集成电路的来历?

作者&投稿:哀侧 (若有异议请与网页底部的电邮联系)
21世纪发明 集成电路发明历史 用途~

发明史:
1947年:贝尔实验室肖特莱等人发明了晶体管,这是微电子技术发展中第一个里程碑; 1950年:结型晶体管诞生;  
1950年: R Ohl和肖特莱发明了离子注入工艺;  
1951年:场效应晶体管发明;  
1956年:C S Fuller发明了扩散工艺;  
1958年:仙童公司Robert Noyce与德仪公司基尔比间隔数月分别发明了集成电路,开创了世界微电子学的历史;  
1960年:H H Loor和E Castellani发明了光刻工艺;  
1962年:美国RCA公司研制出MOS场效应晶体管;  
1963年:F.M.Wanlass和C.T.Sah首次提出CMOS技术,今天,95%以上的集成电路芯片都是基于CMOS工艺;  
1964年:Intel摩尔提出摩尔定律,预测晶体管集成度将会每18个月增加1倍;  
1966年:美国RCA公司研制出CMOS集成电路,  并研制出第一块门阵列(50门);  1967年:应用材料公司(Applied Materials)成立,现已成为全球最大的半导体设备制造公司;1971年:Intel推出1kb动态随机存储器(DRAM),标志着大规模集成电路出现;  
1971年:全球第一个微处理器4004由Intel公司推出,采用的是MOS工艺,这是一个里程碑式的发明;  
1974年:RCA公司推出第一个CMOS微处理器1802;  
1976年:16kb DRAM和4kb SRAM问世;  
1978年:64kb动态随机存储器诞生,不足0.5平方厘米的硅片上集成了14万个晶体管,标志着超大规模集成电路(VLSI)时代的来临;  
1979年:Intel推出5MHz 8088微处理器,之后,IBM基于8088推出全球第一台PC;  
1981年:256kb DRAM和64kb CMOS SRAM问世;  
1984年:日本宣布推出1Mb DRAM和256kb SRAM;  
1985年:80386微处理器问世,20MHz;  
1988年:16M DRAM问世,1平方厘米大小的硅片上集成有3500万个晶体管,标志着进入超大规模集成电路(ULSI)阶段;  
1989年:1Mb DRAM进入市场;  
1989年:486微处理器推出,25MHz,1μm工艺,后来50MHz芯片采用0.8μm工艺;  
1992年:64M位随机存储器问世;  
1993年:66MHz奔腾处理器推出,采用0.6μm工艺;  
1995年:Pentium Pro, 133MHz,采用0.6-0.35μm工艺;  
1997年:300MHz奔腾Ⅱ问世,采用0.25μm工艺;  
1999年:奔腾Ⅲ问世,450MHz,采用0.25μm工艺,后采用0.18μm工艺;  
2000年: 1Gb RAM投放市场;  
2000年:奔腾4问世,1.5GHz,采用0.18μm工艺;  
2001年:Intel宣布2001年下半年采用0.13μm工艺。
用途:
4N35/4N36/4N37 "光电耦合器 "

AD7520/AD7521/AD7530/AD7521 "D/A转换器 "

AD7541 12位D/A转换器

ADC0802/ADC0803/ADC0804 "8位A/D转换器 "

ADC0808/ADC0809 "8位A/D转换器 "

ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器 "

CA3080/CA3080A OTA跨导运算放大器

CA3140/CA3140A "BiMOS运算放大器 "

DAC0830/DAC0832 "8位D/A转换器 "

ICL7106,ICL7107 "3位半A/D转换器 "

ICL7116,ICL7117 "3位半A/D转换器 "

ICL7650 "载波稳零运算放大器 "

ICL7660/MAX1044 "CMOS电源电压变换器 "

ICL8038 "单片函数发生器 "

ICM7216 "10MHz通用计数器 "

ICM7226 "带BCD输出10MHz通用计数器 "

ICM7555/7555 CMOS单/双通用定时器

ISO2-CMOS MT8880C DTMF收发器

LF351 "JFET输入运算放大器 "

LF353 "JFET输入宽带高速双运算放大器 "

LM117/LM317A/LM317 "三端可调电源 "

