细胞自噬研究策略

作者&投稿:除忽 (若有异议请与网页底部的电邮联系)
~

医学科研实验基础知识笔记(四):细胞自噬研究策略

细胞自噬是指细胞在外界环境因素的影响下, 细胞利用溶酶体降解自身受损、 变性或衰老的大分子物质以及细胞器的自我消化过程。自噬是细胞的一种自我保护机制, 广泛存在于真核细胞内, 在调节细胞生存和死亡的过程中, 起着重要的作用。

当细胞发生自噬后, 在自噬相关基因的调节下, 细胞通过单层或双层膜, 包裹待降解的细胞质或细胞器, 形成囊泡状的自噬体(autophagosome) 。然后自噬体再和溶酶体(lysosome)

发生融合形成自噬溶酶体(autolysosome) , 由溶酶体内的一系列水解酶, 降解自噬溶酶体内所包裹的内容物, 以实现细胞对自身代谢和能量的更新。

1.自噬的细胞学分类及过程

根据细胞内物质运输到溶酶体的方式以及生理功能的差异, 哺乳动物的细胞自噬可以分为三种类型:大自噬/宏自噬(macroautophagy) , 小自噬/微自噬(microautophagy) 和分子伴侣介导的自噬(chaperone-mediated autophagy, CMA) 。

1) 大自噬/宏自噬:我们通常所说的自噬指的就是大自噬/宏自噬。在大自噬的过程中, 细胞质中可溶性的大分子物质以及变性的细胞器, 被内质网、 线粒体来源的单层或双层膜包裹形成自噬体。接着自噬体的外膜与溶酶体膜融合, 进一步形成自噬溶酶体, 自噬体内的待降解物被一系列的水解酶降解, 最终完成整个的自噬过程。

2) 小自噬/微自噬:与大自噬过程不同, 是溶酶体膜自身发生内陷, 包裹和吞噬细胞内待降解的底物, 并在溶酶体内发生降解。小自噬与大自噬的区别就在于, 在小自噬过程中胞质成份是直接被溶酶体包裹, 没有形成自噬体的过程。

3) 分子伴侣介导的自噬:在分子伴侣介导发生的自噬过程中, 其待降解的底物都是可溶性的蛋白质分子。分子伴侣蛋白识别带有特定氨基酸序列的底物蛋白质分子, 并与之结合, 然后再经溶酶体膜上的受体 Lamp2a(lysosome-associated membrane protein 2, Lamp2) 转运到溶酶体;底物蛋白分子再在溶酶体内, 被水解酶降解。因此, 分子伴侣介导的自噬与前两者不同, 在降解蛋白时具有选择性。而大自噬和小自噬现象中, 一般而言, 在降解蛋白时没有明显的选择性。

2.自噬信号通路

3.自噬与凋亡的关系

细胞凋亡也被称为 I 型程序性细胞死亡;自噬则被称为 II 型程序性细胞死亡。凋亡和自噬是两种显著不同的细胞死亡形式, 两者在形态、 生化指标以及调控细胞死亡的过程上都存在着较大的差异, 但两者又不是两个完全独立的过程。许多研究表明, 凋亡和自噬的作用以及功能在某些情况下也是相互影响和制约的。自噬和凋亡之间存在着三种不同类型的相互作用,而且每种类型都对应着相应的特定的细胞类型、 刺激和环境。

1) 自噬和凋亡互相协同, 共同促进细胞死亡。两种效应之间, 可以其中一种效应影响另一种效应;自噬也可以作为凋亡的上游调节因子, 直接调控细胞凋亡, 从而影响细胞的死亡;

2) 自噬可以通过促进细胞存活而拮抗细胞的凋亡效应。比如, 可以通过去除因氧化应激受损的细胞器, 或降解变性的大分子物质, 为饥饿的细胞提供生存所需要的营养和能量;或者通过降解未折叠的蛋白来抑制内质网应激。自噬的这些功能将会抑制促凋亡信号的产生, 从而起到拮抗细胞凋亡的作用。

