高等代数的发展史

作者&投稿:贰伊 (若有异议请与网页底部的电邮联系)
高等代数的发展史~

在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而二次以上方程发展成为多项式理论。前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。作为大学课程的高等代数,只研究它们的基础。高次方程组(即非线性方程组)发展成为一门比较现代的数学理论-代数几何。线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意,而且写了成千篇关于这两个课题的文章。向量的概念,从数学的观点来看不过是有序三元数组的一个集合,然而它以力或速度作为直接的物理意义,并且数学上用它能立刻写出物理上所说的事情。向量用于梯度,散度,旋度就更有说服力。同样,行列式和矩阵如导数一样(虽然‘dy/dx’在数学上不过是一个符号,表示包括‘Δy/Δx’的极限的长式子,但导数本身是一个强有力的概念,能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。 十七世纪日本数学家关孝和提出了行列式(determinant)的概念,他在1683年写了一部叫做《解伏题之法》的著作,意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。而在欧洲,另一个提出行列式概念的是德国的数学家,微积分学奠基人之一莱布尼兹(Leibnitz,1693年)。1750年克莱姆(Cramer)在他的《线性代数分析导言》(Introduction d l'analyse des lignes courbes alge'briques)中发表了求解线性系统方程的重要基本公式(既人们熟悉的Cramer克莱姆法则)。1764年,Bezout把确定行列式每一项的符号的手续系统化了。对给定了含n个未知量的n个齐次线性方程,Bezout证明了系数行列式等于零是这方程组有非零解的条件。Vandermonde是第一个对行列式理论进行系统的阐述(即把行列式理论与线性方程组求解相分离)的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。参照克莱姆和Bezout的工作,1772年,Laplace在《对积分和世界体系的探讨》中,证明了Vandermonde的一些规则,并推广了他的展开行列式的方法,用r行中所含的子式和它们的余子式的集合来展开行列式,这个方法如今仍然以他的名字命名。1841年,德国数学家雅可比(Jacobi)总结并提出了行列式的最系统的理论。另一个研究行列式的是法国最伟大的数学家柯西(Cauchy),他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了laplace的展开定理。相对而言,最早利用矩阵概念的是拉格朗日(Lagrange)在1700年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为0,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。大约在1800年,高斯(Gauss)提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯- 约当消去法则最初是出现在由Wilhelm Jordan撰写的测地学手册中。许多人把著名的数学家Camille Jordan误认为是“高斯- 约当”消去法中的约当。矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。1848年,英格兰的J.J. Sylvester首先提出了矩阵(matrix)这个词,它来源于拉丁语,代表一排数。在1855年矩阵代数得到了Arthur Cayley的进一步发展。Cayley研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换ST的系数矩阵变为矩阵S和矩阵T的乘积。他还进一步研究了那些包括矩阵的逆在内的代数问题。1858年,Cayley在他的矩阵理论文集中提出著名的Cayley-Hamilton理论,即断言一个矩阵的平方就是它的特征多项式的根。利用单一的字母A来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式det(AB)=det(A)det(B)为矩阵代数和行列式间提供了一种联系。数学家Cauchy首先给出了特征方程的术语,并证明了阶数超过3的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论。数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既V×W不等于W×V)的向量代数是由Hermann Grassmann在他的《线性扩张论》(Die lineale Ausdehnungslehre)一书中提出的(1844)。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为1的矩阵,或简单矩阵。在19世纪末美国数学物理学家吉布斯(Willard Gibbs)发表了关于《向量分析基础》(Elements of Vector Analysis)的著名论述。其后物理学家狄拉克(P.A.M. Dirac)提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在20世纪由物理学家给出的。矩阵的发展是与线性变换密切相连的。到19世纪它还仅占线性变换理论形成中有限的空间。现代向量空间的定义是由Peano于1888年提出的。 二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。

