核磁共振的化学位移

作者&投稿:载戴 (若有异议请与网页底部的电邮联系)
核磁共振的质子化学位移~

由于不同类型的质子化学位移不同,因此化学位移值对于分辨各类质子是重要的,而确定质子类型对于阐明分子结构是十分有意义的。下表列出了一些特征质子的化学位移,表中黑体字的H是要研究的质子。 特征质子的化学位移质子的类型 化学位移 质子的类型 化学位移 RCH3 0.9 ArOH 4.5-4.7(分子内缔合10.5~16) R2CH2 1.3 R3CH 1.5 R2C=CR—OH 15~19(分子内缔合) 0.22 RCH2OH 3.4~4 R2C=CH2 4.5~5.9 ROCH3 3.5~4 R2C=CRH 5.3 RCHO 9~10 R2C=CR—CH3 1.7 RCOCR2—H 2~2.7 RC≡CH 7~3.5 HCR2COOH 2~2.6 ArCR2—H 2.2~3 R2CHCOOR 2~2.2 RCH2F 4~4.5 RCOOCH3 3.7~4 RCH2Cl 3~4 RC≡CCOCH3 2~3 RCH2Br 3.5~4 RNH2或R2NH 0.5~5(峰不尖锐,常呈馒头形) RCH2I 3.2~4 ROH 0.5~5.5(温度、溶剂、浓度改变时影响很大) RCONRH或ArCONRH 5~9.4 甲烷氢的化学位移值为0.23,其它开链烷烃中,一级质子在高场δ≈0.91处出现,二级质子移向低场在δ≈1.33处出现,三级质子移向更低场在δ≈1.5处出现。例如: 烷烃 CH4 CH3—CH3 CH3—CH2—CH3 (CH3)3CH δ 0.23 0.86 0.86 0.91 1.33 0.91 0.86 1.50 甲基峰一般具有比较明显的特征,亚甲基峰和次甲基峰没有明显的特征,而且常呈很复杂的峰形,不易辨认。当分子中引人其它官能团后,甲基、次甲基及亚甲基的化学位移会发生变化,但其δ值极少超出0.7~4-5这一范围。环烷烃能以不同构象形式存在,未被取代的环烷烃处在一确定的构象中时,由于碳碳单键的 各向异性屏蔽作用,不同氢的δ值略有差异。例如,在环己烷的椅型构象中,由于C-I上的平伏键氢处于C⑵ — C⑶键及C⑸ — C⑹键的去屏蔽区,而C-I上的直立键氢不处在去屏蔽区,(图环己烷的各向异性屏蔽效应)。所以平伏键氢比直立键氢的化学位移略高0.2~0.5。在低温(-100℃)构象固定时,NMR谱图上可以清晰地看出两个吸收峰,一个代表直立键氢,一个代表平伏键氢。但在常温下,由于构象的迅速转换(图环己烷构象的转换),一般只看到一个吸收峰(见右图)。其它未取代的环烷烃在常温下也只有一个吸收峰。环丙烷的δ值为0.22,环丁烷的δ值为1.96,别的环烷烃的δ值在1.5左右。取代环烷烃中,环上不同的氢有不同的化学位移,它们的图谱有时呈比较复杂的峰形,不易辨认。 酯中烷基上的质子RCOOCH2R的化学位移δH=3.7~4。酰胺中氮上的质子RCONHR 的化学位移,一般在δ= 5~9.4之间,往往不能给出一个尖锐的峰。羰基或氮基附近α碳上的质子具有类似的化学位移= 2~3,例如,CH3COCl δH=2.67,CH3COOCH3 δH=2.03, RCH2COOCH3 δH=2.13,CH3CONH2 δH= 2.08,RCH2CONH2 δH=2.23,CH3CN δH=1.98,RCH2CN δH=2.30。 醇的核磁共振谱的特点参见后文。醚α-H的化学位移约在3.54附近。酚羟基氢的核磁共振的δ值很不固定,受温度、浓度、溶剂的影响很大,只能列出它的大致范 围。一般酚羟基氢的δ值在4~8范围内,发生分子内缔合的酚羟基氢的δ值在10.5~16范 围内。羧酸H的化学位移在2~2.6之间。羧酸中羧基的质子由于受两个氧的吸电子作用,屏 蔽大大降低,化学位移在低场。R2CHCOOH δH=10~12。胺中,氮上质子一般不容易鉴定,由于氢键程度不同,改变很大,有时N— H和C一H质子 的化学位移非常接近,所以不容易辨认。一般情况在α-H δH=2.7~3.1,β-H δ=1.1~1.71。N-H δ=0.5~5,RNH2,R2NH的δ值的大致范围在0.4~3.5,ArNH2,ArzNH,ArNHR的δ值的大 致范围在2.9~4.8之间。