3) 自噬有时虽然自身并没有导致细胞死亡, 但却参与了细胞凋亡的过程。比如自噬参与了一些 ATP 依赖的凋亡过程。

4.自噬的分子机制和特征

1) 自噬诱导阶段(induction) :正常生理状态下, 细胞保持很低的基础自噬水平。这时细胞内能量充足,哺乳动物雷帕霉素靶蛋白复合物 1(也就是 mTOR 复合物 1,也叫做 mTORC1)处于活化的状态。活化的 mTORC1 通过磷酸化的方式使得 ATG13 发生磷酸化反应, 从而抑制细胞的自噬。

2) 成核过程(vesicle nucleation) :成核过程和 Vps34-ATG6 复合物密切相关。这个复合物还包含有调节性蛋白激酶 Vps15, 共同作用于膜泡的成核, 介导 PAS(也就是前自噬体结构pre-autophagosomal structure)的形成。

Vps34-ATG6 复合体还可以召集 ATG12-ATG5 和 ATG16 多聚体以及 LC3, 并通过后两者促进吞噬泡的伸展扩张。请大家注意, Vps34 在哺乳动物中的同源蛋白是 class III PI3K;ATG6在哺乳动物中的同源蛋白是 Beclin-1, 所以 Vps34-ATG6 复合体, 也被称为 PI3K-Beclin-1复合物。

3) 自噬体的延伸阶段:这个过程的分子机制是最为复杂的。哺乳动物自噬体的延伸主要依赖于两个类泛素化的系统:a) ATG12 的结合过程;b) LC3 的修饰过程。

ATG12 的结合过程是类似泛素化的过程, 需泛素活化酶 E1 和 E2 的参与。ATG12 首先由 E1样酶 ATG7 活化, 再通过 E2 样酶 ATG10 转运并结合 ATG5, 然后和 ATG16 结合, 生成ATG12-ATG5-ATG16 的多体复合物。这个复合物定位于前自噬体结构的外膜表面, 并参与前自噬体外膜的扩张。

LC3 在酵母中的同源基因是 ATG8。LC3 的修饰过程同样需要类似泛素活化酶 E1 和 E2 的参与。LC3 前体形成后被 ATG4 加工成胞浆可溶性的 LC3-Ⅰ, 然后在 E1 样酶 ATG7 和 E2样酶 ATG3 的作用下, 和磷脂酰乙醇胺(PE)共价连接成为脂溶性的 LC3-PE(也就是 LC3-II),并参与膜的延伸。LC3-Ⅱ能够与新形成的膜结合, 直到自噬溶酶体(Autolysosome)的形成。因此, LC3-Ⅱ常用作自噬形成的标识物, 也是一种重要的定位于自噬泡膜上的多信号传导调节蛋白。

哺乳动物的 ATG12-ATG5 类泛素化过程和 LC3 类泛素化过程并不是独立运行的, 它们之间可以相互作用、 相互调节。

4) 自噬体的成熟阶段:自噬体的成熟主要是指自噬体通过微管骨架在转运必须内吞体分类复合物(ESCRT)和单体 GTP 酶(Rab S)作用下, 与溶酶体融合形成自噬溶酶体的过程。参与成熟阶段的溶酶体相关蛋白还包括:LAMP1、 LAMP2、 UVRAG(紫外线抵抗相关肿瘤抑制基因)。

5) 自噬体的裂解阶段:是指自噬溶酶体膜的裂解及内容物在溶酶体水解酶的作用下降解的过程。降解过程中产生的氨基酸及部分蛋白可以为细胞提供营养、 能量或循环利用。

5.自噬诱导剂

a) Bredeldin A / Thapsigargin / Tunicamycin :模拟内质网应激

b) Carbamazepine/ L-690,330/ Lithium Chloride(氯化锂):IMPase 抑制剂(即Inositol monophosphatase,肌醇单磷酸酶)

c) Earle's平衡盐溶液:制造饥饿

d) N-Acetyl-D-sphingosine(C2-ceramide):Class I PI3K Pathway抑制剂

e) Rapamycin:mTOR抑制剂

f) Xestospongin B/C:IP3R阻滞剂

6.自噬抑制剂

a) 3-Methyladenine(3-MA):(Class III PI3K) hVps34 抑制剂

b) Bafilomycin A1:质子泵抑制剂

c) Hydroxychloroquine(羟氯喹)