LM124/LM124/LM324 "低功耗四运算放大器 "

LM137/LM337 "三端可调负电压调整器 "

LM139/LM239/LM339 "低功耗四电压比较器 "

LM158/LM258/LM358 "低功耗双运算放大器 "

LM193/LM293/LM393 "低功耗双电压比较器 "

LM201/LM301 通用运算放大器

LM231/LM331 "精密电压—频率转换器 "

LM285/LM385 微功耗基准电压二极管

LM308A "精密运算放大器 "

LM386 "低压音频小功率放大器 "

LM399 "带温度稳定器精密电压基准电路 "

LM431 "可调电压基准电路 "

LM567/LM567C "锁相环音频译码器 "

LM741 "运算放大器 "

LM831 "双低噪声音频功率放大器 "

LM833 "双低噪声音频放大器 "

LM8365 "双定时LED电子钟电路 "

MAX038 0.1Hz-20MHz单片函数发生器

MAX232 "5V电源多通道RS232驱动器/接收器 "

MC1403 "2.5V精密电压基准电路 "

MC1404 5.0v/6.25v/10v基准电压

MC1413/MC1416 "七路达林顿驱动器 "

MC145026/MC145027/MC145028 "编码器/译码器 "

MC145403-5/8 "RS232驱动器/接收器 "

MC145406 "RS232驱动器/接收器 "

MC145407 "RS232驱动器/接收器 "

MC145583 "RS232驱动器/接收器 "

MC145740 DTMF接收器

MC1488 "二输入与非四线路驱动器 "

MC1489 "四施密特可控线路驱动器 "

MC2833 "低功率调频发射系统 "

MC3362 "低功率调频窄频带接收器 "

MC4558 "双运算放大器 "

MC7800系列 "1.0A三端正电压稳压器 "

MC78L00系列 0.1A三端正电压稳压器

MC78M00系列 "0.5A三端正电压稳压器 "

MC78T00系列 3.0A正电压稳压器

MC7900系列 1.0A三端负电压稳压器

MC79L00系列 0.1A三端负电压稳压器

MC79M00系列 0.5A三端负电压稳压器

Microchip "PIC系列单片机RS232通讯应用 "

MM5369 3.579545MHz-60Hz 17级分频振荡器

MOC3009/MOC3012 "双向可控硅输出光电耦合器 "

MOC3020/MOC3023 "双向可控硅输出光电耦合器 "

MOC3081/MOC3082/MOC3083 "过零双向可控硅输出光电耦合器 "

MOC8050 "无基极达林顿晶体管输出光电耦合器 "

MOC8111 "无基极晶体管输出光电耦合器 "

MT8870 "DTMF双音频接收器 "

MT8888C DTMF 收发器

NE5532/NE5532A "双低噪声运算放大器 "

NE5534/SE5534 "低噪声运算放大器 "

NE555/SA555 "单时基电路 "

NE556/SA556/SE556 "双时基电路 "

NE570/NE571/SA571 "音频压缩扩展器 "

OP07 "低电压飘移运算放大器 "

OP27 "低噪音精密运算放大器 "

OP37 "低噪音高速精密运算放大器 "

OP77 "低电压飘移运算放大器 "

OP90 "精密低电压微功耗运算放大器 "

PC817/PC827/PC847 "高效光电耦合器 "

PT2262 "无线遥控发射编码器芯片 "

PT2272 "无线遥控接收解码器芯片 "

SG2524/SG3524 "脉宽调制PWM "

ST7537 "电力线调制解调器电路 "

TDA1521 2×12W Hi-Fi 音频功率放大器

TDA2030 14W Hi-Fi 音频功率放大器

TDA2616 2×12W Hi-Fi 音频功率放大器

TDA7000T FM 单片调频接收电路

TDA7010T FM 单片调频接收电路

TDA7021T FM MTS单片调频接收电路

TDA7040T "低电压锁相环立体声解码器 "

TDA7050 "低电压单/双声道功率放大器 "

TL062/TL064 "低功耗JFET输入运算放大器 "

TL071/TL072/TL074 "低噪声JFET输入运算放大器 "