以TMS的峰为基准,从右往左看,测量峰与TMS峰的间距就是该峰的化学位移

氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信 息,可以推测质子在碳胳上的位置。
根据前面讨论的基本原理,在某一照射频率下,只能在某一磁感应强度下发生核磁共振。例如:照射频率为60 MHz,磁感应强度是 14.092 Gs(14.092×10^-4 T),100 MHz—23.486 Gs(23.486×10^-4 T),200 MHz—46.973 Gs(46.973×10^-4 T)。600 MHz—140.920 Gs(140.920×10^-4 T)。但实验证明:当1H在分子中所处化学环境(化学环境是指1H的核外电子以及与1H 邻近的其它原子核的核外电子的运动情况)不同时,即使在相同照射频率下,也将在不同的共振磁场下显示吸收峰。下图是乙酸乙酯的核磁共振图谱,图谱表明:乙酸乙酯中的8个氢,由 于分别处在a,b,c三种不同的化学环境中,因此在三个不同的共振磁场下显示吸收峰。同种核由于在分子中的化学环境不同而在不同共振磁感应强度下显示吸收峰,这称为化学位移(chemical shift)。 化学位移是怎样产生的?分子中磁性核不是完全裸露的,质子被价电子包围着。这些电子 在外界磁场的作用下发生循环的流动,会产生一个感应的磁场,感应磁场应与外界磁场相反(楞次定律),所以,质子实际上感受到的有效磁感应强度应是外磁场感应强度减去感应磁场强度。即
B有效=B0(1-σ)=B0-B0σ=B0-B感应
外电子对核产生的这作用称为屏蔽效应(shielding effect),也叫抗磁屏蔽效应(diamagnetic effect)。称为屏蔽常数(shielding constant)。与屏蔽较少的质子比较,屏蔽多的质子对外磁场感受较少,将在较高的外磁场B0作用下才能发生共振吸收。由于磁力线是闭合的,因此感应磁 场在某些区域与外磁场的方向一致,处于这些区域的质子实际上感受到的有效磁场应是外磁场B0加上感应磁场B感应。这种作用称为去屏蔽效应(deshielding effect)。也称为顺磁去屏蔽效应(paramagnetic effect)。受去屏蔽效应影响的质子在较低外磁场B0作用下就能发生共振吸收。综上所述:质子发生核磁共振实际上应满足:
ν射=γB有效/2π
因在相同频率电磁辐射波的照射下,不同化学环境的质子受的屏蔽效应各不相同,因此它们发生 核磁共振所需的外磁场B0也各不相同,即发生了化学位移。
对1H化学位移产生主要影响的是局部屏蔽效应和远程屏蔽效应。核外成键电子的电子云 密度对该核产生的屏蔽作用称为局部屏蔽效应。分子中其它原子和基团的核外电子对所研究的 原子核产生的屏蔽作用称为远程屏蔽效应。远程屏蔽效应是各向异性的。 化学位移的差别约为百万分之十,要精确测定其数值十分困难。现采用相对数值表示法,即选用一个标准物质,以该标准物的共振吸收峰所处位置为零点,其它吸收峰的化学位移值根据这 些吸收峰的位置与零点的距离来确定。最常用的标准物质是四甲基硅(CH3)4Si简称TMS。选TMS为标准物是因为:TMS中的四个甲基对称分布,因此所有氢都处在相 同的化学环境中,它们只有一个锐利的吸收峰。另外,TMS的屏蔽效应很高,共振吸收在高场出现,而且吸收峰的位置处在一般有机物中的质子不发生吸收的区域内。现规定化学位移用δ来 表示,四甲基硅吸收峰的δ值为零,其峰右边的δ值为负,左边的δ值为正。测定时,可把标准物与样品放在一起配成溶液,这称为内标准法。也可将标准物用毛细管封闭后放人样品溶液中进 行测定,这称为外标准法。此外,还可以利用溶剂峰来确定待测样品各个峰的化学位移。
