含水合物沉积物的纵波声速测定

作者&投稿:戢师 (若有异议请与网页底部的电邮联系)
理工学科 -> 化学~

(1)设原溶液中硫酸质量为X.
H2SO4+Ba(OH)2==BaSO4+2H2O
X=98*20*17.1%/171=1.96
所以,原溶液中硫酸质量分数为1.96/20*100%=9.8%
(2) ph=7时,溶质为氯化钡,设为y
2HCl+Ba(OH)2==BaCl2+H2O
y=208*40*17.1%/171=8.32

  理工学科是指理学和工学两大学科。理工,是一个广大的领域包含物理、化学、生物、工程、天文、数学及前面六大类的各种运用与组合。
  理学
  理学是中国大学教育中重要的一支学科,是指研究自然物质运动基本规律的科学,大学理科毕业后通常即成为理学士。与文学、工学、教育学、历史学等并列,组成了我国的高等教育学科体系。
  理学研究的内容广泛,本科专业通常有:数学与应用数学、信息与计算科学、物理学、应用物理学、化学、应用化学、生物科学、生物技术、天文学、地质学、地球化学、地理科学、资源环境与城乡规划管理、地理信息系统、地球物理学、大气科学、应用气象学、海洋科学、海洋技术、理论与应用力学、光学、材料物理、材料化学、环境科学、生态学、心理学、应用心理学、统计学等。

  工学
  工学是指工程学科的总称。包含 仪器仪表 能源动力 电气信息 交通运输 海洋工程 轻工纺织 航空航天 力学生物工程 农业工程 林业工程 公安技术 植物生产 地矿 材料 机械 食品 武器 土建 水利测绘 环境与安全 化工与制药 等专业。

李风光1,陈光进1,孙长宇1,李清平2,郭绪强1,杨兰英1,潘恒1

李风光(1985-),男,博士生,主要从事水合物研究,E-mail:lifg@cup.edu.cn。

1.重质油国家重点实验室/中国石油大学,北京 102249

2.中海石油研究中心,北京 100027

摘要:自行设计搭建了天然气水合物纵波声速(VP)测定实验装置,主要测定含水合物样品的声学性质。为使水合物在沉积物中分布均匀并能完全填满沉积物孔隙,采用四氢呋喃(THF)水溶液与甲烷气体在沉积物中生成水合物,测定了水合物生成过程中体系的声学性质变化,并分析了沉积物粒径及四氢呋喃水溶液浓度对声速的影响。实验结果表明:在水合物生成过程中,声速随着水合物饱和度的增加而增加,最后趋于定值;四氢呋喃水溶液的浓度越高,最后水合物样品的声速也越大,然而沉积物颗粒大小对声速结果几乎没有影响;波形的振幅变化表明在水合物生成过程中振幅随着水合物的生成先达到一最大值,随后受游离的甲烷气体的影响,振幅又会逐渐减小,最后趋于定值。根据水合物胶结模型的计算结果,模型计算值与实验值基本吻合。

关键词:水合物;沉积物;纵波声速;振幅;饱和度

Investigate on the P-Wave Velocity of Hydrate-Bearing Sand

Li Fengguang1,Chen Guangjinl,Sun Changyu1,Li Qingping2,Guo Xuqiang1,Yang Lanying1,Pan Hen1

1.State Key Laboratory of Heavy Oil Processing/China University of Petroleum,Beijing,102249,China

2.CNOOC Research Center,Beijing 100027,China

Abstract:An experimental apparatus was developed to measure P-wave velocity (VP) o f gas-hydrate-bearing sediment.Tetrahydrofuran (THF) was added to quicken the hydrate formation in the porous media and to synthesize hydrate-bearing sediments with uniformdistribution.Methane acted as afree gas to participate in the hydrate formation.Five experimental runs were performed to examine the influence of sediment grain size and THF concentration on VP.The P-wave velocity and the amplitude for the first arrival wave signal were collected in real time during hydrate formation process.The experimental data showed that VPincreases monotonically with the increase of hydrate saturation in the sediment pore space and finally tends to be a constant value.This final VPvalue increases with the increase of initial THF content,but the effect of sand grain size on VPis inconclusive.The variations of amplitudefor the first arrival wave signal with elapsed time during hydrate formation illustrates that the amplitude increases with the increase of hydrate saturation until it attains a maximum value and then decreases gradually due to the effect of free methane gas penetrating into the hydrate-bearing sediment.The acoustic velocity of THF-hydrate filled sediment was also predicted based on the extended contact cement theory.The predicted results were close to the experimental data obtained in this work.