除了选用上述工具药外,一般还需结合遗传学技术对自噬相关基因进行干预:包括反义RNA干扰技术(Knockdown)、突变株筛选、外源基因导入等。

7.自噬的检测手段

自噬的评估通常采用多个自噬阶段的标志物,因为自噬小体数量的增加可能是自噬上调也可能是自噬最后阶段降解被抑制所致,所以设置合适的对照很有必要。

(1)透射电镜,电镜观察自噬体和溶酶体的超微结构;

(2)WB检测标志物LC3/Atg8和p62/SQSTM1;生化检测自噬体膜标志蛋白, 特别是ATG12、 ATG5 和 LC3;荧光显微镜检测 LC3 或GFP-LC3 斑点的形成;生化检测自噬底物 p62。

(3)WB检测Lamps、Atg5、Atg14和Beclin-1。

(4)组织蛋白酶Cathepsin活力检测。

(5)IF检测自噬潮autophagic flux

自噬过程进行观察和检测 细胞经诱导或抑制后,需对自噬过程进行观察和检测,常用的策略和技术有:

(1)观察自噬体的形成

由于自噬体属于亚细胞结构,普通光镜下看不到,因此,直接观察自噬体需在透射电镜下。Phagophore的特征为:新月状或杯状,双层或多层膜,有包绕胞浆成分的趋势。自噬体(AV1)的特征为:双层或多层膜的液泡状结构,内含胞浆成分,如线粒体、内质网、核糖体等。自噬溶酶体(AV2)的特征为:单层膜,胞浆成分已降解。(autophagic vacuole,AV)

(2)在荧光显微镜下采用GFP-LC3融合蛋白来示踪自噬形成

由于电镜耗时长,不利于监测(Monitoring)自噬形成,人们利用LC3在自噬形成过程中发生聚集的现象开发出了此技术。无自噬时,GFP-LC3融合蛋白弥散在胞浆中;自噬形成时,GFP-LC3融合蛋白转位至自噬体膜,在荧光显微镜下形成多个明亮的绿色荧光斑点,一个斑点相当于一个自噬体,可以通过计数来评价自噬活性的高低。

(3)利用Western Blot检测LC3-II/I比值的变化以评价自噬形成自噬形成时,胞浆型LC3(即LC3-I)会酶解掉一小段多肽,转变为(自噬体)膜型(即LC3-II),因此,LC3-II/I比值的大小可估计自噬水平的高低。

(注意:LC3抗体对LC3-II有更高的亲和力,会造成假阳性。需要多种检测方法结合使用,同时需考虑溶酶体活性的影响。)

(4)检测长寿蛋白的批量降解:非特异

(5)MDC(Monodansylcadaverine,单丹磺酰尸胺)染色:包括自噬体,所有酸性液泡都被染色,故属于非特异性的。

(6)CellTrackerTM Green染色:主要用于双染色,但其能染所有的液泡,故也属于非特异性的。

自噬相关蛋白的定位 在研究自噬相关蛋白时,需对其进行定位。

由于自噬体与溶酶体、线粒体、内质网、高尔基体关系密切,为了区别,常用到一些示踪蛋白在荧光显微镜下来共定位:

Lamp-2:溶酶体膜蛋白,可用于监测自噬体与溶酶体融合。

LysoTrackerTM 探针:有红或蓝色可选,显示所有酸性液泡。

pDsRed2-mito:载体,转染后表达一个融合蛋白(红色荧光蛋白+线粒体基质定位信号),可用来检测线粒体被自噬掉的程度(Mitophagy)。

MitoTraker探针:特异性显示活的线粒体,荧光在经过固定后还能保留。

Hsp60:定位与线粒体基质,细胞死亡时不会被释放。

Calreticulin(钙网织蛋白):内质网腔

(注意:这些蛋白均为胞浆蛋白,爬片或胰酶消化的细胞在做免疫荧光前需先透膜(permeablize),可采用0.1%SDS处理。)

