础上,人们对尺规作图可能性问题,有了更深入的认识,从而得出结论:尺规作图法所能作出的线段或者点,只能是经过有限次加、减、乘、除及开平方(指正数开平方,并且取正值)所能作出的线段或者点。 标准有了,下来该是大胆探索、细心论证。谁能避过重重险滩将思维贯通起来,谁就是最后胜利者。1837年,23岁的万芝尔以他的睿智和毅力实现了自己的梦想,证明了立方倍积与三等分任意角不可能用尺规作图法解决,宣布了2000多年来,人类征服几何三大难题取得了重大胜利。 他的证明方法是这样的: 假设已知立方体的棱长为a,所求立方体的棱长为x,按立方倍积的要求应有x3=2a3的关系。所以立方倍积实际是求作满足方程x3-2a3=0的线 段X,但些方程无有理根,若令a=1,则要作长度为2的立方根的线段,但2的立方根超出了有理数加、减、乘、除、开方的运算范围,超出了尺规作图准则中所说的数量范围,所以它是不可能解的问题。 用类似地想法,他证明了三等分角也是不可能解的问题。实际上万芝尔还证明了一个被称为高斯——万芝尔定理:如果边数N可以写成如下形式N=2t·P1·P2……Pn,其中P1、P2、…Pn都是各不相同的形如22k+1的素数,则可用尺规等分圆周N份,且只有当N可以表成这种形式时,才可用尺规等分圆周N份。根据这一定理,任意角的三等分就不可能了。 1882年,德国数学家林德曼借助于eiπ=-1证明了π的超越性,从而解决了化圆为方的问题。假设圆的半径为r,正方形的边长为x,按化圆为方数代数方程的根,更不能用加减乘除开平方所表示,因而不可能用尺规法作图。 从此,古典几何的三大难题都有了答案。 2000多年来,一代接一代地攻克三大难题,有人不禁要问这值得吗?假如实际中真遇到要三等分角、立方倍积、化圆为方,只要行之有效,何苦一定用尺规作图法解决?其实,数学研究并非一定要实用,数学家对每一个未知之谜都要弄个清楚,道个明白,这种执著追求的拗劲正是科学的精神。更为重要的是,对三大难题的研究,反过来促进了数学的发展,出现了新的数学思想和方法,例如阿基米德、帕普斯发现的三等分角的方法,勃洛特用两块三角板解决立方倍积问题(这个我在上初中时曾经证明过,的确成立),等分圆周、作正多边形,高斯关于尺规作图标准的重大发现等等。每一次突破不仅是人类智慧的胜利,使数学园地争奇竞艳,而且有利于科学技术的发展。 特别值得提到的是,在三大几何难题获得解决的同时,法国数学家伽罗瓦从一般角度对不可能性问题进行研究,在1830年,19岁的伽罗瓦提出了解决这一类问题的系统理论和方法,从而创立了群论。群论是近世抽象代数的基础,它是许多实际问题的数学模型,应用极其广泛,而三大几何作图难题只不过是这种理论的推论、例题或习题。所以,一般认为三大难题的解决归功于伽罗瓦理论,可伽罗瓦理论是在他死后14年才发表的,直到1870年,伽罗瓦理论才得到第一次全面清楚的介绍。 回答者:tgw791013 - 高级经理 七级 1-20 11:00许多人都说是古希腊的[三大几何难题]不可能用[直尺和圆规经有限步骤解决],其实不然,就是个方法问题.因为任何人都不可能将所有的方法都试过. 我用没有刻度的直尺,严格按照[直尺圆规作图规则]解了古希腊的[三大几何难题],而且用{勾股定理}证明了[圆化方]和[倍立方]两个题.{因为[三分角]证明起来很繁琐,还是留给有兴趣者去证明吧.} 现在把作图方法,步骤和证明一起奉献出来,以便尊敬的朋友们,专家学者们一起来研究和判定. 哦,对了,这三个命题都应该是初中几何可以解决的.没有必要把它深奥化了. 只是想用正确的答案取代 旺策尔(Wantzel)和林得曼(Linderman)的不明智的错误答案 ! 参考资料: http://blog.163.com/liguanbaolx@126/editPhoto.do?photoId=_fks_C6VO3avejFz1kMbA-5GuOg2IcX2WaP5P

几何三大问题(Three major geometric problems)是指二千四百多年前,古希腊几何学家提出的尺规作图问题(ruler-and-compass construction),即只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。几何三大问题即为三等分角问题、化圆为方问题和倍立方问题。




什么是古希腊三大几何作图问题?它们与高次方程公式可解性有怎样的联系...
2.难题无解 这三个题目被研究了两千年,直到十九世纪代数学有了更进一步的发展后才有了答案。这个答案非常出人意表,即:只用直尺及圆规,这三个做图题都是无解的。所谓无解,就是说只用直尺及圆规我们没有办法把任意一角三等分等等。许多人对“无解”的反应会是这样的:只是一时找不到适当的做...

古希腊三大几何问题三大几何难题的结果及其意义
也是数学领域的一大突破。尽管三大几何难题无法用尺规作图解决,但它们引发的探索历程却带来了意想不到的收获。数学家们在寻求解答的过程中,不仅深化了对数学的理解,还发现了新的理论和方法。这些难题展示了数学的无穷魅力,就像一座未被完全探索的深海,隐藏着无数待解的奥秘。

尺规作图的著名问题
尺规作图不能问题就是不可能用尺规作图完成的作图问题。其中最著名的是被称为几何三大问题的古典难题:■倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;■化圆为方问题:作一个正方形,使它的面积等于已知圆的面积。■三等分角:作一个角,将其分为三个相等的部分。以上三个问题...

