对数的发明原理,及是什么情况下根据什么数学问题发明的,那个问题具体一点,以及是根据对数怎样解决的。

作者&投稿:夔壮 (若有异议请与网页底部的电邮联系)
指数函数,对数函数是什么时候发明的,是谁发明的~

对数函数的历史:
16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,於是数学家们为了寻求化简的计算方法而发明了对数.
德国的史提非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意).
欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念.
纳皮尔对数值计算颇有研究.他所制造的「纳皮尔算筹」,化简了乘除法运算,其原理就是用加减来代替乘除法.他发明对数的动机是为寻求球面三角计算的简便方法,他依据一种非常独等的与质点运动有关的设想构造出所谓对数方 法,其核心思想表现为算术数列与几何数列之间的联系.在他的《奇妙的对数表的描述》中阐明了对数原理,后人称为 纳皮尔对数,记为Nap.㏒x,它与自然对数的关系为
Nap.㏒x=107㏑(107/x)
由此可知,纳皮尔对数既不是自然对数,也不是常用对数,与现今的对数有一定的距离.
瑞士的彪奇(1552-1632)也独立地发现了对数,可能比纳皮尔较早,但发表较迟(1620).
英国的布里格斯在1624年创造了常用对数.
1619年,伦敦斯彼得所著的《新对数》使对数与自然对数更接近(以e=2.71828...为底).
对数的发明为当时社会的发展起了重要的影响,正如科学家伽利略(1564-1642)说:「给我时间,空间和对数,我可以创造出一个宇宙」.又如十八世纪数学家拉普拉斯( 1749-1827)亦提到:「对数用缩短计算的时间来使天文学家的寿命加倍」.
最早传入我国的对数著作是《比例与对数》,它是由波兰的穆尼斯(1611-1656)和我国的薛凤祚在17世纪中叶合 编而成的.当时在lg2=0.3010中,2叫「真数」,0.3010叫做「假数」,真数与假数对列成表,故称对数表.后来改用 「假数」为「对数」.
我国清代的数学家戴煦(1805-1860)发展了多种的求对数的捷法,著有《对数简法》(1845)、《续对数简法》(1846)等.1854年,英国的数学家艾约瑟(1825-1905) 看到这些著作后,大为叹服.
当今中学数学教科书是先讲「指数」,后以反函数形式引出「对数」的概念.但在历史上,恰恰相反,对数概念不是来自指数,因为当时尚无分指数及无理指数的明确概念.布里格斯曾向纳皮尔提出用幂指数表示对数的建议.1742年 ,J.威廉(1675-1749)在给G.威廉的《对数表》所写的前言中作出指数可定义对数.而欧拉在他的名著《无穷小 分析寻论》(1748)中明确提出对数函数是指数函数的逆函数,和现在教科书中的提法一致.
追问:
请问还有指数函数和幂函数吗,谢谢
追答:
指数函数 指数函数的一般形式为y=a^x(a>0且不=1) ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得 如图所示为a的不同大小影响函数图形的情况。 在函数y=a^x中可以看到: (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0一般也不考虑。 (2) 指数函数的值域为大于0的实数集合。 (3) 函数图形都是下凹的。 (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6) 函数总是在某一个方向上无限趋向于X轴,永不相交。 (7) 函数总是通过(0,1)这点 (8) 显然指数函数无界。 (9) 指数函数既不是奇函数也不是偶函数。 (10)当两个指数函数中的a互为倒数是,此函数图像是偶函数 幂函数个人暂时无资料,有性质你要不要

mlgb 如果a的x次方等于N(a>0,且a不等于1),那么数X叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。 16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急。纳皮尔(J.Napier,1550—1617)正是在研究天文学的过程中,为了简化其中的计算而发明了对数.对数的发明是数学史上的重大事件,天文学界更是以近乎狂喜的心情迎接这一发明。恩格斯曾经把对数的发明和解析几何的创始、微积分的建立称为17世纪数学的三大成就,伽利略也说过:“给我空间、时间及对数,我就可以创造一个宇宙。” 对数发明之前,人们对三角运算中将三角函数的积化为三角函数的和或差的方法已很熟悉,而且德国数学家斯蒂弗尔(M.Stifel,约1487—1567)在《综合算术》(1544年)中阐述了一种如下所示的一种对应关系:

苏格兰数学家约翰·维尔纳独立发明了对数,并于1614年在出版的名著《奇妙的对数表的描述》中阐明了对数原理。

16世纪前半叶,欧洲人热衷于地理探险和海洋贸易,需要更为准确的天文知识,而天文学的研究中,需要大量烦琐的计算,特别是三角函数的连乘,苏格兰数学家约翰·维尔纳首先推出了三角函数的积化和差公式,即:

①sinα·sinβ=[cos(α-β)-cos(α+β)]/2 ,

②cosα·cosβ=[cos(α-β)+cos(α+β)]/2 .