TL082/TL084 JFET 宽带高速运算放大器

TL494 "脉宽调制PWM "

TL594 "精密开关模式脉宽调制控制 "

TLP521/1-4 "光电耦合器 "

TOP100-4 TOPSwitch 三端PWM开关电源电路

TOP200-4 TOPSwitch 三端PWM开关电源电路

TOP209/TOP210 TOPSwitch 三端PWM开关电源电路

TOP221-7 TOPSwitch-Ⅱ 三端PWM开关电源电路

TOP232-4 TOPSwitch-FX 五端柔韧设计开关电源电路

TOP412/TOP414 TOPSwitch 三端PWM DC-DC 开关电源

ULN2068 1.5A/50V 4路达林顿驱动电路

ULN2803 500mA/50V 8路达林顿驱动电路

ULN2803/ULN2804 线性八外围驱动器阵列

VFC32 "电压—频率/频率—电压转换器 "


常用ic资料2


AD711 高精度、底价格、高速 BiFET 运放

CA3130 15MHz, BiMOS 运放 with MOSFET Input/CMOS Output

LH0032 Ultra Fast FET-输入 单运放

LF351 Wide B与门width JFET 输入 单运放

LF411 Low Offset, Low Drift JFET 输入 单运放

LM108 高精度、单运放

LM208 高精度、单运放

LM308 高精度、单运放

LM833 双 音频 运放, 低噪音

LM358 双 运放

LM359 双, 高速, Programmable, Current Mode (Norton) Amplifier

LM324 QUADRUPLE 运放

LM391 音频 Power Driver

LM393 双 Differential Comparator

NE5532 双 音频 运放, 低噪音

NE5534 Single 音频 运放, 低噪音

OP27 低噪音、高精度、高速 运放

OP37 低噪音、高精度、高速 运放

TL071 Single JFET-输入 运放 , 低噪音

TL072 双 JFET-输入 运放 , 低噪音

TL074 Quad JFET-输入 运放 , 低噪音

TL081 Single JFET-输入 运放

TL082 双 JFET-输入 运放

TL084 Quad JFET-输入 运放

TLC271 LinCMOS..PROGRAMMABLE LOW-POWER 运放

TLC272 LinCMOS.... PRECISION 双 运放

TLC274 LinCMOS.... PRECISION QUAD 运放

MN3004 512 STAGE 低噪音 BBD

L165 3A POWER 运放 (20W)

LM388 1.5W 音频 功率放大

LM1875 20W 音频 功率放大

TDA1516BQ 24 W BTL or 2 x 12 w 立体声 汽车用 功率放大器

TDA1519C 22 W BTL or 2 X 11 W 立体声 功率放大

TDA1563Q 2 x 25 W high efficiency car radio 功率放大

TDA2002 单声道、功率放大 8W [NTE1232]

TDA2005 双 功率放大 20W

TDA2004 10 + 10W STEREO 立体声 汽车用 功率放大器

TDA2030 Single 功率放大 14W

STK4036 II 模块电路, AF PO, 双 电源 50W

STK4036 XI 模块电路, AF PO, 双 电源 50W

STK4038 II AF 功率放大 60 W

STK4040 II AF 功率放大 70 W

STK4040 XI AF 功率放大 70 W

STK4042 II AF 功率放大 80 W

STK4042 XI AF 功率放大 80 W

STK4044 II 模块电路, AF 功率放大、单声道 100W

STK4044 II 模块电路, AF 功率放大、单声道 100W

STK4046 XI 模块电路, AF 功率放大、单声道 120W

STK4048 XI 模块电路, AF 功率放大、单声道 150W

STK4050 V 模块电路, AF 功率放大、单声道 200W

LM3914 10-Step Dot/Bar显示驱动器, Linear scale

LM3915 10-Step Dot/Bar显示驱动器, Logarithmic scale

LM3916 10-Step Dot/Bar显示驱动器

UAA180 LED driver Light or light spot display operation for max. 12 emitting diodes

CA3161E BCD to Seven Segment Decoder/Driver

CA3162E A/D Converter for 3-Digit Display

ICL7136 3 1/2 Digit LCD, Low Power Display, A/D Converter

LM1800 PLL Stereo Decoder [NTE743]

