三大几何难题

作者&投稿:厨人柱 (若有异议请与网页底部的电邮联系)
几何学有哪三大难题?~

第一,化圆为方。在古希腊的时候有一个学者叫做安拉克萨哥拉,有一次,他提出太阳是一个巨大的火球。从现在看来,它绝对符合客观事实,但在当时,人们都相信神话中的说法,太阳是神灵阿巴罗的化身。于是安拉克萨哥拉被判定为亵渎神灵,判处死刑,被投到了牢狱中。
在等待执行的日子里,他依然在思考着关于宇宙和万物的问题,当然也包括数学问题。一天晚上,他看到圆圆的月亮,透过正方形的铁窗照进牢房,他心中一动,想:如果已知一个圆的面积,那么,怎样做出一个方来,才能使它的面积恰好等于这个圆的面积呢?这个问题看似简单,却难住了安拉克萨哥拉。在古希腊,对作图工具进行了限制,只允许使用直尺和圆规。
安拉克萨哥拉一直在思考这个问题,甚至忘了自己是还是一个待处决的犯人。到了后来,受到好朋友伯利克里(当时杰出的政治家)的营救,脱离了牢狱之苦。然而这个问题,他自己没有能够解决,整个古希腊的数学家也没有能解决,成为历史上有名的三大几何难题之一。在之后的两千多年里,也有无数的数学对此做了论证,可始终没有得到答案。
第二,立方倍积。此问题也是几何三大难题中的一个。相传,在古希腊的有一个名为第罗斯的小岛有一年发生了瘟疫,岛上的居民到神庙去祈求宙斯神,询问该如何免除灾难?许多天过去了,巫师终于传达了神灵的旨意,原来是宙斯认为人们对他不够虔诚,他的祭坛太小了。要想免除瘟疫,必须做一个体积是这个祭坛两倍的新祭坛才行,而且不许改变立方体的形状。于是人们赶紧量好尺寸,把祭坛的长、宽、高都增加了一倍,第二天,把它奉献在了宙斯神的面前。不料,瘟疫非但没有停止,反而更加流行了。第罗斯岛的人民惊慌失措了,再次向宙斯神祈求。巫师再次传达了宙斯的旨意。原来新祭坛的体积不是原来祭坛的两倍,而是八倍,宙斯认为,第罗斯人抗拒了他的意志,因此更加发怒了。当然这只是个传说,但这个问题至今为止都没能解答出来确是事实。
其问题就是:仅仅用圆规和没有刻度的直尺来做一个立方体,使得这个立方体是已知原来的立方体体积的2倍。由于至今没有人解答,所以它成为了几何学的第二大问题。
第三,三等分角。这个问题也有一个传说。据说,在公元前4世纪的时候埃及的亚历山大城是一座著名的繁荣都城。在城的近郊有一座圆形的别墅,里面住着一位公主。圆形别墅的中间有一条河,公主居住的屋子正好建在圆心处。别墅的南北墙各开了一个门,河上建有一座桥。桥的位置和北门、南门恰好在一条直线上。国王每天赐给公主的物品,从北门送进,先放到位于南门的仓库,然后公主再派人从南门取回居室。从北门到公主的屋子,和从北门到桥,两段路恰好是一样长。公主还有一个妹妹小公主,国王也要为她修建一座别墅。而小公主提出,自己的别墅也要修得和姐姐的一模一样。小公主的别墅很快动工了。可是工匠们把南门建好后,要确定桥和北门的位置的时候,却发现了一个问题:怎样才能使北门到居室、北门到桥的距离一样远呢?最终工匠们发现,要想要相等的距离,就必需先要解决三等分的这个问题,只要问题可以解决,就能确定桥和北门的位置。
于是工匠们尝试用直尺和圆规作图法定出桥的位置,但过了很久,都没有得到解决,无奈之下,他们只好去请教当时最著名的数学家阿基米德。阿基米德看到这个问题,想了很久。他在直尺上做上了一点固定的标记,便轻松地解决了这一问题。大家都非常佩服他。不过阿基米德却说,这个问题没有被真正解决。因为一旦在直尺上作了标记,等于就是为它做了刻度,这在尺规作图法中是不允许的。于是这个问题在两千年来一直困扰着无数的数学家,直到一百多年前,德国数学家克莱因做出了一个无可置疑的证明:只用直尺和圆规,是不可能解决这三个难题的。也就是说,这个问题到目前为止都还没有得到真正的解决。