Key words:hydrate;sediments; P- wave Velocity;amplitude; saturation

0 引言

根据目前地质探测的结果,水合物主要分布在海底大陆架的沉积物及冻土带中[1]。由于其储量巨大,作为一种潜在的能源资源,水合物的研究开展十分广泛[2-4]。掌握含水合物沉积物的性质,如岩性、水合物饱和度、渗透性、密度、声速等物性,对水合物资源的估计以及将来的开采工作都有重要的意义[5-10]

受水合物存在条件的限制,对地层水合物样品进行原位性质测试异常困难,因而常常在实验室中人工合成水合物样品以测定其相关的物性[8-9,11]。为了准确的测定水合物沉积物的物性,合成具有代表性的水合物样品至关重要。静态下甲烷气体在水中的溶解度很小,因而利用溶解的甲烷气合成水合物样品需要耗费相当长的时间,这给含水合物样品物性的研究带来很大的困难。Waite等[8]测定了部分饱和水中含水合物沉积物样品的声学性质。研究表明沉积物中水合物饱和度相对有限,而且水合物生成极其缓慢。实验进行了1 400多h,沉积物中水合物的饱和度最高为70%,声波最后趋于稳定。在实验室条件下,合成水合物能完全填满沉积物孔隙的水合物样品相对较难。众所周知,四氢呋喃溶液跟水可以以任意比例混合,四氢呋喃的存在能加快水合物的生成速率,水合物在沉积物中可以均匀分布,因此实验室中经常用四氢呋喃替代甲烷合成水合物样品[12,13]

声速是一重要的地球物理性质参数,可以反映岩性、水合物丰度、矿藏分布等重要信息。实验室测定的声速数据可以为地震勘探的测井解释提供解释依据。勘探地层水合物最常用的方法是地震法,地震测井资料的解释需要对含水合物沉积物的物性准确了解,然而,含水合物沉积物样品的保真取样极其困难因而不能进行有效的物性测试。Priest等[14]在实验室中合成了均匀分布的不同水合物饱和度的水合物样品,并测定了其纵波声速及横波声速,实验结果表明:甲烷水合物首先胶结砂粒,随后填充孔隙。Pearson等[12]测定了四氢呋喃和水的混合物中生成的水合物样品的声速值。对Berea砂岩和Austin chalk样品,从水合物开始生成到水合物样品合成只需极短的时间,其声速变化都增长的很快,前者从2 500 m/s到4 500 m/s,后者从1 400 m/s到5 000 m/s;进一步的降温并没有降低样品的声速。然而,四氢呋喃生成Ⅱ型水合物,并且只占据水合物晶格中的大孔。这跟天然沉积物中的水合物区别较大,自然的水合物样品的晶格中大小孔主要被甲烷分子填充。本文利用实验室设计的水合物声速测定装置测定了含水合物沉积物样品的声学参数。四氢呋喃作为一种水合物的生成促进剂,并能使水合物在沉积物中分布较均匀,甲烷作为游离气体参加水合物生成反应。本文合成的水合物样品跟纯四氢呋喃水合物相比,四氢呋喃主要填充水合物晶格的大孔穴,而甲烷则填充小孔穴,跟天然水合物样品具有可比性。在实验过程中,Vp波形图通过软件记录下来,通过对波形图的分析可以得到声速、振幅等声学性质在水合物生成过程中的变化。

1 实验部分

1.1 实验装置

实验装置如图1所示。主要包括:高压反应釜、低温空气浴槽温控系统、天然气配气系统、温度压力测量系统、超声波声速测定系统5部分。

低温高压系统的核心部件是高压反应釜(图1b),釜的设计压力为32.0 MPa,由不锈钢材料加工而成,反应釜的容量为2.0 L(φ130×150),由江苏华安石油科研仪器公司制造。该反应釜的釜底和釜盖上安装有一对超声波探头,其中釜盖上的探头可以随滑杆上下移动,便于调节两探头间的样品测量距离。在高压反应釜侧壁开设有多个不同尺寸的孔径,便于安装温度和压力监测系

图1 声速测量实验装置示意图(a)和高压反应釜内部示意图(b)

1.甲烷气瓶;2,3,4,11.阀;5.高压反应釜;6.压电换能器;7.沉积物; 8.手柄;9.底部进气口; 10.Pt100; 12.空气浴;13.温度测量; 14.压力测量;15.超声波讯号发射接收仪;16.数字示波器;17.计算机