CA3090P Stereo Multiplex Decoder (Comp.to NTE789 From NTE)

MC1310P FM Stereo Demodulator (Comp. to NTE801 From NTE)

555 时钟

556 双 555

MN3101 时钟/ 驱动

XR2206 Monolithic Function Generator

4N25 6-PIN 光电晶体管 OPTOCOUPLERS

4N26

4N27

4N28

4N35 6-PIN 光电晶体管 OPTOCOUPLERS

4N36

4N37

78xx 系列 3端稳压器 +5V 到 +24V1A

78Lxx 系列 3端稳压器 +5V 到 +24V 0.1A

78Mxx 系列 3端稳压器 +5V 到 +24V 0.5A

78Sxx 系列 3端稳压器 +5V 到 +24V 2A

79xx 系列 3端负电压稳压器 -5V 到 -24V 1A

79Lxx 系列 3端负电压稳压器 -5V 到 -24V 0.1A

LM117 +1.2V...+37V 1.5A 正电压可调稳压器

LM217 +1.2V...+37V 1.5A 正电压可调稳压器

LM317 +1.2V...+37V 1.5A 正电压可调稳压器

LM137 -1.2V...-37V 1.5A 负电压可调稳压器

LM237 -1.2V...-37V 1.5A 负电压可调稳压器

LM337 -1.2V...-37V 1.5A 负电压可调稳压器

LM138 +1.2V --32V 5-安培 可调

LM338 +1.2V -- 32V 5-安培 可调

LM723 高精度可调

L200 2 A / 2.85 to 36 V.可调

74LS00 Quad 2-Input 与非门

74LS04 Hex 反相器

74LS08 Quad 2 input 与门

74LS10 Triple 3-Input 与非门

74LS13 SCHMITT TRIGGERS 双 门/HEX 反相器

74LS14 SCHMITT TRIGGERS 双 门/HEX 反相器

74LS27 TRIPLE 3-INPUT NOR 门

74LS30 8-Input 与非门

74LS32 Quad 2 input OR

74LS42 ONE-OF-TEN DECODER

74LS45 BCD to Decimal Decoders/Drivers

74LS47 BCD to 7 seg decoder/driver

74LS90 Decade 与门 Binary 记数器

74LS92 Divide by 12 记数器

74LS93

Binary 记数器

74LS121 Monostable multivibrator

74LS154 4-Line to 16-Line Decoder/Demultiplexer

74LS192 BCD up / down 记数器

74LS193 4 bit binary up / down 记数器

74HC237 3-to-8 line decoder/demultiplexer with address latches

74LS374 3-STATE Octal D-Type Transparent Latches 与门 Edge-Triggered Flip-Flops

74LS390 双 DECADE 记数器 双 4-STAGE BINARY 记数器

4001 Quad 2-input NOR 门

4002 双 4-input NOR 门

4007 双 Complementary Pair 与门 反相器

4011 Quad 2-Input NOR Buffered

4013 双 D-Type Flip-Flop

4016 Quad Analog Switch/Quad Multiplexer

4017 Decade 记数器/Divider

4022 Divide-by-8 记数器/Divider with 8 Decoded Outputs

4023 Triple 3-input 与非门

4025 Triple 3-input NOR 门

4026 DEC. COUN./DIVIDER WITH DECODED 7-SEG. DISPLAY OUTPUTS

4028 BCD to Decimal Decoder

4029 Binary/Decade Up/Down 记数器

4040 12-Stage Ripple-Carry Binary

4046 Phase-Locked Loop

4051 Single 8-Channel Analog

4052 Differential 4-Channel Analog