由于感应磁场与外磁场的B0成正比,所以屏蔽作用引起的化学位移也与外加磁场B0成正 比。在实际测定工作中,为了避免因采用不同磁感应强度的核磁共振仪而引起化学位移的变化,δ一般都应用相对值来表示,其定义为
δ=(ν样-ν标)/ν仪×10^6 ④
在式④中,ν样和ν标分别代表样品和标准化合物的共振频率,ν仪为操作仪器选用的频率。多数有机物的质子信号发生在0~10处,零是高场,10是低场。 需注意也有一些质子的信号是在小于0的地方出现的。如安扭烯的环内的质子,受到其外芳环磁各向异性的影响,甚至可以达到-2.99。此外,在不同兆数的仪器中,化学位移的值是相同的。 化学位移取决于核外电子云密度,因此影响电子云密度的各种因素都对化学位移有影响,影 响最大的是电负性和各向异性效应。
⑴电负性(诱导效应)
电负性对化学位移的影响可概述为:电负性大的原子(或基团)吸电子能力强,1H核附近的吸电子基团使质子峰向低场移(左移),给电子基闭使质子峰向高场移(右移)。这是因为吸电子基团降低了氢核周围的电子云密度,屏蔽效应也就随之降低,所以质子的化学位 移向低场移动。给电子基团增加了氢核周围的电子云密度,屏蔽效应也就随之增加,所以质子的 化学位移向高场移动。下面是一些实例。
实例一: 电负性 C 2.6 N 3.0 O 3.5 δ C—CH3(0.77~1.88) N—CH3(2.12~3.10) O—CH3(3.24~4.02) 实例二: 电负性 Cl 3.1 Br 2.9 I 2.6 δ CH3—Cl(3.05)
CH2—Cl2(5.30)
CH—Cl3(7.27) CH3—Br(2.68) CH3—I(2.16) 电负性对化学位移的影响是通过化学键起作用的,它产生的屏蔽效应属于局部屏蔽效应。
⑵各向异性效应
当分子中某些基团的电子云排布不呈球形对称时,它对邻近的1H核产 生一个各向异性的磁场,从而使某些空间位置上的核受屏蔽,而另一些空间位置上的核去屏蔽, 这一现象称为各向异性效应(anisotropic effect)。
除电负性和各向异性的影响外,氢键、溶剂效应、van der Waals效应也对化学位移有影响。氢键对羟基质子化学位移的影响与氢键的强弱及氢键的电子给予体的性质有关,在大多数情况 下,氢键产生去屏蔽效应,使1H的δ值移向低场。有时同一种样品使用不同的溶剂也会使化学位移值发生变化,这称为溶剂效应。活泼氢的溶剂效应比较明显。
当取代基与共振核之间的距离小于van der Waals半径时,取代基周围的电子云与共振核周围的电子云就互相排 斥,结果使共振核周围的电子云密度降低,使质子受到的屏蔽效应明显下降,质子峰向低场移动,这称为van der Waals效应。氢键的影响、溶剂效应、van der Waals效应在剖析NMR图谱时很有用。
(3)共轭效应
苯环上的氢若被推电子基取代,由于P-π共轭,使苯环电子云密度增大,质子峰向高场位移。而当有拉电子取代基则反之。对于双键等体系也有类似的效果。