古典难题的挑战——几何三大难题及其解决 位于欧洲南部的希腊,是著名的欧洲古国,几何学的故乡。这里的古人提出的三大几何难题,在科学史上留下了浓浓的一笔。这延续了两千多年才得到解决的世界性难题,也许是提出三大难题的古希腊人所不曾预料到的。 一.三大难题的提出 实际中存在着各种各样的几何形状,曲和直是最基本的图形特征。相应地,人类最早会画的基本几何图形就是直线和圆。画直线就得使用一个边缘平直的工具,画圆就得使用一端固定而另一端能旋转的工具,这就产生了直尺和圆规。 古希腊人说的直尺,指的是没有刻度的直尺。他们在大量的画图经历中感觉到,似乎只用直尺、圆规这两种作图工具就能画出各种满足要求的几何图形,因而,古希腊人就规定,作图时只能有限次地使用直尺和圆规这两种工具来进行,并称之为尺规作图法。 漫长的作图实践,按尺规作图的要求,人们作出了大量符合给定条件的图形,即便一些较为复杂的作图问题,独具匠心地经过有限步骤也能作出来。到了大约公元前6世纪到4世纪之间,古希腊人遇到了令他们百思不得其解的三个作图问题。 1.三等分角问题:将任一个给定的角三等分。 2.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍。 3.化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等。 这就是著名的古代几何作图三大难题,它们在《几何原本》问世之前就提出了,随着几何知识的传播,后来便广泛留传于世。 二.貌以简单其实难 从表面看来,这三个问题都很简单,它们的作图似乎该是可能的,因此,2000多年来从事几何三大难题的研究颇不乏人。也提出过各种各样的解决办法,例如阿基米德、帕普斯等人都发现过三等分角的好方法,解决立方倍积问题的勃洛特方法等等。可是,所有这些方法,不是不符合尺规作图法,便是近似解答,都不能算作问题的解决。 其间,数学家还把问题作种种转化,发现了许多与三大难题密切相关的一些问题,比如求等于圆周的线段、等分圆周、作圆内接正多边形等等。可是谁也想不出解决问题的办法。三大作图难题就这样绞尽了不少人的脑汁,无数人做了无数次的尝试,均无一人成功。后来有人悟及正面的结果既然无望,便转而从反面去怀疑这三个问题是不是根本就不能由尺规作出? 数学家开始考虑哪些图形是尺规作图法能作出来的,哪些不能?标准是什么?界限在哪里?可这依然是十分困难的问题。 三.高斯的发现 历史的车轮转到了17世纪。法国数学家笛卡尔创立解析几何,为判断尺规作图可能性提供了从代数上进行研究的手段,解决三大难题有了新的转机。 最先突破的是德国数学家高斯。他于1777年4月30日出生于不伦瑞克一个贫苦的家庭。他的祖父是农民,父亲是打短工的,母亲是泥瓦匠的女儿,都没受过学校教育。由于家境贫寒,冬天傍晚,为节约燃料和灯油,父亲总是吃过晚饭就要孩子睡觉。高斯爬上小阁楼偷偷点亮自制的芜菁小油灯,在微弱的灯光下读书。他幼年的聪慧博得一位公爵的喜爱,15岁时被公爵送进卡罗琳学院,1795年又来到哥庭根大学学习。由于高斯的勤奋,入学后第二年,他就按尺规作图法作出了正17边形。紧接着高斯又证明了一个尺规作图的重大定理:如果一个奇素数P是费尔马数,那么正P边形就可以用尺规作图法作出,否则不能作出。 由此可以断定,正3边、5边、17边形都能作出,而正7边、11边、13边形等都不能作出。 高斯一生不仅在数学方面做出了许多杰出的成绩,而且在物理学、天文学等方面也有重要贡献。他被人们赞誉为“数学王子”。高斯死后,按照他的遗愿,人们在他的墓碑上刻上一个正17边形,以纪念他少年时代杰出的数学发现。 四.最后的胜利 解析几何诞生之后,人们知道直线和圆,分别是一次方程和二次方程的轨迹。而求直线与直线、直线与圆、圆与圆的交点问题,从代数上看来不过是解一次方程或二次方程组的问题,最后的解是可以从方程的系数(已知量)经过有限次的加、减、乘、除和开平方求得。因此,一个几何量能否用直尺圆规作出的问题,等价于它能否由已知量经过加、减、乘、除、开方运算求得。这样一来,在解析几何和高斯等人已有经验的基础上,人们对尺规作图可能性问题,有了更深入的认识,从而得出结论:尺规作图法所能作出的线段或者点,只能是经过有限次加、减、乘、除及开平方(指正数开平方,并且取正值)所能作出的线段或者点。 标准有了,下来该是大胆探索、细心论证。谁能避过重重险滩将思维贯通起来,谁就是最后胜利者。1837年,23岁的万芝尔以他的睿智和毅力实现了自己的梦想,证明了立方倍积与三等分任意角不可能用尺规作图法解决,宣布了2000多年来,人类征服几何三大难题取得了重大胜利。 他的证明方法是这样的: 假设已知立方体的棱长为a,所求立方体的棱长为x,按立方倍积的要求应有x3=2a3的关系。所以立方倍积实际是求作满足方程x3-2a3=0的线 段X,但些方程无有理根,若令a=1,则要作长度为2的立方根的线段,但2的立方根超出了有理数加、减、乘、除、开方的运算范围,超出了尺规作图准则中所说的数量范围,所以它是不可能解的问题。 用类似地想法,他证明了三等分角也是不可能解的问题。实际上万芝尔还证明了一个被称为高斯——万芝尔定理:如果边数N可以写成如下形式N=2t·P1·P2……Pn,其中P1、P2、…Pn都是各不相同的形如22k+1的素数,则可用尺规等分圆周N份,且只有当N可以表成这种形式时,才可用尺规等分圆周N份。根据这一定理,任意角的三等分就不可能了。 1882年,德国数学家林德曼借助于eiπ=-1证明了π的超越性,从而解决了化圆为方的问题。假设圆的半径为r,正方形的边长为x,按化圆为方数代数方程的根,更不能用加减乘除开平方所表示,因而不可能用尺规法作图。 从此,古典几何的三大难题都有了答案。 2000多年来,一代接一代地攻克三大难题,有人不禁要问这值得吗?假如实际中真遇到要三等分角、立方倍积、化圆为方,只要行之有效,何苦一定用尺规作图法解决?其实,数学研究并非一定要实用,数学家对每一个未知之谜都要弄个清楚,道个明白,这种执著追求的拗劲正是科学的精神。更为重要的是,对三大难题的研究,反过来促进了数学的发展,出现了新的数学思想和方法,例如阿基米德、帕普斯发现的三等分角的方法,勃洛特用两块三角板解决立方倍积问题(这个我在上初中时曾经证明过,的确成立),等分圆周、作正多边形,高斯关于尺规作图标准的重大发现等等。每一次突破不仅是人类智慧的胜利,使数学园地争奇竞艳,而且有利于科学技术的发展。 特别值得提到的是,在三大几何难题获得解决的同时,法国数学家伽罗瓦从一般角度对不可能性问题进行研究,在1830年,19岁的伽罗瓦提出了解决这一类问题的系统理论和方法,从而创立了群论。群论是近世抽象代数的基础,它是许多实际问题的数学模型,应用极其广泛,而三大几何作图难题只不过是这种理论的推论、例题或习题。所以,一般认为三大难题的解决归功于伽罗瓦理论,可伽罗瓦理论是在他死后14年才发表的,直到1870年,伽罗瓦理论才得到第一次全面清楚的介绍。 回答者:tgw791013 - 高级经理 七级 1-20 11:00许多人都说是古希腊的[三大几何难题]不可能用[直尺和圆规经有限步骤解决],其实不然,就是个方法问题.因为任何人都不可能将所有的方法都试过. 我用没有刻度的直尺,严格按照[直尺圆规作图规则]解了古希腊的[三大几何难题],而且用{勾股定理}证明了[圆化方]和[倍立方]两个题.{因为[三分角]证明起来很繁琐,还是留给有兴趣者去证明吧.} 现在把作图方法,步骤和证明一起奉献出来,以便尊敬的朋友们,专家学者们一起来研究和判定. 哦,对了,这三个命题都应该是初中几何可以解决的.没有必要把它深奥化了. 只是想用正确的答案取代 旺策尔(Wantzel)和林得曼(Linderman)的不明智的错误答案 ! 参考资料: http://blog.163.com/liguanbaolx@126/editPhoto.do?photoId=_fks_C6VO3avejFz1kMbA-5GuOg2IcX2WaP5P

