六年级下册数学书95页七桥问题

作者&投稿:樊彼 (若有异议请与网页底部的电邮联系)
六年级下册数学教科书第95页那个七桥问题怎么画成???~

两个相同的圆锥

做不出来的,只有是偶数的桥数才行。
或者是1和3这样的桥数才行。

七桥问题
七桥问题Seven Bridges Problem    18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。   有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2.   当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。   Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示 著名数学家欧拉
。    后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。   七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.   欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。   接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!
编辑本段最终成果
  问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。而利用普通数学知识,每座桥均走一次,那这七座桥所有的走法一共有7!=5040种,而这么多情况,要一一试验,这将会是很大的工作量。但怎么才能找到成功走过每座桥而不重复的路线呢?因而形成了著名的“哥尼斯堡七桥问题”。   1735年,有几名大学生写信给当时正在俄罗斯的彼得斯堡科学院任职的天才数学家欧拉,请他帮忙解决这一问题。欧拉在亲自观察了哥尼斯堡七桥后,认真思考走法,但始终没能成功,于是他怀疑七桥问题是不是原本就无解呢?   1736年,在经过一年的研究之后,29岁的欧拉提交了《哥尼斯堡七桥》的论文,圆满解决了这一问题,同时开创了数学新一分支---图论。   在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。并由此得到了如图一样的几何图形。 若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。这样著名的“七桥问题”便转化为是否能够用一笔不重复的画出过此七条线的问题了。若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由A或C为起点得到的效果是一样的,若假设以A为起点和终点,则必有一离开线和对应的进入线,若我们定义进入A的线的条数为入度,离开线的条数为出度,与A有关的线的条数为A的度,则A的出度和入度是相等的,即A的度应该为偶数。即要使得从A出发有解则A的度数应该为偶数,而实际上A的度数是3为奇数,于是可知从A出发是无解的。同时若从B或D出发,由于B、D的度数分别是5、3,都是奇数,即以之为起点都是无解的。   有上述理由可知,对于所抽象出的数学问题是无解的,即“七桥问题”也是无解的。   由此我们得到:欧拉回路关系   由此我们可知要使得一个图形可以一笔画,必须满足如下两个条件:   1. 图形必须是连通的。   2. 途中的“奇点”个数是0或2.   我们也可以依此来检验图形是不是可一笔画出。回头也可以由此来判断“七桥问题”,4个点全是奇点,可知图不能“一笔画出”,也就是不存在不重复地通过所有七桥。   欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。   1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报 七桥问题
告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。   七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为 加里宁格勒地理
欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。