8.自噬研究常规思路

通常情况下,除了研究自噬现象本身,大家更多的是将自噬与各种生命活动或者疾病结合起来,把自噬作为这些方向的一个机制来研究。比如研究自噬如何参与肿瘤的发生发展、如何参与肿瘤的耐药性与复发转移、如何参与肿瘤免疫治疗的效果、如何参与炎症反应、如何参与氧化应激,如何参与自闭症、阿尔兹海默症的发生与治疗等,通常的研究模式:

(1)证明自噬参与了相关研究表型(电镜、LC3II/I-WB、LC3亚细胞定位、LC3荧光示踪监测自噬流等)

(2)证明自噬在表型中起到关键作用(通过自噬抑制剂、激动剂进行关联研究)找到表型与自噬桥梁分子(检测pI3K通路、Beclin-1、ATG家族各成员)

(3)在基因层面通过gain of/lost of function研究桥梁分子在自噬中的作用。

9.研究自噬的文献参考

[1]. Emerging Mechanisms in Initiating and Terminating Autophagy. Trends Biochem Sci. 2017 Jan;42(1):28-41.

[2]. Targeting autophagy in cancer. Nat Rev Cancer. 2017 Sep;17(9):528-542.

[3]. Autophagy: controlling cell fate in rheumatic diseases. Nat Rev Rheumatol. 2016 Sep;12(9):517-31.

[4]. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat Rev Immunol. 2016 Nov;16(11):661-675.

[5]. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron. 2017 Mar 8;93(5):1015-1034.

[6]. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol. 2017 Apr;14(4):247-258.

[7]. Epigenetic Control of Autophagy: Nuclear Events Gain More Attention. Mol Cell.2017 Mar 2;65(5):781-785.

[8]. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov.2017 Jul;16(7):487-511.




细胞自噬研究策略
接着自噬体的外膜与溶酶体膜融合, 进一步形成自噬溶酶体, 自噬体内的待降解物被一系列的水解酶降解, 最终完成整个的自噬过程。 2) 小自噬\/微自噬:与大自噬过程不同, 是溶酶体膜自身发生内陷, 包裹和吞噬细胞内待降解的底物, 并在溶酶体内发生降解。小自噬与大自噬的区别就在于, 在小自噬过程中胞质成份是直接...

自噬的自噬的研究方法
(三)自噬检测方法:细胞经诱导或抑制后,需对自噬过程进行观察和检测,常用的策略和技术有:1)Western Blot检测LC3的切割利用Western Blot检测LC3-II\/I比值的变化以评价自噬形成。自噬形成时,胞浆型LC3会酶解掉一小段多肽形成LC3-I,LC3-I跟PE结合转变为(自噬体)膜型(...

细胞自噬是什么,它为何如此重要?
大隅良典在实验室中,通过改造酵母菌,观察到饥饿状态下液泡内自噬小体的大量积累,这是他确认细胞自噬存在的关键证据。随后,他通过克隆酵母并研究基因突变,发现了控制自噬的第一组基因。这些基因编码的蛋白质参与自噬体的形成和分解过程,揭示了自噬的精细调控机制。自噬机制在人类细胞中的作用 大隅良典的...

自噬研究:浅析
自噬研究基本可以分这样几个层次:1.证明自噬参与了你的研究表型:***western检测LC3,p62;LC3双荧光测细胞自噬流;电镜观测自噬;自噬形成时胞浆型LC3(即LC3-I)会酶解掉一小段多肽,转变为(自噬体)膜型(即LC3-II),LC3-II\/I比值的大小可估计自噬水平的高低。但LC3的抗体会对LC3-II有更高...