4053 Triple 2-Channel Multipl/Demul

4054 显示驱动

4055 显示驱动

4056 显示驱动

4060 14-Stage Ripple-Carry Binary C

4066 Quad Bilateral Switch

4067 Cmos Analog Multiplexer / Demultiplexer [266kb]

4068 8-input 与非门

4069 Hex 反相器

4071 Quad 2-input OR 门

4072 双 4-input OR 门

4075 Triple 3-input OR 门

4081 Quad 2-Input 与门 门

4082 双 4-input 与门 门

4093 Quad 2-Input Schm.Trigger

4511 BCD-to-7-Segment Latch Decade Driver

4518 双 BCD 记数器

在1920年代,一些发明家试图掌握控制固态二极管中电流的方法,他们的构想在后来的双极性晶体管中得以实现。然而,他们的设想直到第二次世界大战结束之后才得以实现。在战争时期,人们把精力集中在制造雷达这样的军工产品,因此电子工业的发展并不如之后那样迅猛,不过人们对于半导体物理学的了解逐渐增加,制造工艺水平也逐渐提升。战后,许多科学家重新开始从事固态电子器件的研究。1947年,著名的贝尔实验室成功地研制了晶体管。自此,电子学的研究方向从真空管转向到了固态电子器件。晶体管在当时看来具有小型、高效的特点。1950年代,一些电子工程师希望以晶体管为基础,研制比以前更高级、复杂的电路充满了期待。然而,随着电路复杂程度的提升,技术问题对器件性能的影响逐渐引起了人们的注意。像计算机主板这样复杂的电路,往往对于响应速度有较高的要求。如果计算机的元件过于庞大,或者不同元件之间的导线太长,电信号就不能够在电路中以足够快的速度传播,这样会造成计算机工作缓慢,效率低下,甚至引起逻辑错误。1958年,德州仪器的杰克·基尔比找到了上述问题的解决方案。他提出,可以把电路中的所有元件和芯片用同一半导体材料块制成。当时他的同事们正在度假,他们结束度假后,基尔比立即展示了他的新设计。随后,他研制了一个这种新型电路的测试版本。1958年9月,第一个集成电路研制成功。尽管这个集成电路在现在看来还非常粗糙,而且存在一些问题,但集成电路在电子学史上确实是个创新的概念。通过在同一材料块上集成所有元件,并通过上方的金属化层连接各个部分,就不再需要分立的独立元件了,这样,就避免了手工组装元件、导线的步骤。此外,电路的特征尺寸大大降低。随着电子设计自动化的逐步发展,制造工艺中的许多流程可以实现自动化控制。自此,把所有元件集成到单一硅片上的想法得以实现,小规模集成电路(Small Scale Integration, SSI)时代始于1960年代早期,后来历经中规模集成电路(Medium Scale Integration, MSI,1960年晚期)、大规模集成电路和超大规模集成电路(1980年早期)。超大规模集成电路的晶体管数量可以达到10,000个。

  集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,这样,整个电路的体积大大缩小,且引出线和焊接点的数目也大为减少,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。
  集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。
  它在电路中用字母“IC”(也有用文字符号“N”等)表示。

  二、集成电路的分类

  (一)按功能结构分类
  集成电路按其功能、结构的不同,可以分为模拟集成电路和数字集成电路两大类。
  模拟集成电路用来产生、放大和处理各种模拟信号(指幅度随时间边疆变化的信号。例如半导体收音机的音频信号、录放机的磁带信号等),而数字集成电路用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号。例如VCD、DVD重放的音频信号和视频信号)。

  (二)按制作工艺分类
  集成电路按制作工艺可分为半导体集成电路和薄膜集成电路。
  膜集成电路又分类厚膜集成电路和薄膜集成电路。

  (三)按集成度高低分类
  集成电路按集成度高低的不同可分为小规模集成电路、中规模集成电路、大规模集成电路和超大规模集成电路。

  (四)按导电类型不同分类
  集成电路按导电类型可分为双极型集成电路和单极型集成电路。
  双极型集成电路的制作工艺复杂,功耗较大,代表集成电路有TTL、ECL、HTL、LST-TL、STTL等类型。单极型集成电路的制作工艺简单,功耗也较低,易于制成大规模集成电路,代表集成电路有CMOS、NMOS、PMOS等类型。

