我国主要干线电气化铁路采用什么供电方式?

作者&投稿:定符 (若有异议请与网页底部的电邮联系)
我国目前哪些电气化铁路已采用AT供电方式?~

国已有了直接供电(简称TR供电)、自耦变压供电(简称AT供电)、吸流变压器供电(简称BT供电)和带回流线的直接供电(简称DN供电)等供电方式.

牵引网是由馈电线、接触网、钢轨及回流线组成的供电网络,如图:



一般情况下,接触网电压不应低于21kv,干线额定电压25kv,对地27.5kv。

单变供电:每个供电分区只从一端的牵引变电所获得电能(分区亭设备开关打开)

双边供电:两个供电臂同时从两个牵引变电所获得电能(分区亭设备开关关闭)

越区供电:当牵引变电所不能正常供电时,通过分区亭开关,由两侧相邻的变电所供电的临时措施(非正常状态)








直供方式,在牵引网中不加特殊防护措施,一般只在通信线路少的山区采用,AT和BT供电方式比较复杂,因此在沪杭、浙赣和京沪线电气化改造中均采用带回流线的直接供电方式。

带回流线的直接供电方式取消BT供电方式中的吸流变压器,保留了回流线,利用接触网与回流线之间的互感作用,使钢轨中的回流尽可能地由回流线流回牵引变电所,因而部分抵消接触网对临近通信线路的干扰,其防干扰效果不如BT供电方式,通常在对通信线防干扰要求不高的区段采用。这种供电方式设备简单,因此供电设备的可靠性得到了提高;由于取消了吸流变压器,只保留了回流线,因此牵引网阻抗比直供方式低一些,供电性能好一些,造价也不太高,所以这种供电方式在我国电气化铁路上得到了广泛应用。

直接供电方式

优点:

简单、投资省

缺点:

由于牵引供电系统为单相负荷,该供

电方式的牵引回流为钢轨,是不平衡

的供电方式I≠I?),对通信线路产

生感应影响。

自耦变压器供电方式(AT供电方式)