三大几何难题是指:(1)倍立方体:即作一立方体,是该立方体的体积为给定立方体的两倍;(2)但等分角:即对人员给定的一个角,作其三等分角;(3)化圆为方:即作一个正方形,使其面积与一给定的圆相等 “古希腊三大几何问题”也称“三大几何问题”,在数学的历史上有三个问题始终以惊人的力量艰难了两千多年。初等几何学到现在至少已有了三千年的历史,在这期间努力于初等几何学之发展的学者们曾经遇到过很多的难题,而始终绞尽学者脑汁的却就是这三个问题。问题是「立方倍积」,「化圆为方」和「三等分角」。 立方倍积关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。”由此可见这神是很喜欢数学的。居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一稜的长度都是旧祭坛稜长的二倍,但是瘟疫不但没停止,反而更形猖獗,使他们都又惊奇又惧怕。结果被一个学者指出了错误:「稜二倍起来体积就成了八倍,神所要的是二倍而不是八倍。」大家都觉得这个说法很对,於是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟疫仍不见消灭。人们困扰地再去问神,这次神回答说:「你们所做的祭坛体积确是原来的二倍,但形状却并不是正方体了,我所希望的是体积二倍,而形状仍是正方体。」居民们恍然大悟,就去找当时大学者柏拉图(Plato)请教。由柏拉图和他的弟子们热心研究,但不曾得到解决,并且耗费了後代许多数学家们的脑汁。而由于这一个传说,立方倍积问题也就被称为提洛斯问题。化圆为方 方圆的问题与提洛斯问题是同时代的,由希腊人开始研究。有名的阿基米得把这问题化成下述的形式:已知一圆的半径是r,圆周就是2πr,面积是πr2。由此若能作一个直角三角形,其夹直角的两边长分别为已知圆的周长2πr及半径r,则这三角形的面积就是(1/2)(2πr)(r)=πr2与已知圆的面积相等。由这个直角三角形不难作出同面积的正方形来。但是如何作这直角三角形的边。即如何作一线段使其长等于一已知圆的周长,这问题阿基米德可就解不出了。三等分角三等分任意角的题也许比那两个问题出现更早,早到历史上找不出有关的记载来。但无疑地它的出现是很自然的,就是我们自己在现在也可以想得到的。纪元前五、六百年间希腊的数学家们就已经想到了二等分任意角的方法,正像我们在几何课本或几何画中所学的:以已知角的顶点为圆心,用适当的半径作弧交角两的两边得两个交点,再分别以这两点为圆心,用一个适当的长作半径画弧,这两弧的交点与角顶相连就把已知角分为二等分。二等分一个已知角既是这么容易,很自然地会把问题略变一下:三等分怎么样呢?这样,这一个问题就这么非常自然地出现了。