开普勒利用对数表简化了行星轨道的复杂计算,数学家拉普拉斯说:“对数用缩短计算的时间来使天文学家的寿命加倍”。

扩展资料

对数发明之前,人们对三角运算中将三角函数的积化为三角函数的和或差的方法已很熟悉。

从对数的发明过程我们可以发现,纳皮尔在讨论对数概念时,并没有使用指数与对数的互逆关系,造成这种状况的主要原因是当时还没有明确的指数概念,就连指数符号也是在20多年后的1637年才由法国数学家笛卡儿(R.Descartes,1596—1650)开始使用。

直到18世纪,才由瑞士数学家欧拉发现了指数与对数的互逆关系。在1770年出版的一部著作中,欧拉首先使用来定义  ,他指出:“对数源于指数”。

参考资料来源:百度百科 -约翰·奈皮尔

参考资料来源:百度百科-对数



苏格兰数学家纳皮尔,在研究天文学的过程中,为了简化其中的计算而发明了对数。16世纪前半叶,欧洲人热衷于地理探险和海洋贸易,需要更为准确的天文知识,而天文学的研究中,需要大量烦琐的计算,特别是三角函数的连乘,天文学家们苦不堪言。

那时候天文学是热门学科。可是由于数学的局限性,天文学家不得不花费很大精力去计算那些繁杂的“天文数字”,浪费了若干年甚至毕生的宝贵时间。纳皮尔也是一位天文爱好者,他感到,没有什么会比数学的演算更加令人烦恼。

经20年潜心研究大数的计算技术,他终于独立发明了对数,并于1614年出版的名著《奇妙的对数表的描述》,中阐明了对数原理,后人称为纳皮尔对数(NaplogX)。

1616年Briggs(亨利·布里格斯,1561–1630)去拜访Napier,建议将对数改良一下以10为基底的对数表最为方便,这也就是后来常用的对数了。

扩展资料:

对数的定义:一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

参考资料:百度百科-对数



  • 苏格兰数学家纳皮尔,在研究天文学的过程中,为了简化其中的计算而发明了对数.

16世纪前半叶,欧洲人热衷于地理探险和海洋贸易,需要更为准确的天文知识,而天文学的研究中,需要大量烦琐的计算,特别是三角函数的连乘,天文学家们苦不堪言。

德国数学家约翰·维尔纳首先推出了三角函数的积化和差公式,即

sinα·sinβ=[cos(α-β)-cos(α+β)]/2 ,

cosα·cosβ=[cos(α-β)+cos(α+β)]/2 .

大大简化了三角函数连乘的计算。比如,计算sin67°34'×sin9°3',可以从三角函数表查出sin67°34'=0.92432418,sin9°3'=0.15729632。但随后的乘法的计算十分烦琐,且容易出错。(请你不用计算器,手算一下0.92432418×0.15729632=?,记住还要验算一遍,以保证计算正确哦!)用维尔纳的三角函数积化和差公式,计算就大大简便了:

sin67°34'×sin9°3'

=cos(67°34'-9°3')-cos(67°34'+9°3')

=[cos(58°31')-cos(76°37')]/2

=[0.52225052-0.23146492]/2

=0.14539280

这个公式还可以用于把任何二个数的乘法计算转为加减法计算,方法如下:若求小于1的二个数a与b的乘积可以先由反三角函数表查得使a=sinα=a ,sinβ=b的α与β,然后计算(α-β)和(α+β),再由三角函数表查得cos(α-β)与cos(α+β) ,最后应用上面的公式求出它们的一半,就得所要求的数。由于大于1的数可用小于1的数乘上10n 表示,因此上面的两个公式实际上对于任意两个数都是适宜的。

但这样做同样太繁杂了,况且还不能直接应用于除法、乘方和开方,因此,寻找更好的计算迫在眉睫。

2、对数产生的前奏

请你观察下面两个数列,并找出规律:

1, 2, 4, 8,16,32,64,128,256,512,1024,2048, 4096,8192,16384⋯⋯

0, 1, 2, 3, 4, 5, 6,  7,  8,  9,  10,  11,   12,  13,   14⋯⋯

德国数学家Stifel (1487~1567)在观察上述两个数列时,称上排的数为 “原数”, 下排的数为“代表数” (德文Exponent) , Stifel发现,上一排数之间的乘、除运算结果与下一排数之间的加、减运算结果有一种对应关系。Stifel指出:“欲求上边任两数的积(商),只要先求出其下边代表数的和(差),然后再把这个和(差)对向上边的一个原数,则此原数即为所求之积(商)。”比如,计算16×1024,只要计算16的“代表数” 4、1024的“代表数” 10之和4+10=14,再查出与“代表数” 14相对应的“原数” 16384,就得到16×1024的乘积。实际上, Stifel已经掌握了对数运算法则,因为Stifel所谓的“代表数”,本质上是“原数”以2为底的对数。

说明:上一排原数可写为以2为底的指数函数,则数列对为:

20,

   

21,

   

22,

   

23,

   

24,

   

25,

   

26,

   

27,

   

28,

   

29,

   

210,

   

211,

   

212,

   

213

   

214

   

⋯⋯

   

0,

   

1,

   

2,

   

3,

   

4,

   

5,

   

6,

   

7,

   

8,

   

9,

   

10,

   

11,

   

12,

   

13

   

14

   

⋯⋯

   

则16×128实际上就是24×27=24+7=211=2048。

此法可推广到任何二个数的乘除运算。比如计算17951235×0.08304115,设17951235=aX, 0.08304115=aY,则17951235×0.08304115=aX ×aY=aX+Y。

这里x是17951235的(以a为底的)对数,y是0.08304115的(以a为底的)对数。底a是可以任意指定的,我们指定a=10,则只要查表得到这二个数的常用对数(以10为底的对数称为常用对数) x=lg 17951235=7.2540943323和y=lg0.08304115=-1.0807066451,计算x+y=6.1733876872,再查表得6.1733876872的(以10为底的)指数函数,106.1733876872=1490691.1983就得到了17951235的乘积。

这就是后来的“对数简化运算”的方法。但由于当时没有分数指数的概念,人们还完全想不到这样的原理。Stifel尝试做任何两个数乘除时,遇到用数列不能解决的情况,他感到束手无策,他说:“这个问题太狭窄了,所以不值得研究”,只好“鸣金收兵”。

   

3、对数的发明

对数的概念,首先是由苏格兰数学家John Napier(纳皮尔,1550~1617)提出的。那时候天文学是热门学科。可是由于数学的局限性,天文学家不得不花费很大精力去计算那些繁杂的“天文数字”,浪费了若干年甚至毕生的宝贵时间。Napier也是一位天文爱好者,他感到,“没有什么会比数学的演算更加令人烦恼……诸如一些大数的乘、除、平方、立方、开方……因此我开始考虑……怎样才能排除这些障碍。”经20年潜心研究大数的计算技术,他终于独立发明了对数,并于1614年出版的名著《奇妙的对数表的描述》("Mirifici logarithmorum canonis descriptio"),中阐明了对数原理,后人称为纳皮尔对数(NaplogX)。这让他在数学史上被重重地记上一笔。1616年Briggs(亨利·布里格斯,1561–1630)去拜访Napier,建议将对数改良一下以10为基底的对数表最为方便,这也就是后来常用的对数了。可惜Napier隔年于1617年春天去世,后来就由Briggs以毕生精力继承纳皮尔的未竟事业,他于1619年发表了《奇妙对数规则的结构》,于书中详细阐述了对数计算和造对数表的方法,1624年出版了《对数算术》一书,公布了以10为底的14位对数表,并称以10为底的对数为常用对数。

对数表这一惊人发明很快传遍了欧洲大陆。开普勒利用对数表简化了行星轨道的复杂计算。伽利略发出了豪言壮语:“给我时间、空间和对数,我可以创造出一个宇宙来。”数学家拉普拉斯说:“对数用缩短计算的时间来使天文学家的寿命加倍”。对数表曾在几个世纪内为数学家、会计师、航海家和科学家广泛使用。今天,随着计算机的迅猛发展,对数表、计算尺就像过时的法律一样被废弃了,但对数与指数本身已成为数学的精髓部分,也是每一个中学生必学的内容。




如何理解 数学是科学的支柱 数学思想史
那正是在这里。1666年10月,求曲线长度. 求积问题:(1)1669年完成了《运用无限多项方程的分析》,其杰出的代表有意大利天文学家,先后写成了三篇微积分论文,但直到17世纪微分学才出现重大突破、数学家,但古希腊对这两个问题的讨论远不及对面积。这是积分学的前期工作,开普勒,简称《...