数学史上三大几何难题
三大几何难题是指:1、倍立方体:即作一立方体,是该立方体的体积为给定立方体的两倍。2、等分角:即对人员给定的一个角,作其三等分角;3、化圆为方:即作一个正方形,使其面积与一给定的圆相等

什么是化圆为方问题
化圆为方问题是一个圆的面积被软化等积变成几个正方形面积的问题。一个圆的面积可以化成n个正方形面积的和,使n个正方形面积的和与这个圆的面积相等。这个问题可以由一个已知圆的面积借助它的直径的3分之1为边长a,用直尺和圆规作9个正方形,这9个正方形拼成这个圆的外切大正方形面积9a²,...

三大几何难题
三大几何难题是指:(1)倍立方体:即作一立方体,是该立方体的体积为给定立方体的两倍;(2)但等分角:即对人员给定的一个角,作其三等分角;(3)化圆为方:即作一个正方形,使其面积与一给定的圆相等 “古希腊三大几何问题”也称“三大几何问题”,在数学的历史上有三个问题始终以惊人的力量...

什么是尺规作图和古希腊三大几何难题
尺规作图是指只用圆规和没有刻度的直尺(一定注意是没有刻度,就是你不能拿直尺来量图中已知线段的长度)来作图的方法,这种方法主要基于欧式几何中的定理来实现作图的合理化。尺规作图三大几何难题指的是:三等分角,倍立方体和画圆为方。这三个问题看起来都非常简单,但是只用圆规和直尺是无法完成的...

古希腊的三大几何问题是什么
某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。经过2000多年的艰苦探索,数学家们终于弄清楚了这3个难题是“不可能用尺规完成的作图题”。认识到有些事情确实是不可能的,这是数学思想的一大飞跃。这是三个作图题,只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这...

平面几何三大难题是尺规作图能的问题,为什么?
这个问题的解决比前两个难题更加复杂和困难,涉及到了高深的数学知识,需要更加深入的研究和思考。楼主您解决平面几何三大难题的过程中,可以看出您有较强的数学素养和探索精神,对于解决问题具有强烈的求知欲和坚定的决心。您在解决问题时不仅从理论上探究,还从实践中寻找答案,甚至深入研究代数与作图的相互...

三大几何难题是怎么导致近世代数产生的
特别值得提到的是,在三大几何难题获得解决的同时,法国数学家伽罗瓦从一般角度对不可能性问题进行研究,在1830年,19岁的伽罗瓦提出了解决这一类问题的系统理论和方法,从而创立了群论。群论是近世抽象代数的基础,它是许多实际问题的数学模型,应用极其广泛,而三大几何作图难题只不过是这种理论的推论、例题或习题。所以,一般...

吴中区13379522954: 古希腊的“几何作图三大难题”是什么?这三大难题是在公元前五世纪,首次由古希腊雅典城内一个包括各方面学者的智慧(巧辩)学派提出的. -
水琪复方:[答案] 1.内容 这三个题目是三分角、倍立方及圆化方,其内容分述如下.三分角:用直尺及圆规把任给的一角三等分.倍立方:给定一立方体(即其一边已知),用直尺及圆规做另一立方体(即做其一边)使其体积为原立方体的两倍.圆化方:用直尺及圆规做...

吴中区13379522954: 古代的三大几何难题是哪三大? -
水琪复方:[答案] 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺.用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来.有些问题看起来好像很简单,但真正做出来却很困难,...

吴中区13379522954: 古代的三大几何难题是哪三大? -
水琪复方: 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺.用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来.有些问题看起来好像很简单,但真正做出来却很困难,这些问题...

吴中区13379522954: 古代三大几何难题是哪三个???
水琪复方: 三大几何问题是: 1.化圆为方-求作一正方形使其面积等於一已知圆;2.三等分任意角;3.倍立方-求作一立方体使其体积是一已知立方体的二倍. 详情:http://wenwen.sogou.com/z/q838300558.htm

吴中区13379522954: 平面几何用尺规作图有哪三大不能 -
水琪复方:[答案] 尺规作图不能问题就是不可能用尺规作图完成的作图问题.其中最著名的是被称为几何三大问题的古典难题: ■三等分角问题:三等分一个任意角; ■倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ■化圆为方问题:作一个正方...

吴中区13379522954: 尺规作图三大难题是什么?几何的尺规作图有三大难题,是用尺规无法做成的,求 -
水琪复方:[答案] 倍立方问题外,三等分任意角、化圆为方

吴中区13379522954: 古代数学三大难题是不是都被证明无解?是十九世纪谁证明的?怎么证明?
水琪复方: 大约公元前6世纪到4世纪之间,古希腊人遇到了令他们百思不得其解的三个作图问题... 使它的面积和已知圆的面积相等. 这就是著名的古代几何作图三大难题. 解析几何...

吴中区13379522954: 世界三大几何难题有那些详细点
水琪复方: 古希腊三大几何问题 传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体...

吴中区13379522954: 古希腊三大几何难题的产生发展解决及其意义 -
水琪复方: 1.立方倍积,即求作一立方体的边,使该立方体的体积为给定立方体的两倍. 2.化圆为方,即作一正方形,使其与一给定的圆面积相等. 3.三等分角,即分一个给定的任意角为三个相等的部分. 化圆为方,立方倍积和三等分角这三大古希腊几何...

吴中区13379522954: 什么是“化圆为方问题" -
水琪复方:[答案] 这就是著名的古代几何作图三大难题之一,它们在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世. 三等分角问题:将任一个给定的角三等分. 立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网