  (五)按用途分类
  集成电路按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑(微机)用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。
  1.电视机用集成电路包括行、场扫描集成电路、中放集成电路、伴音集成电路、彩色解码集成电路、AV/TV转换集成电路、开关电源集成电路、遥控集成电路、丽音解码集成电路、画中画处理集成电路、微处理器(CPU)集成电路、存储器集成电路等。
  2.音响用集成电路包括AM/FM高中频电路、立体声解码电路、音频前置放大电路、音频运算放大集成电路、音频功率放大集成电路、环绕声处理集成电路、电平驱动集成电路,电子音量控制集成电路、延时混响集成电路、电子开关集成电路等。
  3.影碟机用集成电路有系统控制集成电路、视频编码集成电路、MPEG解码集成电路、音频信号处理集成电路、音响效果集成电路、RF信号处理集成电路、数字信号处理集成电路、伺服集成电路、电动机驱动集成电路等。
  4.录像机用集成电路有系统控制集成电路、伺服集成电路、驱动集成电路、音频处理集成电路、视频处理集成电路。

  三、集成电路发展简史

  1.世界集成电路的发展历史
  1947年:贝尔实验室肖克莱等人发明了晶体管,这是微电子技术发展中第一个里程碑;
  1950年:结型晶体管诞生;
  1950年: R Ohl和肖特莱发明了离子注入工艺;
  1951年:场效应晶体管发明;
  1956年:C S Fuller发明了扩散工艺;
  1958年:仙童公司Robert Noyce与德仪公司基尔比间隔数月分别发明了集成电路,开创了世界微电子学的历史;
  1960年:H H Loor和E Castellani发明了光刻工艺;
  1962年:美国RCA公司研制出MOS场效应晶体管;
  1963年:F.M.Wanlass和C.T.Sah首次提出CMOS技术,今天,95%以上的集成电路芯片都是基于CMOS工艺;
  1964年:Intel摩尔提出摩尔定律,预测晶体管集成度将会每18个月增加1倍;
  1966年:美国RCA公司研制出CMOS集成电路,并研制出第一块门阵列(50门);
  1967年:应用材料公司(Applied Materials)成立,现已成为全球最大的半导体设备制造公司;
  1971年:Intel推出1kb动态随机存储器(DRAM),标志着大规模集成电路出现;
  1971年:全球第一个微处理器4004由Intel公司推出,采用的是MOS工艺,这是一个里程碑式的发明;
  1974年:RCA公司推出第一个CMOS微处理器1802;
  1976年:16kb DRAM和4kb SRAM问世;
  1978年:64kb动态随机存储器诞生,不足0.5平方厘米的硅片上集成了14万个晶体管,标志着超大规模集成电路(VLSI)时代的来临;
  1979年:Intel推出5MHz 8088微处理器,之后,IBM基于8088推出全球第一台PC;
  1981年:256kb DRAM和64kb CMOS SRAM问世;
  1984年:日本宣布推出1Mb DRAM和256kb SRAM;
  1985年:80386微处理器问世,20MHz;
  1988年:16M DRAM问世,1平方厘米大小的硅片上集成有3500万个晶体管,标志着进入超大规模集成电路(ULSI)阶段;
  1989年:1Mb DRAM进入市场;
  1989年:486微处理器推出,25MHz,1μm工艺,后来50MHz芯片采用 0.8μm工艺;
  1992年:64M位随机存储器问世;
  1993年:66MHz奔腾处理器推出,采用0.6μm工艺;
  1995年:Pentium Pro, 133MHz,采用0.6-0.35μm工艺;
  1997年:300MHz奔腾Ⅱ问世,采用0.25μm工艺;
  1999年:奔腾Ⅲ问世,450MHz,采用0.25μm工艺,后采用0.18μm工艺;
  2000年: 1Gb RAM投放市场;
  2000年:奔腾4问世,1.5GHz,采用0.18μm工艺;
  2001年:Intel宣布2001年下半年采用0.13μm工艺。

  2.我国集成电路的发展历史
  我国集成电路产业诞生于六十年代,共经历了三个发展阶段:
  1965年-1978年:以计算机和军工配套为目标,以开发逻辑电路为主要产 品,初步建立集成电路工业基础及相关设备、仪器、材料的配套条件;
  1978年-1990年:主要引进美国二手设备,改善集成电路装备水平,在“治散治乱”的同时,以消费类整机作为配套重点,较好地解决了彩电集成电路的国产化;
  1990年-2000年:以908工程、909工程为重点,以CAD为突破口,抓好科技攻关和北方科研开发基地的建设,为信息产业服务,集成电路行业取得了新的发展。


集成电路的来历?
双极型集成电路的制作工艺复杂,功耗较大,代表集成电路有TTL、ECL、HTL、LST-TL、STTL等类型。单极型集成电路的制作工艺简单,功耗也较低,易于制成大规模集成电路,代表集成电路有CMOS、NMOS、PMOS等类型。(五)按用途分类 集成电路按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、...