细胞自噬是什么?它为何如此重要并引发诺贝尔奖?
大隅良典的研究发现,自噬不仅仅在酵母中存在,也存在于人类细胞中,成为维护细胞功能的重要机制。它在饥饿、压力应对、感染防御、胚胎发育和细胞更新中发挥着关键作用。此外,自噬机制的破坏与帕金森症、糖尿病等疾病相关,甚至可能成为癌症治疗的新靶点。50多年的探索,直到大隅良典的研究揭示了自噬的真正...

细胞自噬与肿瘤?
EZH2催化H3K27三甲基化,影响细胞分化与肿瘤发展,化合物6-9作为EZH2抑制剂,展示了对抗肿瘤潜力的新策略。虽然CARM1催化H3R17二甲基化对自噬的影响尚待深入研究,但SIRT1-hMOF对H4K16乙酰化的调控,要求抑制剂的效力提高,以更好地调节Atg基因表达,这些基因在抗肿瘤进程中扮演核心角色。HDACs(泛素...

细胞自噬现象
三、自噬过程进行观察和检测 细胞经诱导或抑制后,需对自噬过程进行观察和检测,常用的策略和技术有:1、观察自噬体的形成 由于自噬体属于亚细胞结构,普通光镜下看不到,因此,直接观察自噬体需在透射电镜下。Phagophore的特征为:新月状或杯状,双层或多层膜,有包绕胞浆成分的趋势。自噬体(AV1)的...

“细胞自噬”入门级知识合集,看这篇就够了
共同驱动自噬小体的形成和膜封闭,最后通过SNARE蛋白和溶酶体的融合,完成细胞内容物的彻底降解。细胞自噬机制的精妙调控,不仅关乎个体细胞的生存与健康,还与神经退行性疾病、癌症等复杂疾病的发生紧密相关。了解这一基础生物学过程,有助于我们更深入地探索生命活动的奥秘,以及可能的干预策略。

细胞自噬 与细胞活性之间的关系
三、细胞自噬的研究方法 1、自噬体的观察 直接法:直接在透射电镜下观察自噬不同阶段的形态变化 ① 初期,主要特征是成新月状,单层或多层膜 ② 中期:双层或多层的液泡状结构即自噬体结构,内含胞浆成分,如线粒体、内质网等 ③ 后期:形成自噬溶酶体,单层膜,胞浆成分已降解。间接法:① RFP-GFP...

细胞自噬染色检测(MDC)怎么做?
细胞自噬染色检测(MDC)是一种利用荧光探针MDC来观察细胞自噬体的实验技术。MDC作为嗜酸性荧光色素,能通过与膜脂的结合发出绿色荧光,用于标记自噬体,尤其在病理和生理过程中如细胞生长、免疫反应、肿瘤和神经退行性疾病中具有重要意义。进行MDC染色检测的基本准备包括Solarbio的MDC染色检测试剂盒,以及常见...

子洲县17575816099: 自噬的自噬的研究方法 -
雍姬百多: 正常培养的细胞自噬活性很低,不适于观察,因此,必须对自噬进行人工干预和调节,经报道的工具药有: (一)自噬诱导剂 1)Bredeldin A / Thapsigargin / Tunicamycin :模拟内质网应激 2)Carbamazepine/ L-690,330/ Lithium Chloride(氯化...

子洲县17575816099: 自噬相关研究如何做 -
雍姬百多: 你初步研究思路是什么呢,是观察自噬情况吗,还是一个整体的自噬研究呢,先对细胞进行自噬诱导或抑制,然后对自噬过程进行观察和检测.自噬检测方法也很多种,是传统的WB还是通过GFP-LC3呢?呵呵,先说说你的想法吧.

子洲县17575816099: 细胞自噬性凋亡的研究从哪几个方面开展? -
雍姬百多: 基本上研究细胞生物学的一般路径就是,第一步,验证:1.寻找疾病模型;2.确定目的细胞;3.确定细胞的刺激源;4.体外培养该细胞,并施加该刺激源,检查细胞的变化(形态学,生物化学指标即可);5.体内干预该刺激源,观察疾病变化(病...

子洲县17575816099: 检测自噬的方法有哪些 -
雍姬百多: 这时候你需要换一个通道,去看红光,这时候就会发现在每个绿斑上,点缀着很多红色分散的小点,如果自噬出来的话.然后,用IPP软件去merge一下,就很漂亮了.