高等代数 初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。
高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。
高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。
集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也由很大的不同了。
[编辑本段]高等代数发展简史
代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段颇不平坦的路途,付出了艰辛的劳动。
人们很早就已经知道了一元一次和一元二次方程的求解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。到了十三世纪,宋代数学家秦九韶再他所著的《数书九章》这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候以得到了高次方程的一般解法。
在西方,直到十六世纪初的文艺复兴时期,才由有意大利的数学家发现一元三次方程解的公式——卡当公式。
在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)骗到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。
三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。
到了十九世纪初,挪威的一位青年数学家阿贝尔(1802~1829)证明了五次或五次以上的方程不可能有代数解。既这些方程的根不能用方程的系数通过加、减、乘、除、乘方、开方这些代数运算表示出来。阿贝尔的这个证明不但比较难,而且也没有回答每一个具体的方程是否可以用代数方法求解的问题。
后来,五次或五次以上的方程不可能有代数解的问题,由法国的一位青年数学家伽罗华彻底解决了。伽罗华20岁的时候,因为积极参加法国资产阶级革命运动,曾两次被捕入狱,1832年4月,他出狱不久,便在一次私人决斗中死去,年仅21岁。
伽罗华在临死前预料自己难以摆脱死亡的命运,所以曾连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿。他在给朋友舍瓦利叶的信中说:“我在分析方面做出了一些新发现。有些是关于方程论的;有些是关于整函数的……。公开请求雅可比或高斯,不是对这些定理的正确性而是对这些定理的重要性发表意见。我希望将来有人发现消除所有这些混乱对它们是有益的。”
伽罗华死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中。他的论文手稿过了14年,才由刘维尔(1809~1882)编辑出版了他的部分文章,并向数学界推荐。
随着时间的推移,伽罗华的研究成果的重要意义愈来愈为人们所认识。伽罗华虽然十分年轻,但是他在数学史上做出的贡献,不仅是解决了几个世纪以来一直没有解决的高次方程的代数解的问题,更重要的是他在解决这个问题中提出了“群”的概念,并由此发展了一整套关于群和域的理论,开辟了代数学的一个崭新的天地,直接影响了代数学研究方法的变革。从此,代数学不再以方程理论为中心内容,而转向对代数结构性质的研究,促进了代数学的进一步的发展。在数学大师们的经典著作中,伽罗华的论文是最薄的,但他的数学思想却是光辉夺目的。
[编辑本段]高等代数的基本内容
代数学从高等代数总的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数、线性代数等。代数学研究的对象,也已不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算。虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。比如群、环、域等。
多项式是一类最常见、最简单的函数,它的应用非常广泛。多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论。研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法。
多项式代数所研究的内容,包括整除性理论、最大公因式、重因式等。这些大体上和中学代数里的内容相同。多项式的整除性质对于解代数方程是很有用的。解代数方程无非就是求对应多项式的零点,零点不存在的时候,所对应的代数方程就没有解。
我们知道一次方程叫做线性方程,讨论线性方程的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。
行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家莱布尼茨。德国数学家雅可比于1841年总结并提出了行列式的系统理论。
行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具。行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数。
因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论。矩阵也是由数排成行和列的数表,可以行数和烈数相等也可以不等。
矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以得到彻底的解决。矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。
代数学研究的对象,不仅是数,也可能是矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。比较重要的代数系统有群论、环论、域论。群论是研究数学和物理现象的对称性规律的有力工具。现在群的概念已成为现代数学中最重要的,具有概括性的一个数学的概念,广泛应用于其他部门。
[编辑本段]高等代数与其他学科的关系
代数学、几何学、分析数学是数学的三大基础学科,数学的各个分支的发生和发展,基本上都是围绕着这三大学科进行的。
那么代数学与另两门学科的区别在哪儿呢?
首先,代数运算是有限次的,而且缺乏连续性的概念。也就是说,代数学主要是关于离散性的。尽管在现实中连续性和不连续性是辩证的统一的,但是为了认识现实,有时候需要把它分成几个部分,然后分别地研究认识,再综合起来,就得到对现实的总的认识。这是我们认识事物的简单但是科学的重要手段,也是代数学的基本思想和方法。代数学注意到离散关系,并不能说明这时它的缺点,时间已经多次、多方位的证明了代数学的这一特点是有效的。
其次,代数学除了对物理、化学等科学有直接的实践意义外,就数学本身来说,代数学也占有重要的地位。代数学中发生的许多新的思想和概念,大大地丰富了数学的许多分支,成为众多学科的共同基础。