集成电路的表示符号“IC‘、”U“还是‘N”,它们的来历是啥?哪个更为...
IC是集成电路的缩写,Q代表三极管,C代表电容,D代表二极管,U代表集成电路

TTL在数字信号当中表示的是什么电路?
这个看似绕嘴的名称实际是很合理的,它是有其来历的。早期的逻辑门电路由电阻和晶体管组成,电阻完成逻辑运算功能,晶体管负责放大。所以称为RTL(Resistor–transistor logic, 即电阻-晶体管逻辑)电路。这种电路工作容限很小,所以很快被以二极管为逻辑运算,晶体管为放大的DTL(Diode–transistor logic,即...

欧姆定律的来历
1825年7月,欧姆也用上述初步实验中所用的装置,研究了金属的相对电导率.他把各种金属制成直径相同的导线进行测量,确定了金、银、锌、黄铜、铁等金属的相对电导率.虽然这个实验较为粗糙,而且有不少错误,但欧姆想到,在整条导线中电流不变的事实表明电流强度可以作为电路的一个重要基本量,他决定在下一次实验中...

...想知道:网友们告诉我,全国都有哪些款式的灯笼,都有什么来历...
起源于1800多年前的西汉时期,每年的农历正月十五元宵节前后,人们都挂起象征团圆意义的红灯笼,来营造一种喜庆的氛围。后来灯笼就成了中国人喜庆的象征。经过历代灯彩艺人的继承和发展,形成了丰富多彩的品种和高超的工艺水平。从种类上有:宫灯、纱灯、吊灯等等。从造型上分,有人物、山水、花鸟、龙凤、...

什么是放大电路的共基极放大电路?
电源、电容对交流信号短路,因此,三极管的基极对交流信号来讲是接地的---即接地端就是基极,输入信号和输出信号均以接地端为公共端,也就是说输入信号和输出信号是以基极为公共端的。这就是共基极的来历。共基极放大电路属于并联电压负反馈,电流放大系数接近为1,但电压放大倍数较高,同时,高频性能...

爱迪生的发明?
1912年发明“有声电影”。研制成传语留声机。1914—1915年发明石碳酸综合制造法,并合留声机和授语机为远写机,一方电话机可自动纪录对方说话。自行制造苯、靛油等。1915—1918年完成发明39件之多,其中最著名的是鱼雷机械装置,喷火器和水底潜望镜等。1927年完成长时间唱片。1928年从野草中提炼橡胶成功...

电功率所有公式
串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流处处相等 I1=I2=I,总电压等于各用电器两端电压之和 U=U1+U2,总电阻等于各电阻之和 R=R1+R2,U1:U2=R1:R2。总电功等于各电功之和 W=W1+W2:W1:W2=R1:R2=U1:U2。P1:P2=R1:R2=U1:U2。总功率等于...

戴维南定理是对外电路等效吗?为什么?
又返回来求原电路(即有源二端网络内部电路)的电流和功率。(2)应用戴维南定理进行分析和计算时,如果待求支路后的有源二端网络仍为复杂电路,可再次运用戴维南定理,直至成为简单电路。(3)戴维南定理只适用于线性的有源二端网络。如果有源二端网络中含有非线性元件时,则不能应用戴维南定理求解。

曾经的人类有灭亡过吗?
后来,石盘几经辗转到达苏联,在莫斯科所作的各项科学分析表明,这些石盘含有大量的钻金属和其他金属元素,而且石盘的振荡频率特别高,这说明它长期用于高电压之中,仿佛石盘曾经带电,或者是某种电路的组成部分。 1962年,一位中国学者徐鸿儒教授根据当地的古老传说,经过长时间的研究,最终破译了石盘上的表意符号,译文是:...