Napier与对数的发明
虽然Napier的兵器还没制成,英国已把无敌舰队击垮,他还是成了英雄人物。他一生研究数学,以发明对数运算而著称。那时候天文学家Tycho Brahe(第谷,1546~1601)等人做了很多的观察,需要很多的计算,而且要算几个数的连乘,因此苦不堪言。1594年,他为了寻求一种球面三角计算的简便方法,运用了独特的...

牛顿的故事
关于引力反比于距离平方定律,历史上记载了当时对此发明权的争论,有人以为距离平方反比定律可以从开普勒第三定律直接推出,但缺乏向心力的概念和运动,不可能推出这定律。而向心力的概念与运算都是牛顿最早做出来的。长牛顿7岁的胡克当年就宣称他早已知道引力反比于距离平方定律,但提不出证据来。当《原理》第1版在印刷...

几何倍增原理学是谁发明的
几何倍增原理学是阿基米德发明。市场倍增学又叫网络学,是世界文化宝库中的一颗槐宝。世界上最聪明、最能赚钱的美国犹太人说过这样一句话:“拥有了网络,就拥有了世界。”网络外行者,很难明白此话的真意。但作为深知市场倍增学原理的人士,100%的人都会认为这是一句至理名言。在美国50万的百万富翁中,...

九宫格是根据什么原理发明的
答案不唯一,其一见下图所示:九宫格游戏规则就是用1至9九个数字,横竖都有3个格,思考怎么使每行、每列两个对角线上的三数之和都等于15。这个游戏不仅仅考验人的数字推理能力,也同时考验了人的思维逻辑能力。九宫格游戏对人们的思维锻炼有着极大的作用,从古时起人们便意识到九宫的教育意义。千百...

什么是数,什么是量
首先我们来了解一下“表示原理”(见“鸡毛信的发明与表示原理”一文),表示原理:表示是物质的基本功能,一种事物或者其属性可以用来表示其他任何事物及其属性。 根据表示原理,我们可以知道事物的量可以用任何一种物质或者物质的属性来表示。我们能够想象得到,原始人开始计数时肯定不是用现在的阿拉伯数字,他们可能用石子...

八卦算盘的历史
自纳皮尔发明了对数概念以后不久即由甘特(E.Gunter)与奥却德(W.Oughtred)等先后创制了对数尺度及原始形式的对数计算尺。 计算尺的发展是随着科学技术、生产需要和工艺水平而逐渐进步的,它经历了三百余年的发明与创造,经过无数名数学家以及各类专业技术人员的不断努力,特别是二十世纪初至七十年代,计算尺产品已...

莱布尼茨的主要贡献
1、在微积分领域使用的符号仍是莱布尼茨所提出的。在高等数学和数学分析领域,莱布尼茨判别法是用来判别交错级数的收敛性的。莱布尼茨与牛顿谁先发明微积分的争论是数学界最大的公案。莱布尼茨于1684年发表第一篇微分论文,定义了微分概念,采用了微分符号dx,dy。1686年他又发表了积分论文,讨论了微分与积分...

达芬奇发明计算器的原因及过程原理
计算器不是达芬奇发明的 人工计算器的概念,最早可以追溯到十七世纪的法国大思想家帕斯卡。帕斯卡的父亲担任税务局长,当时的币制不是十进制,在计算上非常麻烦。帕斯卡为了协助父亲,利用齿轮原理,发明了第一台可以执行加减运算计算器 。后来,德国数学家莱布尼兹加以改良,发明了可以做乘除运算的计算器。之...

读了人类发明创造各种计算工具的资料,有什么感受
也可以用除数为一位数的除法和减法代替多位数除法,从而大大简化了数值计算过程.1621年,英国数学家威廉·奥特雷德(William Oughtred)根据对数原理发明了圆形计算尺,也称对数计算尺.对数计算尺在两个圆盘的边缘标注对数刻度,然后让它们相对转动,就可以基于对数原理用加减运算来实现乘除运算.17世纪中期,对数...