在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而二次以上方程发展成为多项式理论。前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。作为大学课程的高等代数,只研究它们的基础。高次方程组(即非线性方程组)发展成为一门比较现代的数学理论-代数几何。
线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意,而且写了成千篇关于这两个课题的文章。向量的概念,从数学的观点来看不过是有序三元数组的一个集合,然而它以力或速度作为直接的物理意义,并且数学上用它能立刻写出物理上所说的事情。向量用于梯度,散度,旋度就更有说服力。同样,行列式和矩阵如导数一样(虽然‘dy/dx’在数学上不过是一个符号,表示包括‘Δy/Δx’的极限的长式子,但导数本身是一个强有力的概念,能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。
线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。 十七世纪日本数学家关孝和提出了行列式(determinant)的概念,他在1683年写了一部叫做《解伏题之法》的著作,意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。而在欧洲,另一个提出行列式概念的是德国的数学家,微积分学奠基人之一莱布尼兹(Leibnitz,1693年)。
1750年克莱姆(Cramer)在他的《线性代数分析导言》(Introduction d l'analyse des lignes courbes alge'briques)中发表了求解线性系统方程的重要基本公式(既人们熟悉的Cramer克莱姆法则)。
1764年,Bezout把确定行列式每一项的符号的手续系统化了。对给定了含n个未知量的n个齐次线性方程,Bezout证明了系数行列式等于零是这方程组有非零解的条件。Vandermonde是第一个对行列式理论进行系统的阐述(即把行列式理论与线性方程组求解相分离)的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。
参照克莱姆和Bezout的工作,1772年,Laplace在《对积分和世界体系的探讨》中,证明了Vandermonde的一些规则,并推广了他的展开行列式的方法,用r行中所含的子式和它们的余子式的集合来展开行列式,这个方法如今仍然以他的名字命名。1841年,德国数学家雅可比(Jacobi)总结并提出了行列式的最系统的理论。另一个研究行列式的是法国最伟大的数学家柯西(Cauchy),他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了laplace的展开定理。相对而言,最早利用矩阵概念的是拉格朗日(Lagrange)在1700年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为0,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。
大约在1800年,高斯(Gauss)提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯- 约当消去法则最初是出现在由Wilhelm Jordan撰写的测地学手册中。许多人把著名的数学家Camille Jordan误认为是“高斯- 约当”消去法中的约当。
矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。
1848年,英格兰的J.J. Sylvester首先提出了矩阵(matrix)这个词,它来源于拉丁语,代表一排数。在1855年矩阵代数得到了Arthur Cayley的进一步发展。Cayley研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换ST的系数矩阵变为矩阵S和矩阵T的乘积。他还进一步研究了那些包括矩阵的逆在内的代数问题。1858年,Cayley在他的矩阵理论文集中提出著名的Cayley-Hamilton理论,即断言一个矩阵的平方就是它的特征多项式的根。利用单一的字母A来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式
det(AB)=det(A)det(B)为矩阵代数和行列式间提供了一种联系。数学家Cauchy首先给出了特征方程的术语,并证明了阶数超过3的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论。
数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既V×W不等于W×V)的向量代数是由Hermann Grassmann在他的《线性扩张论》(Die lineale Ausdehnungslehre)一书中提出的(1844)。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为1的矩阵,或简单矩阵。在19世纪末美国数学物理学家吉布斯(Willard Gibbs)发表了关于《向量分析基础》(Elements of Vector Analysis)的著名论述。其后物理学家狄拉克(P.A.M. Dirac)提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在20世纪由物理学家给出的。
矩阵的发展是与线性变换密切相连的。到19世纪它还仅占线性变换理论形成中有限的空间。现代向量空间的定义是由Peano于1888年提出的。 二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。




数与代数包括什么?
理解九年义务教育数学课程中数与代数部分的教育价值,设计思路,内容和安排以及教学方法的特点等,对于有效地实施和贯彻《标准》是非常重要的。 数与代数的...代数学这门学科,就很不容易说清楚了.比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的方程的技巧.那么,这种“代数学”是在十六世纪才发展起来...

数的发展史
这些概念也都应列入数字计算的范畴,但若归入超复数中不太合适,所以,人们将复数和超复数称为狭义数,把向量、张量、矩阿等概念称为广义数。尽管人们对数的归类法还有某些分歧,但在承认数的概念还会不断发展这一点上意见是一致的。到目前为止,数的家庭已发展得十分庞大。 已赞过 已踩过< 你对这个回答的评价是?

简述数学的发展史,并举例说明该时期有哪些主要成就
b.零号数的发明 c.阿拉伯的代数、三角学与几何学的成就。主题:第二部分近代数学发展史重难点辅导第二部分近代数学发展史(一)课程内容 1、近代数学的兴起 (1)向近代数学的过渡 a.代数学的出现 b.三角学的发展 c.从透视学到射影几何 d.计算技术与对数的诞生 (2)解析几何的诞生 2、微积分的...

现在数学发展到什么程度了
我尽量避开特别专业的东西,简单的说一下数学发展史。首先数学的发展分为四个时期:第一时期 数学形成时期 数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。第二时期 初等数学,即常量...