七桥问题
七桥问题Seven Bridges Problem    18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。   有关图论研究的热点问题。18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七桥问题。欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2.   当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。   Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示 著名数学家欧拉
。    后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最後回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。   七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.   欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。   接下来,欧拉运用网络中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!
编辑本段最终成果
  问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。而利用普通数学知识,每座桥均走一次,那这七座桥所有的走法一共有7!=5040种,而这么多情况,要一一试验,这将会是很大的工作量。但怎么才能找到成功走过每座桥而不重复的路线呢?因而形成了著名的“哥尼斯堡七桥问题”。   1735年,有几名大学生写信给当时正在俄罗斯的彼得斯堡科学院任职的天才数学家欧拉,请他帮忙解决这一问题。欧拉在亲自观察了哥尼斯堡七桥后,认真思考走法,但始终没能成功,于是他怀疑七桥问题是不是原本就无解呢?   1736年,在经过一年的研究之后,29岁的欧拉提交了《哥尼斯堡七桥》的论文,圆满解决了这一问题,同时开创了数学新一分支---图论。   在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。并由此得到了如图一样的几何图形。 若我们分别用A、B、C、D四个点表示为哥尼斯堡的四个区域。这样著名的“七桥问题”便转化为是否能够用一笔不重复的画出过此七条线的问题了。若可以画出来,则图形中必有终点和起点,并且起点和终点应该是同一点,由于对称性可知由A或C为起点得到的效果是一样的,若假设以A为起点和终点,则必有一离开线和对应的进入线,若我们定义进入A的线的条数为入度,离开线的条数为出度,与A有关的线的条数为A的度,则A的出度和入度是相等的,即A的度应该为偶数。即要使得从A出发有解则A的度数应该为偶数,而实际上A的度数是3为奇数,于是可知从A出发是无解的。同时若从B或D出发,由于B、D的度数分别是5、3,都是奇数,即以之为起点都是无解的。   有上述理由可知,对于所抽象出的数学问题是无解的,即“七桥问题”也是无解的。   由此我们得到:欧拉回路关系   由此我们可知要使得一个图形可以一笔画,必须满足如下两个条件:   1. 图形必须是连通的。   2. 途中的“奇点”个数是0或2.   我们也可以依此来检验图形是不是可一笔画出。回头也可以由此来判断“七桥问题”,4个点全是奇点,可知图不能“一笔画出”,也就是不存在不重复地通过所有七桥。   欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。这种研究方法就是“数学模型方法”。这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的关键。   1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报 七桥问题
告中,阐述了他的解题方法。他的巧解,为后来的数学新分支——拓扑学的建立奠定了基础。   七桥问题和欧拉定理。欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题,而且得到并证明了更为广泛的有关一笔画的三条结论,人们通常称之为 加里宁格勒地理
欧拉定理。对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路。人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路。具有欧拉回路的图叫做欧拉图。

18世纪,在哥尼斯堡城风景秀美的普莱格尔河上有7座别致的拱桥,将河中的两个岛和河岸连结(如下图)。

城中的居民经常沿河过桥散步。城中有位青年很聪明,爱思考,有一天,这位青年给大家提出了这样一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。这就是举世闻名的七桥问题,当时的人们始终没有能找到答案。

大数学家欧拉从朋友那里听到这个问题,很快便证明了这样的走法不存在。欧拉是这样解决问题的:把图中被河隔开的陆地看成A、B、C、D4个点,7座桥表示成7条连接这4个点的线,思考过程如下图:

伟大的数学家欧拉,睿智地把这样一个实际问题抽象成了一个由点线组成的简单的几何图形,把要解决的问题转化成图(二)的一笔画问题了。这样一个抽象化的过程是欧拉解决这个问题时最精彩的思考,也是最值得我们学习的地方。因为图(二)不能一笔画成,所以人们不能一次走遍7座桥。1736年,欧拉把这题的结果发表在圣彼得堡科学院学报上,欧拉对“七桥问题”的研究是图论研究的开始,可以说,正是这个问题的研究使其成为“图论”的鼻祖。

那么欧拉是如何判断图(二)不可以一笔画成呢?为了便于大家看懂,结合这个例子,我用自己的语言来说明一下一笔画问题的解题思路:这个图形中共有4个点7条线,每个点都是若干条路线的公共端点。如果一个点是偶数条线的公共端点,我们称这个点为双数点(或偶点);如果一个点是奇数条线的公共端点,我们称这个点为单数点(或奇点)。图(二)中A点是5条线的公共端点,B、C、D点都是3条线的公共端点,因此图(二)有4个奇点。一般,我们把起笔的点称为起点,停笔的点称为终点,其它的点称为路过点。显然一笔画图形中所有路过点如果有进去的线就必须有出来的线,从而每个点连接的线数必须有偶数个才能完成一笔画,如果路过点中出现奇点,必然就会出现没有走过的路线或重复路线。因此在一笔画图形中,只有起点和终点可以是奇点(起点可以只出不进,终点可以最后进这个点就不出了),也就是说最多只能有两个奇点,以一个奇点为起点,另一个奇点为终点。因为图(二)有4个奇点,因此图(二)不能一笔画成。

另外两点说明:

一、一笔画图形中所有的线必须是连续的,因为笔不离纸,如果一个图形由两个断开的部分组成,肯定不能一笔画。例如“国”这个字就不能一笔写出来。

二、一笔画图形中的奇点都是成对出现的(因为每条线都有两个端点,所有线的端点和是偶数),图形中没有奇点,都是偶点时,可以一笔画成,但起点和终点必须选择同一点。

结合以上说明,解决一笔画问题,第一步是找出图中所有点,判断其是奇点还是偶点;第二步是根据奇点的个数作出正确的判断;第三步是让孩子用铅笔试着画一画,验证自己的判断。赞同981| 评论(6)

此题无解

此题无解,参见http://baike.baidu.com/view/142962.htm#sub142962


六年级数学下册书的目录是什么啊!!!
一、 单元安排和主要内容 本册教科书是小学阶段的最后一册,共安排六个单元,除“数与代数”、“空间与图形”、“统计与概率”、“综合应用”四个领域的内容外,还安排了“回顾与整理、综合应用两个单元。单元安排和主要内容如下。●第一单元——方向与位置 根据方向和距离确定物体的位置,用数对表示...

青岛版五年级下册数学新课堂95到103的答案
一、填空 答案:二、选择 答案:三、判断 答案:

新版教科书四年级\/4年级下册数学(人教)人民教育出版社47页答案_百度知...
如图

五年级下册数学 <三级训练 95 页的第6题和智慧屋答案
6、答:菊花占四分之一,玫瑰占三分之一,一串红占十二分之一。360÷360=1(m的平方)菊:1×90=90(m的平方)玫:1×120=120(m的平方)一串红:1×150=150(m的平方)答:菊花占90m的平方,玫瑰占120m的平方,一串红占150m的平方。智慧屋:2×2×3.14 =4×3.14 =12.56(cm的...

四年级下册数学《平均数与条形统计图》教案
数学是研究现实世界空间形式和数量关系的一门科学。分为初等数学和高等数学。以下是我为大家精心整理的“四年级下册数学《平均数与条形统计图》教案”,欢迎大家阅读,供您参考。更多详请关注! 四年级下册数学《平均数与条形统计图》教案(一) 一、单元教学内容 平均数与条形统计图 二、单元教学目标 1、理解平均...

五年级下册数学书一百以内的合数有哪些
100以内的合数是:4、6、8、9、10、12、14、15、16、18、20、21、22、24、25、26、27、28、30、32、33、34、35、36、38、39、40、42、44、45、46、48、49、50、51、52、54、55、56、57、58、60、62、63、64、65、66、68、69、70、72、74、75、76、77、78、80、81、82、84、...

从数学书五年级下册第14页学到什么?
人教版五年级下册数学书14页主要学习分数的乘法。通过例题可以知道人心脏跳动的次数随年龄增长而减慢。婴儿心跳次数=75十75X4\/5=135次

义务教育教科书,四年级下册(数学)第16页第六题这个题要怎么做呀!_百度...
能看明白不?没制图软件 不然给你画个机械图 今天无意看到以前这个回答了 竟然还有这么多人踩😂正好在工地 给摆了一个实物图

小学一年级数学书上下册99页拼图形题怎么拼?
作为教研组长,我也深感课程建设迫在眉睫,虽然之前也一直在做,但是总感觉丈二和尚摸不着头脑。疫情期间正好在家工作,有一些闲杂时间。我就研读了张燕丽老师主编的《数学学科课程群》,书中介绍了一些好的数学课程。受此启发,数学团队的老师们也决心大干一场。疫情减缓后的新学习数学学科的课程建设全面...

六年级下册数学书上的练习九答案(人教版新课标,网址也行)高分在线等快...
六年级下册数学书上的练习九答案(人教版新课标,网址也行)高分在线等快! 100 六年级下册数学书上的练习九答案(人教版新课标,网址也行)我要答案,我有书!快啊!... 六年级下册数学书上的练习九答案(人教版新课标,网址也行)我要答案,我有书!快啊! 展开  我来答 5个回答 #热议# 哪些癌症可能会遗传...