统、超声波发射接收系统及进气口和排水口等。热电阻Pt100的测量精度为±0.1 K,压力传感器测量精度为0.5%,量程为0~60 MPa;声速测量系统主要包含4部分:陶瓷压电换能器、超声波讯号发射接收仪、示波器和数据采集分析软件。其中换能器的发射主频为500k Hz~1.0 MHz,电压为400 V;美国进口5077PR数字式超声波讯号发射接收仪;Tektronix Technology公司TBS2012B型号数字示波器,采用了高速A/D数据采集卡。声速测量的误差大约±0.5%。

1.2 实验材料

沉积物材料选用松散的石英砂。实验前先将石英砂用去离子水清洗干净,然后用烘箱在393.2K下干燥12 h。然后将其筛分为20~40目, 40~60目,60~80目3种,3种目数的沉积物物性列于表1。

表1 沉积物物性表

甲烷气由北京北分气体工业有限公司提供,纯度为99.9%。四氢呋喃水溶液由纯度为99.8%的四氢呋喃和去离子水配制。四氢呋喃水溶液生成水合物的最佳的摩尔比为5.9%

1.3 实验步骤

沉积物中水合物饱和度和分布对含水合物沉积物样品的声学性质有很大影响[9]。为合成沉积物中水合物均匀分布的水合物样品,采用以后步骤合成水合物样品:

1)先用去离子水清洗反应釜,然后将其擦干。并在反应器侧壁安装一支热电阻Pt100以测量水合物生成过程中温度的变化。

2)室温下将含饱和四氢呋喃水溶液的沉积物装入反应釜中,如图1(b)所示。

3)沉积物装入反应釜后,通过旋转手柄将沉积物样品压实。作用在手柄上的有效应力为500 k Pa,压紧后的样品长度在50mm左右。

4)连接好管线后在室温下抽真空2 min,以排除空气对实验造成的影响。空气浴温度设为278.2 K,开始水合物的生成实验。开始先通入0.5 MPa甲烷气检验装置的气密性,在通入甲烷气时同时开启声速测量软件开始采集波形图。

5)气密性检验完好后,继续从反应釜底部注入甲烷气。进气过程在1 min左右,进气结束后反应釜内压力约为12 MPa,关闭管线截止阀,水合物样品将快速合成。从进气开始连续记录温度、压力及波形图等数据,直至反应结束。

每一组水合物样品合成实验都按照上面的实验步骤进行,然后对波形图处理分析得到样品的声学参数。

2 结果与讨论

合成5个水合物样品的沉积物粒径和THF水溶液的摩尔比及声速数据均列入表2。

表2 合成的水合物样品的最终声速数据

根据表2所示,实验采用了3.0%和5.9% 2种THF水溶液的摩尔比合成水合物样品,水溶液在沉积物中均为100%饱和状态。对于饱和THF水溶液沉积物的声速差别不大,均在1 750 m/s左右;在水合物生成过程中,声速随着水合物饱和度的增加而不断增大,最后趋于一定值。THF水溶液在常压下277.6 K时以1:17(THF:H2O)的比例合成Ⅱ型水合物[13],然而水合物的饱和度很难精确计算。尽管如此,根据水合物样品声速测量结果可以看出,THF浓度高时合成的水合物样品的声速要高于THF浓度低时的声速值,说明高浓度的THF溶液合成的水合物饱和度较高,因而声速较高。为进一步了解水合物生成过程中温度、压力、声速及振幅等各参数的变化情况,以样品5为例详细说明。

2.1 水合物生成过程中声速测定

图2为样品5(60~80目沉积物+5.9%THF水溶液+甲烷体系)在水合物合成过程中温度、压力随时间的变化关系图。从图中可以看出,在水合物生成初期,甲烷气被大量消耗,在4.2 min内压力从13.52降到11.29 MPa,说明消耗的甲烷气生成大量水合物。水合物生成为放热反应,受此影响,温度在70s内升高了25.5 K(从278.1到303.6 K)。7 h后,温度和压力变化趋于稳定。从20 h到30 h,温度和压力的降低是受降温的影响。对于水合物样品合成后温度变化对声速结果的影响,从图3声速随时间的变化可以看出,温度降低后声速没有变化。