试简述化学位移、自旋-自旋劈裂在磁共振谱中位置不同的机制。
【答案】:(1)化学位移:在相同条件下测得相同原子核的磁共振谱,由于原子的化合结合状态不同而产生的谱线位置偏移现象,叫做化学位移。(2)自旋-自旋劈裂:磁共振谱中吸收峰由于基团间核自旋磁矩的相互作用而分裂为多重线的现象叫做自旋-自旋劈裂。

核磁共振谱图中,去屏蔽作用越强,化学位移是越大吗?
元素的电负性越大,去屏蔽效应越大,氢核的化学位移δ值越大。从连续波核磁共振波谱发展为脉冲傅立叶变换波谱,从传统一维谱到多维谱,技术不断发展,应用领域也越广泛。核磁共振技术在有机分子结构测定中扮演了非常重要的角色,核磁共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”...

化学位移在70左右是什么
CH4 -2.68醚的α碳。化学上规定,CH4 -2.68 醚的α碳化学位移70~85,炔碳原子则在其它区域出峰,其化学位移值范围为70-100,所以化学位移在70是CH4 -2.68 醚的α碳。化学位移是磁共振成像中很多成像序列的基础。

固体C核磁共振研究
一种核在分子中由于所处的化学结构环境不同,它们的磁共振频率也不同,因而它们共振的谱线出现在谱图的不同化学位移上,这是利用核磁共振谱研究不同有机物质化学结构特征的基本原理。据已有研究成果,煤的13NMR谱中化学位移的结构归属见表7-4,其中0~75×10-6为脂族碳结构,且脂碳中的甲基(14×...

化学位移伪影名词解释
化学位移伪影是指由于化学位移现象导致的图像伪影。由于化学位移现象,脂肪中的质子与水中的质子进动频率存在差异,在影像上表现为脂肪与水的界面上出现黑色和白色条状或月牙状的阴影。常发生在频率编码方向上,随着静磁场强度增加,伪影表现严重。已知总接收带宽和频率编码步数,化移伪影的大小是可以预估的。

磁共振原理如何通俗讲解?
耦合常数是化学位移之外核磁共振谱提供的的另一个重要信息,所谓耦合指的是临近原子核自旋角动量的相互影响;这种原子核自旋角动量的相互作用会改变原子核自旋在外磁场中进动的能级分布状况,造成能级的裂分,进而造成NMR谱图中的信号峰形状发生变化,通过解析这些峰形的变化,可以推测出分子结构中各原子之间...

磁共振成像的 dit及dis是什么意思
dit: dissemination in time 中文为 传播时间 dis: dissemination in space中文为 传播空间 附:磁共振专业词汇常用中英对照 磁场: magnetic field 自旋磁矩: spin precessing 旋转坐标系: rotating frame of reference 射场 RF field 射频脉冲 RF pulse 磁化强度矢量 magnetic field vector 横向...

核磁共振的原理是什么?
核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系。原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。当自旋核(spin nuclear)...

磁共振的化学位移伪影和场强的大小有没有关系?如果有,是什么关系?_百度...
场强越高……化学位移伪影越明显

核磁共振原理?
检测器和放大器用来检测和放大共振信号。记录仪将共振信号绘制成共振图谱。 70年代中期出现了脉冲傅里叶核磁共振仪,它的出现使13C核磁共振的研究得以迅速开展。氢 谱 氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信息,可以推测质子在碳胳上的位置。

塔河县19513387811: 怎样看核磁共振中氢谱中的化学位移? -
丙帘氧氟:[答案] 氢谱在核磁共振内有一个峰值,其出现化学位移是因为连接的官能团的影响,极性官能团与非极性官能团对氢谱的影响是一向左移,一向右移.自己根据这个再找几个核磁共振谱对照一下就非常明白了.