有没有关于数学发展史的资料?
在其启迪之下,经莱布尼茨、牛顿等的工作,发展成了现代形式的坐标制解析几何学,使数与形的统一更臻完美,不仅改变了几何证题过去遵循欧几里得几何的老方法,还引起了导数的产生,成为微积分学产生的根源。这是数学史上的一件大事。 在十七世纪中,由于科学与技术上的要求促使数学家们研究运动与变化,包括量的变化与形的...

数学发展史的四个阶段
数学发展史的四个阶段如下:数学发展史大致可以分为四个阶段:数学起源时期,初等数学时期,近代数学时期,现代数学时期。数学起源时期:建立自然数的概念;认识简单的几何图形;算术与几何尚未分开。初等数学时期:期间逐渐形成了初等数学的主要分支:算术、几何、代数、三角。该时期的基本成果,构成现在中学...

数学发展历史是什么?
微分学包括求导数的运算,是一套关于变化率的理论,它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论,积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。第四时期 现代数学,现代数学时期,大致从19世纪初开始,数学发展的现代阶段的开端,以其所有的基础代数...

高等代数的简介
代数学从高等代数总的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数、线性代数等。代数学研究的对象,也已不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算。虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容...

什么是代数
三条指数律:同底数幂相乘,底数不变指数相加;指数的乘方等于底数不变指数想乘;积的乘方等于乘方的积。初等代数学进一步的向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程。这时候,代数学已由初等代数向着高等代数的方向发展了。参考资料:百度百科 ...

关于数的历史和发展的论文
吴文俊对此有精辟的论述,他说:“假如你对数学的历史发展,对一个领域的发生和发展,对一个理论的兴旺和衰落,对一个概念的来龙去脉,对一种重要思想的产生和影响等这许多历史因素都弄清了,我想,对数学就会了解得更多,对数学的现状就会知道得更清楚、更深刻,还可以对数学的未来起一种指导作用,也就是说,可以知道...

回民区15847502570: 高等代数(数学学科术语) - 搜狗百科
房邰美克:[答案] 线性代数是高等代数的一大分支.我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数.在线性代数中最重要的内容就是行列式和矩阵.行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章.向...

回民区15847502570: 高等代数是什么?高等代数到底是什么?请详细介绍一下,我仅将它当作
房邰美克: 1.代数是什么? 2.初等代数是什么? 3.高等代数就是....... 高等代数 初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另...

回民区15847502570: 线性代数的起源是什么? -
房邰美克: 线性代数是高等代数的一大分支.我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数.在线性代数中最重要的内容就是行列式和矩阵.行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题...

回民区15847502570: 高等数学发展历程啊,拜托了! -
房邰美克:[答案] 高等数学是一门古老的自然学科,它以微积分为主要研究对象,文艺复兴的十七世纪,是微积分得以创造和发展的时期.无论是从笛卡尔的直角坐标系的建立,到牛顿的自然哲学的数学原理,还是从费尔马的最少时间原理,到莱布尼兹的微积分规则,...

回民区15847502570: 数学的发展史 -
房邰美克: 数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意.古希腊学者视其为哲学之起点,“学问的基础”.另外,还有个较狭隘且技术性的意义——“数...

回民区15847502570: 你对高等代数这门课的认识 -
房邰美克: 代数学从高等代数的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数,线性代数等.代数学研究的对象也已不仅是数,还有矩阵,向量,向量空间的变换等.对于这些对象,都可以进行运算.虽然也叫做加法或...

回民区15847502570: 高等代数和线性代数有何区别? -
房邰美克: 高等代数要比线性代数难很多,基本上可以说线性代数是高等代数的分支,高等代数还要研究多项式,但是线性代数一般研究线性关系,大学期间,数学专业的学习高等代数,非数学专业的学习线性代数高等代数是代数学发展到高级阶段的总...

回民区15847502570: 高分求高等代数矩阵论文 -
房邰美克: 初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组.沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程...

回民区15847502570: 多项式整除的商可以是小数吗 -
房邰美克: 可以, 如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除 例如(0.5x+2)÷(x+1)=0.5 没有余式,所以0.5x+2能被x+1整除. 余式必须比被除式的次数低. 这里被除式x+1是一次,所以余式只能是常数 而0.5x+2=f(x)(x+1)+k的话,k只能是0,f(x)只能是等于0.5 所以没有余式,所以是整除,而商业就是个小数0.5

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网