包河区17012585970: 七桥问题是不是真的无解?六年级数学下册95页里的七桥问题我想了好几年,页无法解,是真的无解吗? -
茆烁祺尔:[答案] 是的,“七桥问题”是无解的.这是一笔画问题. 要使得一个图形可以一笔画,必须满足如下两个条件: 1.图形必须是连通的. 2.途中的“奇点”个数是0或2.

包河区17012585970: 七桥问题答案 -
茆烁祺尔: 七桥问题Seven Bridges Problem著名古典数学问题之一.在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图).问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研...

包河区17012585970: 七桥问题的解是怎样的?有一道题是这样的:一个步行者怎样才能不重复、不遗漏地依次走完七座桥,最后回到出发点.这是六年级下册95页的“你知道吗?... -
茆烁祺尔:[答案] 七桥问题无解.著名古典数学问题之一.在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图).问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了...

包河区17012585970: 六年级下册数学95页七桥问题怎么解? -
茆烁祺尔: 3题(1)多边形内角和=(边数-2)*180° (2)(9-2)*180°=1260° 七桥问题:如果每座桥只能走一次,那么除了起点以外,当一个人由一座桥走到一块陆地时,这个人必须从另外一座桥离开这块陆地.那么对每块陆地来说,有一座进入的桥就应该对应一座离开的桥.那么在每一块陆地连接的桥数应该为偶数.但七桥连出来是奇数,所以一个人不能一次走完七座桥

包河区17012585970: 小学六年级数学下册“七桥问题”如何一笔画问题古时有一个城市,中间有一条河分成两半,河中有两个小岛用七座桥把两边陆地和小岛相连,其中A岛有四... -
茆烁祺尔:[答案] 这个问题看似简单,然而许多人作过尝试始终没有能找到答案.因此,一群大学生就写信给当时年仅20岁的大数学家欧拉,请他分析一下.欧拉从千百人次的失败中,以深邃的洞察力猜想,也许根本不可能不重复地一次走遍这七座桥.为了证明这种猜想...

包河区17012585970: 小学六年级数学下册95页"七桥问题"怎么解
茆烁祺尔: 除了起点和终点之外,我们把其余的点称为中间点.如果一个图可以一笔画的话,对于每一个中间点来说,当画笔沿某条线到达这一点时,必定要沿另一条线离开这点,并且进入这点几次,就要离开这点几次,一进一出,两两配对,所以从这点发出的线必然要是偶数条.因此,一个图形能否一笔画就有了一个判别准则: 一个可以一笔画的图形最多只能有两个点(起点和终点)与奇数条线相连. 根据这一判别准则,是不能一笔画的. 从而证明了七桥问题所要求的走法是不存在的.是人教版的书吧!我的答案是正确的

包河区17012585970: 七桥问题是不是真的无解? -
茆烁祺尔: 是的,“七桥问题”是无解的.这是一笔画问题. 要使得一个图形可以一笔画,必须满足如下两个条件: 1. 图形必须是连通的. 2. 途中的“奇点”个数是0或2.

包河区17012585970: 六年级下册数学书第95页的练习18的七桥问题 -
茆烁祺尔: 看吧http://baike.baidu.com/view/142962.html?wtp=tt

包河区17012585970: 人教版新课标小学六年级数学【下】【七桥问题】怎样走:一个步行者怎样才能不重复、不遗漏地走完七桥,回到出发点 -
茆烁祺尔: 不能做到. 将河岸抽象成点(共四个),将桥抽象成线(共七条),连接后可知每个点都有奇数条线与其相连(这种点叫做“奇点”),当“奇点”数超过两个,该图形就不能一笔画成. 只有全“偶点”图才能做到从一点出发,不重复的走完每条线后再回到出发点.

包河区17012585970: 人教版,小学六年级数学下册,95页,七桥问题,是不是不可能每个只走一次?
茆烁祺尔: 可能吧

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网