图2 水合物生成过程中温度、压力随时间的变化

图3 水合物生成过程中声速随时间的变化

图4 图3中A,B,C,D时刻的波形图

图4为图3中在某一具体时刻(A、B、C和D)的波形图。在时刻A(图4a)为甲烷气没有完全注入前,声速为1 856 m/s,声速比含饱和T H F溶液的声速略高,说明已有少量水合物开始生成;此后,随着水合物的开始生成,在0.6 h后的B点,甲烷气体已经通入结束,声速VP增加到3 078 m/s(图4b);在1.3 h后的C点,声速继续增加到3 585 m/s(图4c);反应进行到7 h的D 点,声速最后趋于定值3 827 m/s(图4d)。

2.2 声速振幅测量

图5为水合物样品5的波形振幅随反应时间的变化关系。从图中可以看出,水合物生成过程中波形的演化规律。振幅的变化与声速的变化并不相同,在水合物快速生成的前7 h,振幅随水合物饱和度的增加而不断增大;在声速趋于一定值的过程中,振幅开始不断降低最后稳定于一定值,这种变化规律与声波穿过水合物样品时的衰减具有一定的关系。根据Priest等[15]研究结果表明,声波能量的衰减主要包括:①几何形状散射衰减;②扩散衰减;③本征衰减。几何形状散射衰减取决于实验所选材料的几何形状,而扩散衰减与沉积物粒径大小与声波的波长均有关系,这两者均可以通过选择合适的沉积物粒径的大小来避免,因而对声波信号的衰减主要受本征衰减(它主要取决于沉积物的材料、岩性、孔隙填充介质和饱和度等)及声波的频率等影响[16]

对于松散的沉积物,P波信号受衰减的影响无法通过沉积物,因而无法测量到波形信号。而对于饱和水的沉积物,低频的波形信号可以通过,因此可以采集到波形信号,但是波形很微弱,振幅值也较小。水合物生成后,开始生成的絮状水合物在溶液中仅仅改变了溶液的弹性性质;随着水合物的大量生成,水合物开始胶结沉积物颗粒,含水合物的沉积物的刚性随着水合物量的增加而不断增大,高频能量的信号受衰减减弱也能通过水合物样品,因而声速振幅不断增加。在图5中开始时的振幅出现了短暂的降低,这是受甲烷进气的影响[8]

图5 水合物生成过程中振幅随时间的变化关系

声速增加到最大值后趋于一定值,波形的振幅达到最大值后反而开始呈现不断降低的趋势, 80 h后趋于稳定。这是由于受反应釜内游离的甲烷气的影响。THF水合物生成的为Ⅱ型水合物, THF只能占据水合物晶格的大孔穴,而甲烷分子较小,可以填充在水合物晶格中的小孔,这为甲烷气体分子在水合物中的渗透提供了可能;同时,在甲烷气进气过程中,溶液中会有大量的微小气泡,这些微小气泡部分在水合物生成过程中被消耗,部分存在于沉积物孔隙中有助于裂纹形成。生成的大量的水合物虽然能填满沉积物的孔隙,但水合物与沉积物颗粒胶结成岩的过程中,受水合物的体积膨胀作用,水合物样品中也会不可避免产生微小的裂纹,这些裂纹会使顶部的自由气更容易扩散渗透到反应釜的底部。从而使波形信号的振幅在达到最大值后开始呈降低的趋势,这也可以从图2的温度、压力的变化曲线上找到证据,声速在7h时达到最大值,体系的压力从11.2降低到实验结束时的10.8MPa,游离的甲烷气体的影响,使声波信号中的高频信号无法通过,因而波形的振幅降低。

2.3 水合物样品的声速

合成的5个水合物样品的具体参数均已列入表2中(沉积物的粒径、THF水溶液的浓度及测定的声速)。饱和THF水溶液沉积物的声速在1 706~1 782 m/s,生成水合物后样品的声速为3 295~3 984 m/s;对20~40目的样品1、2及40~60目的样品3、4,THF水溶液的浓度为5.9%时生成水合物后样品的声速要比浓度为3.0%的声速值高。对于样品1、3和5比较,看不出沉积物粒径对于声速的影响。

2.4 模型计算

许多学者尝试建立沉积物中水合物饱和度与纵波声速的关系。Dvorkin等[17]提出了4种可能的水合物分布模型:1)水合物存在于流体中,只改变流体的性质;2)水合物作为部分沉积物的骨架,影响骨架的性质;3)水合物只胶结于沉积物颗粒接触处,水合物作为胶结剂;4)水合物不只在沉积物颗粒接触处胶结,而且水合物还包裹在沉积物颗粒的表面。自然环境中的水合物样品,水合物在沉积物孔隙中的分布仍然是一个颇有争议的问题。加拿大的麦肯齐三角洲(Mallik 2L-38)的测井数据表明,水合物主要分布在沉积物的孔隙中,没有胶结沉积物颗粒[18];然而,实验室中的测量结果显示在富含游离气条件下生成的水合物多胶结沉积物颗粒[8-9]。Priest等[19]分别测量了利用过量水和过量气的方法合成水合物样品的声速,测量结果表明水合物对声速的影响取决于合成的水合物在沉积物孔隙中存在的状态。实验室测量的结果提供了一种对于一给定地质环境判断水合物分布的模式。