子洲县17575816099: 哪些因素可以诱导细胞自噬的发生 -
雍姬百多: 很多因素能诱导细胞发生自噬,如饥饿、生长因子缺乏、微生物感染、细胞器损伤、蛋白质折叠错误或聚集、DNA损伤、放疗、化疗等等. 细胞正常情况下很少发生自噬,除非有诱发因素的存在.这些诱发因素很多,也是研究的热门.既有来自于细胞外的(如外界中的营养成分、缺血缺氧、生长因子的浓度等),也有细胞内的(代谢压力、衰老或破损的细胞器、折叠错误或聚集的蛋白质等).由于这些因素的经常性存在,因此,细胞保持了一种很低的、基础的自噬活性以维持自稳.

子洲县17575816099: 细胞自噬的揭示机制 -
雍姬百多: 加州大学圣地亚哥分校的管坤良教授领导的一支研究团队揭示了调控细胞自噬的一个关键分子机制,研究人员发现,AMPK酶,不仅参与了细胞的传感和能量调控,而且在细胞自噬酶作用方面,也扮演了重要角色.细胞自噬是细胞在恶劣条件下确保其生存的基本应激反应. 研究人员发现,AMPK能以不同的方式,调控一种称为Vps34激酶家族不同的复合物,一些Vps34酶参与了正常细胞的囊泡运输——细胞中一种重要的分子运输,还有一些Vps34复合物则参与了细胞自噬.管教授与其同事们发现,AMPK能抑制那些未参与细胞自噬的酶,而激活参与细胞自噬的Vps34酶.

子洲县17575816099: 如何让细胞自噬? -
雍姬百多: 细胞自噬是指在自噬相关基因的调控下,利用溶酶体降解自身受损的细胞器及大分子物质的过程,以此维持细胞自身的需要及细胞器的更新. 细胞质中的线粒体等细胞器首先被称为“隔离膜”的囊泡所包被,这种“隔离膜”主要来自于内质网和高尔基体;囊泡逐渐闭合最终形成双层膜结构,即自噬体,其大小约为500 nm左右,囊泡内常见的包含物有胞质成分和某些细胞器如线粒体、内吞体、过氧化物酶体等;自噬体的外膜与溶酶体融合形成降解自体吞噬泡;由溶酶体内的酶降解自体吞噬泡中的内容物和内膜.

子洲县17575816099: 细胞自噬是指细胞通过降解自身结构或物质使细胞存活的自我保护机制.细胞面临代谢压力时,细胞可降解自身大分子或细胞器为生存提供能量.如图1、图2为... -
雍姬百多:[答案] (1)酵母菌不能利用二氧化碳合成有机物,故其同化作用类型是异养型.(2)据图1所示,营养物质充足时,胰岛素与受体结合,激活AKT来抑制凋亡;由于胰岛素有降血糖的作用,一方面可促进葡萄糖进入细胞,另一方面可以...

子洲县17575816099: 自噬的自噬发生过程 -
雍姬百多: 在此过程中,自噬体的形成是关键,其直径一般为 300 ~ 900 nm,平均 500 nm,囊泡内常见的包含物有胞质成分和某些细胞器如线粒体、内吞体、过氧化物酶体等.与其他细胞器相比,自噬体的半衰期很短,只有 8 min 左右,说明自噬是细胞...

子洲县17575816099: 细胞自噬是指细胞利用溶酶体选择性清除自身受损、衰老的细胞器,或降解过剩的生物大分子,释放出游离小分子供细胞回收利用的正常生命过程.如图是细胞... -
雍姬百多:[答案] (1)分析题意可知,溶酶体内水解酶的最适pH在5.0左右,但是细胞质基质的pH一般是7.2左右,即使溶酶体中的水解酶外溢,也会由于PH值条件不合适,不会引起细胞自身结构的破坏. (2)途径Ⅰ存在自噬体和溶酶体的融合,因此体现了生物膜具有...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网