由于自耦变压器的作用,接触网和正馈线的电流均为I/2,方向相反,有效地减少牵引网对通信线的干扰。

由于自耦变压器的中性点与钢轨相连,牵引网的供电电压为2x25kV,电压提高了一倍,因此牵引变电所的间距理论上提高了一倍。

例如直供+回流线供电方式牵引变电所间距为20-30km,则AT供电方式为40-60km。AT供电方式用于重载、高速需大电流的牵引供电系统。

馈线电流只有直供方式的一半。

高架电缆连接在电气化铁路的供电电网上,分为柔性和刚性两类,电力机车或动车组通过架式集电弓连接接触网,从其中取电。架空电缆和高架电缆是香港和台湾的说法,在中国大陆通常被称为接触网供电。在中国大陆,架空电缆和高架电缆一般是指高压输电线路。两种导线类型,最终都通过列车正常的运行轨道接地形成回路。也有少数铁路使用第四轨(例如伦敦地铁)作为电流回路。高架电缆有个好处,就是同时能当高压输电道,如日本京急线。 早期的电气化铁路采用电压相对低的直流供电。机车或动车组的电动机直接连接在电网主线上,通过并联或串联在电动机上的电阻和继电器来进行控制。通常有轨电车和地铁的电压是600伏和750伏,铁路使用1500伏和3000伏。过去车辆使用旋转变流器来将交流电转换为直流电。一般使用半导体整流器完成这个工作。采用直流供电的系统比较简单,但是它需要较粗的导线,车站之间距离也较短,并且直流线路有显著的电阻损失。荷兰、日本、澳大利亚、印尼、马来西亚的一些地区、法国的少数地区使用1500V的直流电,其中,荷兰实际使用的电压大 约有1600V到1700V。比利时、意大利、波兰、捷克北部、斯洛伐克、前南斯拉夫、前苏联使用3000V直流电。 匈牙利曾经在二十世纪三十年代在电气化铁路上使用50赫兹的交流电。然而直到五十年代以后才被广泛使用。一些电气化机车使用变压器和整流器来提供低压脉动直流电给电动机使用,通过调节变压器来控制电动机速度。另一些则使用可控硅或场效应管来产生突变交流或变频交流电来供应给机车的交流电机。这样的供电形式比较经济,但是也存在缺点:外部电力系统的相位负荷不等,而且还会产生显著的电磁干扰。中国、法国、英国、芬兰、丹麦、前苏联、前南斯拉夫、西班牙(标准轨高铁路段)、日本(东北、上越、北海道新干线及北陆新干线轻井泽以东)、使用单相25千伏50赫兹电力供应,台湾高速铁路、台湾铁路管理局、韩国、日本(东海道、山阳、九州新干线及北陆新干线轻井泽以西)使用单相25千伏60赫兹电力供应,而美国通常使用单相12.5千伏和25千伏60赫兹的交流电。另外日本东北、北海道地区使用20千伏50赫兹交流电,北陆地区、九州地区使用20千伏60赫兹交流电。 因为有这么多的供电方式,有时候甚至一个国家内采用不同的方式(如日本关东以南是60Hz,但东北及北陆以北是50Hz),所以列车经常必须从一种供电方式转向为另一种供电方式。其中一种方法是在换乘站更换机车,当然,这样很不方便。另一种方法是使用支持多种供电系统的机车。在欧洲,通常是支持四种供电系统(直流1.5千伏、直流3千伏、交流15千伏16.67赫兹、交流25千伏50赫兹)的机车,这样,它在从一个供电系统到另一个的时候就可以不用停留。而日本国铁在上世纪60年代初已有交直流对应的列车机车、但当时只能对应其中50/60一个赫兹,俗称“单交直流型 ”。直至60年代尾才成功研发可在全日本电化区间的行走用的多种供电系统(直流1.5千伏、交流25千伏50/60赫兹),俗称“双交直流型”,并开始引进当时量产中的列车机车系列上,但在1987年由JR分社经营后,由于预期旅客电车不需再作全国性的调动或行走,加上双交直流型电车成本较高,故除了至国铁末年仍量产中的415系1500番台及之后的JR东日本的E653系及是双交直流型电车外,单交直流型的旅客电车从新被各JR旅客会社采用。