平面几何三大难题是尺规作图能的问题,为什么?
我也比较了解,可以和您分享这方面的内容,下面是我的看法:平面几何三大难题指的是古希腊时期无法用直尺和圆规完成的三个问题,分别是三等分任意角、倍立方和圆化方。这三个问题的解决都需要使用到其他工具或方法。三等分任意角是指通过使用直尺和圆规,将任意一个角分成三个等份。古希腊时期的数学家们...

高中数学比较常见的难题有些什么?
积分问题:积分是高中数学中的一个难点,尤其是定积分的应用。难题可能包括计算复杂的定积分、使用部分分式分解法求解不定积分、以及利用积分求解实际问题(如面积、体积等)。几何问题:几何难题可能涉及平面几何和立体几何的复杂问题,如证明两个角相等、线段比例问题、圆的性质、空间几何体的体积和表面积...

平面几何超难题
取左焦点F1 F标记成F2 作AA1⊥l于A1 BB1⊥l于B1 作F1关于PA的对称点X ,F1关于PB的对称点Y,如图连接各线段 通过椭圆的光学性质:X,A,F2共线;Y,B,F2共线。利用如下关系:XF2=XA+AF2=AF1+AF2=椭圆长轴(这里利用对称性质,XA=AF1)同理YF2=YB+BF2=BF1+BF2=椭圆长轴 所以XF2=...

数学世界十大难题
6. 接吻数问题:接吻数问题涉及物理学和几何学,它描述的是在一堆球体堆积在某个区域中时,每个球体都有一个“接吻数”,即它所接触的其他球体的数量。7. 活结死结问题:活结死结问题是拓扑学中的一个问题,在给定某种结的情况下在算法上识别不打结的数量。8. 大基数:在集合论的数学领域中,大...

三道几何超难题之二,敬请领域内的专家们给予解答。如图在直角三角形AB...
证明:设三角形ABC的面积为S 因为:AD是等圆线 所以:4AD^2=(CA+AB)^2-BC^2 而 BC^2=AC^2+AB^2 S=AC*AB\/2 所以 4AD^2=2AC*AB=4S 即:S= AD^2

高中数学解析几何,罕见难题,求解,给财富。
(1)证明:在正方形ABCD中,有:CD⊥AD 因为AE垂直于圆O所在平面,且CD在圆O所在平面内 所以:AE⊥CD 这就是说CD垂直于平面ADE内的两条相交直线AD.AE 所以由线面垂直的判定定理可得:CD⊥平面ADE 又CD在平面ABCD内,所以:平面ABCD⊥平面ADE (2)解:不妨令正方形ABCD的边长为a 由(1)知:...