对于水合物分布模式1),生成的水合物悬浮在流体中,水合物只影响流体的体积模量,而没有影响流体的剪切流量,但对沉积物的弹性模量没有贡献;对于水合物分布模型2),生成的水合物作为部分的沉积物骨架,虽然作为沉积物的一种组分,由于水合物的物性参数跟沉积物的岩性相差较大,因而水合物的存在对声速的影响也很微弱;相反,对水合物分布模型3)和4),水合物作为沉积物颗粒间的胶结剂,水合物的胶结作用大大地增加了水合物样品的刚性,因而使水合物样品的声速增加。Dvorkin等[20]的胶结理论可适用于水合物饱和度较高时的情况,或者沉积物孔隙中完全填满水合物。在本文的模型计算中, THF水溶液的在摩尔比为5.9%时刚好完全生成水合物,因此假设沉积物孔隙中水合物饱和度为100%,含THF水合物沉积物样品的体积模量K和剪切模量G由下式(1)计算[17]

南海天然气水合物富集规律与开采基础研究专集

式中:Kh和Gh分别为水合物的体积模量和剪切模量(GPa);φc为松散沉积物的临界孔隙度(φc=0.4);n为单颗粒平均接触数,8.5;参数Sn和Sτ根据Dvorkin和Nur等[21]提供的计算方法求得:

南海天然气水合物富集规律与开采基础研究专集

南海天然气水合物富集规律与开采基础研究专集

式中:vq、vh分别为沉积物及水合物的泊松比。计算方法分别为vq=0.5(Kq-2/3Gq)/(Kq+ 1/3Gq) (Kq和G分别为石英砂的体积模量和剪切模量)、vh=0.5(Kh-2/3Gh)/(Kh+1/3Gh),π为常数,3.14;参数α跟水合物的分布相关。对模型3),α=2[(φc-φ)/(3nl-φc)]0.25(φ为孔隙率,当THF水合物完全填满沉积物孔隙时,φ值为0);对模型4),a=[2(φc-φ)/3(1-φc)]0.5

含水合物沉积物的弹性模量求得后,水合物样品的声速可由式(11)计算:

南海天然气水合物富集规律与开采基础研究专集

其中ρ为水合物样品的体积密度,可以式(12)计算求得:

南海天然气水合物富集规律与开采基础研究专集

模型计算过程中用到的参数列于表3中。在模型计算中,由于THF+CH4水合物的弹性模量数据无法得到,且该实验合成水合物与纯甲烷水合物差别较小,因此计算中采用纯甲烷水合物的弹性模量参数代替合成的THF水合物。本文只对THF水溶液在浓度为5.9%化学计量比生成的水合物样品2、4及5进行了预测,结果列于表4中。当THF水溶液的浓度小于5.9%时,合成的水合物样品的饱和度很难确定,因而没有对其进行预测。根据表4中实验值与计算值的比较可以看出,胶结理论可以较好的对含水合物沉积物样品进行预测。对样品2和5,实验测量值与模型3)的计算值基本吻合。而对样品4,实验值与模型4)的计算值更接近。同样可以看出,水合物在沉积物中非常有明显的胶结作用。

表3 模型计算中的参数列表

表4 模型计算结果跟实验值对比

3 结论

1)在实验室搭建的水合物声速测定实验装置上,利用不同沉积物粒径和不同的THF水溶液浓度合成了5个的水合物样品,并测量了水合物生成过程中水合物样品的声学性质变化。

2)沉积物孔隙中的填充物对沉积物样品的声速具有重要的影响。对含饱和THF水溶液的沉积物,声速为1 706~1 782 m/s;在THF水合物生成过程中,水合物样品的声速随饱和度的增加而增大,最后趋于一定值;水合物生成反应完全结束后,含水合物沉积物的声速为3 295~3 984 m/s。声速值的大小在很大程度上取决于沉积物孔隙中水合物的饱和度。

3)振幅的变化趋势与声速变化不同,在水合物生成过程中,振幅先随着水合物饱和度的增加而不断增大,达到一个最大值后开始降低,最后趋于稳定,这主要是受游离的甲烷气体在水合物样品中不断渗透的影响结果;同时,水合物胶结模型的计算值与实验值基本一致。

参考文献

[1]Clennell M B,Hovland M,Booth J S,et al.Formation of Natural Gas Hydrates in Marine Sediments 1.Conceptual Model of Gas Hydrate Growth Conditioned by Host Sediment Properties[J].J Geophys Res,1999,104(B10):22985-23003.