塔河县19513387811: 化学位移是什么意思 -
丙帘氧氟: 化学位移是用核磁共振仪可以记录到有关信号,处在不同化学环境中的氢原子因产生共振时吸收电磁波的频率不同,在谱图上出现的位置也不同,各类氢原子的这种差异被称为化学位移.

塔河县19513387811: 核磁共振的化学位移是什么?
丙帘氧氟: [2]需注意也有一些质子的信号是在小于0的地方出现的

塔河县19513387811: 核磁共振中的屏蔽效应和化学位移麻烦大侠给解释下看书中遇到 核磁共振这一张里的 屏蔽效应和化学位移 不太明白请解释下 -
丙帘氧氟:[答案] 当核自旋时,核周围的云也随之转动,在外磁场作用下,会感应产生一个与外加磁场方向相反的次级磁场,使外磁场减弱,这种作用称为屏蔽效应.由于氢核具有不同的屏蔽常数σ,引起外磁场或共振频率的移动这种现象称为化学位移....

塔河县19513387811: 关于核磁共振中化学位移的问题是不是化学位移δ值(以四甲基硅烷为标准物)越大,表示屏蔽效应越弱? -
丙帘氧氟:[答案] 是的,化学位移值反映了分子结构的状态.质子受屏蔽后,吸收峰由低场区向高场区移动,具有较低的化学位移值;质子去屏蔽后,吸收峰由高场区向低场区移动,具有较高的化学位移值.

塔河县19513387811: 什么是化学位移,影响化学位移的因素有哪些.简述自旋 -
丙帘氧氟: 化学位移是核磁共振中的一种术语,是化学环境所引起的核磁共振信号位置的变化,具体是用数字来进行表达(相对的,通常使用四甲基硅烷作为基准).如果你是大学生,有空去帮师兄师姐做做实验你就会很了解,核磁共振是化合物结构解析的常用手段. 影响因素有: 内因:有吸电子基团的向低场移动(因为屏蔽作用减少,弛豫所需的外磁场强度可以不用很高);共轭效应的向低场移动(如苯环上的H向低场移动);还有就是各向异构引起的,比如苯环的上方空间(不是苯环上)的H向高产移动,三键的键方向的向高产移动,双建上方的H向高产移动.这些有机化学的课本上都有,注意分类,别弄混淆. 外因:溶剂,温度(低温的时候有的单峰肯能会列分成双峰,如DMF的).

塔河县19513387811: 如何理解核磁共振的化学位移?
丙帘氧氟: 核磁共振表示方法化学位移的差别约为百万分之十,要精确测定其数值十分困难

塔河县19513387811: 核磁共振上,常用溶剂的化学位移值是多少 -
丙帘氧氟:[答案] 附件是常见溶剂的化学位移

塔河县19513387811: 化学核磁共振氢谱位移是什么意思? -
丙帘氧氟: 氢原子在分子中的化学环境不同,而显示出不同的吸收峰,峰与峰之间的差距被称作化学位移;化学位移的大小,可采用一个标准化合物为原点,测出峰与原点的距离,就是该峰的化学位移,现在一般采用(CH3)4Si(四甲基硅烷TMS)为标准化合物,其化学位移值为0 ppm. 处在不同环境中的氢原子因产生共振时吸收电磁波的频率不同,在图谱上出现的位置也不同,利用化学位移,峰面积和积分值以及耦合常数等信息,进而推测其在碳骨架上的位置.

塔河县19513387811: 关于核磁共振中化学位移的问题是不是化学位移δ值( -
丙帘氧氟: 表示的是谱图偏离正常位置的大小,是由于外界磁场和内部因素共同导致的接受的真实频率小,化学位移减小,向高场移动

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网