(一)牵引供电系统简介
将电能从电力系统传送给电力机车的电力装置的总称叫电气化铁路的供电系统,又称牵引供电系统,主要由牵引变电所和接触网两大部分组成。牵引变电所将电力系统输电线路电压从110kV(或220kV)降到27.5kV,经馈电线将电能送至接触网;接触网沿铁路上空架设,电力机车升弓后便可从其取得电能,用以牵引列车。牵引变电所所在地的接触网设有分相绝缘装置,两相邻牵引变电所之间设有分区亭,接触网在此也相应设有分相绝缘装置。牵引变电所至分区亭之间的接触网(含馈电线)称供电臂。
牵引供电回路是由牵引变电所——馈电线——接触网——电力机车——钢轨——回流联接——(牵引变电所)接地网组成的闭合回路,其中流通的电流称牵引电流,闭合或断开牵引供电回路会产生强烈的电弧,处理不当会造成严重的后果。通常将接触网、钢轨回路(包括大地)、馈电线和回流线统称为牵引网。
牵引供电设备的检修运行由供电段负责,牵引供电系统的运行调度则由供电调度负责。供电调度通常设在分局和铁路局调度所。
1、牵引变电所
牵引变电所的任务是将电力系统三相电压降低,同时以单相方式馈出。降低电压是由牵引变压器来实现的,将三相变为单相是通过变电所的电气接线来达到的。
牵引变压器(主变)是一种特殊电压等级的电力变压器,应满足牵引负荷变化剧烈、外部短路频繁的要求,是牵引变电所的“心脏”。我国牵引变压器采用三相、三相——二相和单相三种类型,因而牵引变电所也分为三相、三相——二相和单相三类。
随着技术水平的提高,我国干线电气化铁路已推广使用集中监视及控制的远动系统,牵引变电所将逐步实现无人值班,直接由供电调度实行遥控运行。
2、接触网
接触网是沿铁路沿线架设的特殊电力线路,电力机车受电弓通过与之滑动摩擦接触而授流,取得电能。所以两者均应保持良好的工作状态。
受电弓的运动状态是很复杂的,影响因素也很多。为了保证对其良好的供电,接触网结构本身应做到:(1)接触线距钢轨面的高度应尽量相等,定位点及跨中与受电弓中心相对位置符合要求;
(2)接触悬挂应有较均匀的弹性和良好的稳定性;
(3)良好的绝缘性能;
(4)适应气象条件的变化并能保持上述特性不应有很大的变化;
(5)接触网结构应力求轻巧简单,做到标准化,方便施工和运行维修;
(6)零部件标准化,轻便,耐腐蚀,可靠性高,
(7)接触线应有足够的耐磨性;
(8)主导电回路通畅。
(二)接触网的悬挂方式
架空式接触网主要由接触悬挂、支持装置、定位装置和支柱基础四大部分组成。前三部分带电,与支柱(或其它建筑物)接地体之间用绝缘子隔开。
1、接触悬挂
通常,接触悬挂由承力索、吊弦、接触线和补偿装置组成,即链形悬挂。补偿装置的作用是在环境温度变化时,使接触线、承力索的张力保持恒定。承力索和接触线下锚方式均采用补偿装置的叫全补偿,仅接触线采用补偿的称半补偿。支柱处吊弦采用简单吊弦或弹性吊弦的分别为简单链形悬挂或弹性链形悬挂。
目前我国干线电气化铁路正线大都采用全补偿简单链形悬挂,站线则多为半补偿简单链形悬挂。
只有接触线的悬挂称简单悬挂,一般都采用补偿方式,只在机务段库线、厂矿专用线等少数场合采用。
接触悬挂沿线路架设,为了满足机械受力方面的要求而分成一个一个单独的锚段,锚段与锚段的相互过渡结构称为锚段关节,通常有绝缘(四跨)锚段关节和非绝缘(三跨)锚段关节之分,前者亦称电分段锚段关节,后者则为机械分段锚段关节。锚段与锚段之间的电气联接用电联接线(三跨)或隔离开关(四跨)完成。
2、支持装置
支持装置用以支持接触悬挂并将其负荷传给支柱或其他建筑物,其结构随线路情况而变化。区间主要为腕臂结构;站场则视股道数量、线路情况、支柱所在位置等因素而选用软横跨、硬横跨或腕臂结构,以软横跨为主,高速铁路则采用硬横梁;隧道和桥梁(下承桥)等大型建筑物处又要视具体情况而作设计,必要时采用特殊结构。
3、定位装置
定位装置包括定位器和定位管,其作用是保证接触线与受电弓的相对位置在规定范围内,并将接触线的水平张力传给支柱。
4、支柱基础
支柱用来承受接触悬挂和支持装置的负荷,并将接触悬挂固定在规定高度。支柱有钢柱和钢筋混凝土柱两种。前者立在用钢筋混凝土浇成的基础上,基础埋在路基内;后者则直接埋在路基中。桥梁(上承桥)通常采用钢柱,其基础在桥墩上预留。
支柱上还装有接地装置,与钢轨回路接通,起到保护作用。下锚支柱上还装有补偿装置,并设拉线装置。