兴城市15663373040: 对数是怎样发明的?
陟蔡爱捷: 1614年,英国数学家纳皮尔(J. Napier, 1550~1617)出版《奇妙的对数表》一书.在前言里,纳皮尔告诉我们他发明对数的动机: “没有什么比大数的乘、除、开平方或开立方运算更让数学工作者头痛、更阻碍计算者的了.这不仅浪费时间,而且容易出错.因此,我开始考虑怎样消除这些障碍.经过长期的思索,我终于找到了一些漂亮的简短法则……” 对数发明后,人们(特别是天文学家)的计算量大大减少.

兴城市15663373040: 数学常识中对数的发展过程是什么?
陟蔡爱捷: 对数的发明经历了漫长的过程,它开始于苏格兰数学家约翰•纳皮尔,他在 1594年第一次提出了对数的概念.但是,对数的真正发明和宣布又花了 20年的时间:1614 年...

兴城市15663373040: 对数的发明有何意义?在现在有什么重要应用? -
陟蔡爱捷: 对数是由数学家约翰·纳皮尔(1550-1617)发明,这个意义无论对于当时还是现在都是非常重大.在中学数学中,我们先是学习了指数,比如2^3=8.然后,我们才学习了指数的逆运算——对数,比如求出2的多少次方才会等于8,我们可以用...

兴城市15663373040: 对数的发现讲的是什么? -
陟蔡爱捷: 对数的第一个发明者是纳皮尔.他从大约40岁开始研究对数.当时(约1590年)欧洲代数学十分落后,连“指数”、“底数”这些概念还没有建立,可纳皮尔却首先发明了对数,这不能不说是数学史上的一个奇迹. 关于对数的问题,纳皮尔是...

兴城市15663373040: 发明对数的意义. -
陟蔡爱捷: 对数方法是苏格兰的 Merchiston 男爵约翰·纳皮尔1614年在书《Mirifici Logarithmorum Canonis Descriptio》中首次公开提出的,(Joost Bürgi独立的发现了对数;但直到 Napier 之后四年才发表).这个方法对科学进步有所贡献,特别是对天文学,使某些繁难的计算成为可能.在计算器和计算机发明之前,它持久的用于测量、航海、和其他实用数学分支中. 这一段话是百科上的 其实我觉得意义就在于简化计算 比如算n个数连乘很麻烦,但是只要取对数以后就变成了n个数相加,于是简化了计算过程 其他的你自己看看吧

兴城市15663373040: 对数函数的发明与发展史有关对数函数的发明过程和改进历程 -
陟蔡爱捷:[答案] 对数函数的历史:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,於是数学家们为了寻求化简的计算方法而发明了对数.德国的史提非(1487-1567)在1544年所...

兴城市15663373040: 请问,对数在日常生活中起到什么作用...大家又是怎样理解对数的? -
陟蔡爱捷:[答案] 对数是一种计算方法,它最大的优越性就在于,应用对数,乘法和除法可以归结为简单的加法和减法运算.虽然我们现在所用的对数表是由苏格兰著名的数学家纳皮尔发明的,但它应该追溯到1484年的丘凯和斯蒂费尔. 那时,人们对数,特别是一些大...

兴城市15663373040: 对数的发明解决了当时什么样的困难,怎样解决的? -
陟蔡爱捷:[答案] 我来回答一下“自然对数的意义”,为了讲清楚,我们的话可能多一点. 1、我们有十根手指,我们就喜欢了decimal system = 十进制; 因为我们喜欢、习惯了十进制,我们就产生了很多先入为主的概念, 我们错误地以为,只有跟十进制有关的数,...

兴城市15663373040: 怎么样快速理解高一数学必修1对数的运算 -
陟蔡爱捷:[答案] 对数的公理化定义真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零, 底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1? 【在一个普通对数式里 a<0,或=1 的时候是会有相应b...

兴城市15663373040: 解释一下皮纳尔是怎样定义对数的~人教版高中数学课本必修1中介绍了对数的发明,其中皮纳尔是借助运动学,用几何术语阐述了对数方法.请问他这样定义... -
陟蔡爱捷:[答案] 是 约翰·纳皮尔,不是皮纳尔 纳皮尔研究对数的最初目的,就是为了简化天文问题的球面三角的计算,他也是受了等比数列的项和等差数列的项之间的对应关系的启发.纳皮尔在两组数中建立了这样一种对应关系:当第一组数...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网