数学界三大几何难题是什么拜托各位大神
“千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大 约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学 之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界...

有哪些实用的技巧可以帮助解决立体几何中的难题?
解决立体几何中的难题需要一些实用的技巧和方法。以下是一些可以帮助你解决立体几何问题的技巧:1.理解基本概念:首先要确保你对立体几何的基本概念有清晰的理解,包括点、线、面、体等的定义和性质。2.掌握公式和定理:熟悉并掌握立体几何中的公式和定理,例如勾股定理、余弦定理、正弦定理等,这些公式和...

至今未解决的初等几何问题
初等几何受知识的限制,几乎都能解决掉,现在流传的著名的几何上三个不能解决的问题,这三个问题其实只是工具受限制,如果借用其他工具(例如角的三等分器)也是能解决的。两千多年前的古希腊,流传出三大几何难题———用没有刻度的直尺和圆规将任意一个角三等分;已知任意一个圆,画一个面积和它相等...

三大几何古典问题为什么现在还要学,对我们有什么帮助呢?
你说的这个问题,属于几何学习的范畴。个人看法如下——1、古希腊三大几何难题是:立方倍积、三等分角、化圆为方。这三个问题,实在是引人入胜,让人乐此不疲,尽管三大难题已经被数学严谨证实是不可能实现的,但是,它的魅力丝毫不减。2、我们学习它的必要性。这个问题过于宏大,它涉及到你为什么要...

望都县17293642095: 古希腊三大几何难题的产生发展解决及其意义 -
隆希米丽: 1.立方倍积,即求作一立方体的边,使该立方体的体积为给定立方体的两倍. 2.化圆为方,即作一正方形,使其与一给定的圆面积相等. 3.三等分角,即分一个给定的任意角为三个相等的部分. 化圆为方,立方倍积和三等分角这三大古希腊几何...

望都县17293642095: 三大著名几何问题是 -
隆希米丽:[答案] 古希腊三大几何问题之一的倍立方体问题.用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍.另外两个著名问题是三等分任意角和化圆为方问题.

望都县17293642095: 古希腊三大几何问题是什么? -
隆希米丽: 传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行.人们百思不得其解,不得不求教于当时最伟大的学者柏拉图...

望都县17293642095: 古希腊的“几何作图三大难题”是什么?这三大难题是在公元前五世纪,首次由古希腊雅典城内一个包括各方面学者的智慧(巧辩)学派提出的. -
隆希米丽:[答案] 1.内容 这三个题目是三分角、倍立方及圆化方,其内容分述如下.三分角:用直尺及圆规把任给的一角三等分.倍立方:给定一立方体(即其一边已知),用直尺及圆规做另一立方体(即做其一边)使其体积为原立方体的两倍.圆化方:用直尺及圆规做...

望都县17293642095: 古代的三大几何难题是哪三大? -
隆希米丽:[答案] 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺.用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来.有些问题看起来好像很简单,但真正做出来却很困难,...

望都县17293642095: 古希腊的三大几何问题是什么? -
隆希米丽:[答案] 采用尺规作图: 1 三等分一个角,不可能是因为不能作出一般三次方程的根 2 立方倍积,不可能是因为作不出2的立方根 3 化圆为方,不可能是因为作不出圆周率! 其实还有个是作正十七边形,这个由德国高斯解决了,所以三个不肯能问题就指以上...

望都县17293642095: 古希腊三大几何难题是什么? -
隆希米丽: 1.三等分角问题:将任一个给定的角三等分. 2.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是已知正方体体积的二倍. 3.化圆为方问题:求作一个正方形,使它的面积和已知圆的面积相等.

望都县17293642095: 古代的三大几何难题是哪三大? -
隆希米丽: 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺.用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来.有些问题看起来好像很简单,但真正做出来却很困难,这些问题...

望都县17293642095: 数学几何上的三大难题是什么 ? -
隆希米丽: 在二千多年前的古希腊就盛传下列三个几何作图题: 1) 立方倍积问题. 2) 三等分角问题. 3) 化圆为方问题.

望都县17293642095: 三大几何难题 -
隆希米丽: 三大几何难题是指: (1)倍立方体:即作一立方体,是该立方体的体积为给定立方体的两倍; (2)但等分角:即对人员给定的一个角,作其三等分角; (3)化圆为方:即作一个正方形,使其面积与一给定的圆相等 “古希腊三大几何问...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网