(三)接触网的供电分段
为了保证安全供电和灵活运用,接触网在结构上设有供电分段。
如前所述,在牵引变电所和分区亭所在地的接触网设置的分相绝缘装置为分相电分段;在同一供电臂内设置的电分段为同相电分段,如区间和站场之间(纵向),站场内的货物线、装卸线、段管线,枢纽内场与场之间等(横向)。
同相电分段的结构为四跨锚段关节,或采用分段绝缘器+三跨锚段关节结构。
分相电分段的结构,早期为八跨(两个四跨迭加)锚段关节式,后来为分相绝缘器+三跨锚段关节所代替。近年来,随着列车速度的不断提高,锚段关节式分相结构由于其弹性好、硬点小,受电弓过渡平滑等优点,在提速区段和高速区段又逐步采用。必须指出,电力机车在通过分相绝缘装置时,要“断电”通过,即在通过前将主断路器断开,滑行通过后,再闭合主断路器继续运行,否则会引起强烈电弧,造成相间短路,甚至烧断接触网线索。
(四)接触网的供电方式
我国电气化铁路均采用单边供电方式,即牵引变电所向接触网供电时,每一个供电臂的接触网只从一端的牵引变电所获得电能(从两边获得电能则为双边供电,可提高接触网末端网压,但由于其故障范围大、继电保护装置复杂等原因尚未有采用)。复线区段可通过分区亭将上下行接触网联接,实现“并联供电”,可适当提高末端网压。当牵引变电所发生故障时,相邻变电所通过分区亭实现“越区供电”,此时供电范围扩大,网压降低,通常应减少列车对数或牵引定数,以维持运行。
1、直接供电方式
如前所述,电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。随着电气化铁路向平原和大城市发展,电磁干扰矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。目前有所谓的BT、AT和DN供电方式。从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。电力牵引时,附加导线中通过的电流与接触网中通过的牵引电流,理论上讲(或理想中)大小相等、方向相反,从而两者产生的电磁干扰相互抵消。但实际上是做不到的,所以不同的供电方式有不同的防护效果。
2、吸流变压器(BT)供电方式
这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。
由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。
3、自耦变压器(AT)供电方式
采用AT供电方式时,牵引变电所主变输出电压为55kV,经AT(自耦变压器,变比2:1)向接触网供电,一端接接触网,另一端接正馈线(简称AF线,亦架在田野侧,与接触悬挂等高),其中点抽头则与钢轨相连。AF线的作用同BT供电方式中的NF线一样,起到防干扰功能,但效果较前者为好。此外,在AF线下方还架有一条保护(PW)线,当接触网绝缘破坏时起到保护跳闸作用,同时亦兼有防干扰及防雷效果。
显然,AT供电方式接触网结构也比较复杂,田野侧挂有两组附加导线,AF线电压与接触网电压相等,PW线也有一定电位(约几百伏),增加故障几率。当接触网发生故障,尤其是断杆事故时,更是麻烦,抢修恢复困难,对运输干扰极大。但由于牵引变电所馈出电压高,所间距可增加一倍,并可适当提高末端网压,在电力系统网络比较薄弱的地区有其优越性。
4、直供+回流(DN)供电方式
这种供电方式实际上就是带回流线的直接供电方式,NF线每隔一定距离与钢轨相连,既起到防干扰作用,又兼有PW线特性。由于没有吸流变压器,改善了网压,接触网结构简单可靠。近年来得到广泛应用。
综上所述,早期电气化铁路均采用直接供电方式,为避免和减少对外部环境的电磁干扰,研发了BT、AT和DN供电方式,就防护效果来看,AT方式优于BT和DN方式,就接触网的结构性能来讲,DN方式最为简单可靠。随着通信技术的快速发展,光缆的普遍应用,通信设施及无线电装置自身的防干扰性能大为增强,考虑到接触网的运行可靠性对电气化铁路的安全运行至关重要,所以通常认为,一般情况下DN供电方式为首选,在电力系统比较薄弱的地区,经过经济技术比较,可采用AT供电方式,BT供电方式则尽量少采用或不采用。本人认为,这是近三十年来我国电气化铁路供电方式发展和应用的实践过程中总结出来的普遍看法,同样也要接受今后的实践检验,不断总结提高。