绥江县18967705033: 集成电路(微型电子器件或部件) - 搜狗百科
隗柏希美: 1958年,德州仪器公司半导体实验室的基尔提出了不要电线的大胆设 想.他意识到电路的所有基本元件都能够用同一种材料一一硅制成,并能把 所有元件刻在一片单独的材料上,这意味着可以把大量的元件压缩在一个小 小的空间里,将整个计算机电路放在如婴儿指甲般大小的芯片上.1958年7月24日,基尔制成一个叫相位转换振荡器的简易电路,这是 世界上的第一块集成电路.1958年9月12日,世界上第一批平面集成电路 制成, 电子 学的新时代自此诞生.

绥江县18967705033: 谁能介绍下集成电路的发展历史呢?
隗柏希美: 第一个集成电路雏形是由杰克·基尔比于1958年完成的,其中包括一个双极性晶体管,三个电阻和一个电容器

绥江县18967705033: 我国集成电路发展历史有哪些呢?
隗柏希美: 我国集成电路发展历史我国集成电路产业诞生于六十年代,共经历了三个发展阶段:1965年1978年:以计算机和军工配套为目标,以开发逻辑电路为主要产品,初步建立集成电路工业基础及相关设备、仪器、材料的配套条件1978年1990年:主要引进美国二手设备,改善集成电路装备水平,在“治散治乱”的同时,以消费类整机作为配套重点,较好地解决了彩电集成电路的国产化1990年2000年:以908工程、909工程为重点,以CAD为突破口,抓好科技攻关和北方科研开发基地的建设,为信息产业服务,集成电路行业取得了新的发展

绥江县18967705033: 什么叫芯片,它的构造,由来,历史?不是主板上的芯片组
隗柏希美: 芯片,准确地说就是硅片,也叫集成电路.它是微电 子技术的主要产品.所谓微电子是相对"强电"、"弱电"等 概念而言,指它处理的电子信号极其微小,它是现代信息技 术的基础.计算机芯片是一种用硅材料制成的薄片,其大 小仅有手指甲的一半.一个芯片是由几百个微电路连接在 一起的,体积很小,在芯片上布满了产生脉冲电流的微电 路.计算机芯片利用这些微电流,就能够完成控制计算机、 自动化装置制和其它各种设备所需要的操作.计算机芯片 内的电路很小,它使用的电流也很小,所以,也称芯片为 微电子器件.微型计算机中的主要芯片有微处理芯片、接口芯片、存储器芯片. 这是标准的答案了.

绥江县18967705033: 音响的由来 -
隗柏希美: 音响技术的发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段.1906年美国人德福雷斯特发明了真空三极管,开创了人类电声技术的先河.1927年贝尔实验室发明了负反馈技术,使音响技术的发展进入了一个崭新的时代,比较...

绥江县18967705033: 联芯集成电路制造怎么样 -
隗柏希美: 联芯是芯片设计公司,不是制造业的.这两个不是一个概念.集成电路(integrated circuit)是一种微型电子器件或部件.采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体...

绥江县18967705033: 芯片,半导体和集成电路的区别 -
隗柏希美: 1、分类不同 芯片在电子学中是一种把电路小型化的方式,并时常制造在半导体晶圆表面上. 半导体指常温下导电性能介于导体与绝缘体之间的材料.半导体在消费电子、通信系统、医疗仪器等领域有广泛应用. 集成电路是一种微型电子器件...

绥江县18967705033: IC全名叫乜名? -
隗柏希美: IC就是半导体元件产品的统称,包括: 1.集成电路(integratedcircuit,缩写:IC) 2.二,三极管. 3.特殊电子元件. 再广义些讲还涉及所有的电子元件,象电阻,电容,电路版/PCB版,等许多相关产品. 一、世界集成电路产业结构的变化及其...

绥江县18967705033: 收音机的发展历史 -
隗柏希美: 矿石收音机 今天,我们习惯把那些不使用电源,电路里只有一个半导体元件的收音机统称为“矿石收音机”.矿石收音机是指用天线、地线以及基本调谐回路和矿石做检波器而组成的没有放大电路的无源收音机,他是最简单的无线电接收装置,...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网