......直接供电方式

2、吸流变压器(BT)供电方式

3、自耦变压器(AT)供电方式
4、直供+回流(DN)供电方式

直流供电


我国主要干线电气化铁路采用什么供电方式?
我国电气化铁路均采用单边供电方式,即牵引变电所向接触网供电时,每一个供电臂的接触网只从一端的牵引变电所获得电能(从两边获得电能则为双边供电,可提高接触网末端网压,但由于其故障范围大、继电保护装置复杂等原因尚未有采用)。复线区段可通过分区亭将上下行接触网联接,实现“并联供电”,可适当提高末端网压。当...

哪些铁路是电气化的
京沪高速铁路是连接北京与上海的高速铁路,全线路采用了电气化技术,为两地及沿途城市提供了快速、便捷的交通服务。京广高速铁路,连接中国首都北京至广州,也是中国一条重要的南北向电气化铁路干线。哈大高速铁路,连接哈尔滨与大连,也是电气化的铁路线路之一,能够在极端气候条件下提供稳定的运营服务。这些电...

我国主要干线电气化铁路采用什么供电方式?
我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。随着电气化铁路向平原和大城市发展,电磁干扰矛盾日显突出,于是在接触网供电方式上采取不同的...

说明电气化铁道供电的主要方式及特点
越区供电:当牵引变电所不能正常供电时,通过分区亭开关,由两侧相邻的变电所供电的临时措施(非正常状态)直供方式,在牵引网中不加特殊防护措施,一般只在通信线路少的山区采用,AT和BT供电方式比较复杂,因此在沪杭、浙赣和京沪线电气化改造中均采用带回流线的直接供电方式.带回流线的直接供电方式取消BT供...

我国现有的电气化铁路有几条阿
阳安线 西康线 西陇海线 湘黔线 北同蒲线 大秦线 哈大线 石太线 京广线 广深线 鹰夏线 来福线 襄渝线。京山,京秦,丰沙大,广深,川黔,宝中,侯月,太焦(长治北-月山)2008年通车的沈山线,这些都是国际干线铁路,如果要是算上支线以及地方电气化铁路的话,那恐怕这里是真的写不下了!

目前我国使用的钢轨的类型有哪些
标轨铁路、窄轨铁路。4、轨道数量:单线铁路、双线铁路、多线铁路。5、轨道重量:重轨、轻轨,重轨和轻轨两者当中各又细分多种不同数据规格。6、轨道设备:电气化铁路和非电气化铁路,非电气化铁路不能跑纯电力机车。7、轨道位置:高架铁路、地面铁路和地下铁路(不是城市轨道交通中的地铁)。

【铁道知识·运输】宝成线——我国第一条电气化铁路
宝成铁路在修建过程中面临极大挑战,80%的线路处于险峻地形,需要穿越304座总计84.4公里的隧道,以及161座大中型桥梁和1002座涵洞。其中,会龙场隧道长达4008.69米,渭河大桥长达400多米。线路条件的不均导致运输能力受限,宝鸡至凤州段率先实现电气化,成为我国第一条干线电气化铁路。随着经济的发展,...

电气化铁道详细资料大全
我国干线电气化铁路正线大都采用全补偿简单链形悬挂,站线则多为半补偿简单链形悬挂。 只有接触线的悬挂称简单悬挂,一般都采用补偿方式,只在机务段库线、厂矿专用线等少数场合采用。 接触悬挂沿线路架设,为了满足机械受力方面的要求而分成一个一个单独的锚段,锚段与锚段的相互过渡结构称为锚段关节,通常有绝缘(四跨)...

主要铁路和主要铁路干线有什么区别
南部沿海地区主要铁路干线 南部沿海地区铁路有些已建成,有些在建,有些是规划。 宁波—台州—温州(甬台温铁路),自宁波至温州。全线长268千米,是一条以客运为主、客货兼顾的国家一级铁路。建设技术标准为一级双线电气化铁路,设计时速为200千米,预留时速可提升到250-300千米。2005年10月动工,...

我国铁路干线有哪些?分别是连接哪里到哪里的?
宝成铁路是中国一条从陕西宝鸡通往四川成都的铁路,全长668.2千米,是中国第一条电气化铁路。它是沟通中国西北与西南的第一条铁路干线。 成昆铁路 成昆铁路自四川省成都至云南省昆明,全长1134千米,原为国防三线建设的重点工程,1958年7月动工,在修了61千米后停建。1964年8月复工,文化大革命开始后又一度停工,1970...

河西区15914515304: 我国电气化铁道供电系统采用的电流制是( ) -
曹疤托恩:[答案] 工频单相交流制

河西区15914515304: 我国目前哪些电气化铁路已采用AT供电方式? -
曹疤托恩: 国已有了直接供电(简称TR供电)、自耦变压供电(简称AT供电)、吸流变压器供电(简称BT供电)和带回流线的直接供电(简称DN供电)等供电方式. 牵引网是由馈电线、接触网、钢轨及回流线组成的供电网络,如图: 一般情况下,接触网...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网