[2]Sloan E D.Fundamental Principles and Applications of Natural Gas Hydrates[J].Nature,2003,426(20):353-359.

[3]Klauda J B,Sandler S I.Global Distribution of Methane Hydrate in Ocean Sediment[J].Energy Fuels,2005,19 (2):459-470.

[4]Reagan M T,Moridis G J.Large-scale Simulation of Methane Hydrate Dissociation Along the West Spitsbergen Margin[J].Geophys Res Lett,2009,36:doi:10.1029/2009GL041332.

[5]Pearson C F,Halleck P M,Mc Gulre P L,et al.Natural Gas Hydrate Deposits:A Review of in Situ Properties[J].J Phys Chem,1983,87:4180-4185.

[6]Buffet B A,Zatsepina O Y.Formation of Gas Hydrate from Dissolved Gas in Natural Porous Media[J].Marine Geology,2000,164:69-77.

[7]Carcione J M,Gei D.Gas-Hydrate Concentration Estimated from P-and S-Wave Velocities at the Mallik 2L-38 Research Well,Mackenzie Delta,Canada[J].J Applied Geophys,2004,56:73-78.

[8]Waite W F,Winters W J,Mason D H.Methane Hydrate Formation in Partially Water-Saturated Ottawa Sand[J].Am Mineral,2004,89:1202-1207.

[9]Winters W J,Waite W F,Mason D H,et al.Methane Gas Hydrate Effect on Sediment Acoustic and Strength Properties[J].J Petrol Sci Eng,2007,57:127-135.

[10]Westbrook G K,Chand S,Rossi G,et al.Estimation of Gas Hydrate Concentrationfrom Multi-Component Seismic Data at Sites on the Continental Margins of NW Svalbard and the Storegga Region of Norway[J].Marine Petroleum Geology,2008,25:744-758.

[11]Winters W J,Pecher I A,Waite W F,et al.Physical Properties and Rock Physics Models of Sediment Containing Natural and Laboratory-Formed Methane Gas Hydrate[J].Am Mineral,2004,89:1221-1227.

[12]Pearson C,Murphy J,Hermes R.Acoustic and Resistivity Measurements on Rock Samples Containing Tetrahydrofuran Hydrates:Laboratory Analogues to Natural Gas Hydrate Deposits[J].J Geophys Res,1986,91 (B14):14132-14138.

[13]Sabase Y,Nagashima K.Growth Mode Transition of Tetrahydrofuran Clathrate Hydrate s in the Guest/Host Concentration Boundary layer[J].J Phys Chem B,2009,113:15304-15311.

[14]Priest JA,Best AI,Clayton CR LALaboratory Investiga-tioni nto the Seismic Velocities of Methane Gas Hydrate-Bearing Sand[J].J Geophys Res,2005,110,B04102,doi:10.1029/2004JB003259.

[15]Priest J A,Best A I,Clayton C R I.Atenuation of Seismic Waves in Methane Gas Hydrate-Bearing Sand[J].Geophysical Journal International,2006,164:149-159,doi:10.1111/j.1365-246X.2005.02831.x.

[16]Pride S R,Berryman J G,Harris J M.Seismic Atenuation Due to Wave-Induced Flow[J].J Geophys Res,2004,109:B01201,doi:10.1029/2003JB002639.

[17]Dvorkin J,Helgerud M B,Waite W F,et al.Introduction to Physical Properties and Elasticity Models[C]//In Mas M D.Natural Gas Hydrate in Oceanic and Permafrost Environments.Kluwer:Dordrecht,Netherlands,2000:245-260

[18]Winters W J,Dallimore S R,Collett T S,et al.Physical Properties of Sedimentsfrom the JAPEX/JNOC/GSC Malik 2L-38 Gas Hydrate Research Well[J].Bull.Geol Surv Can,Rep 1999,544:95-100.

[19]Priest J A,Rees E V L,Clayton C R I.Influence of Gas Hydrate Morphology on the Seismic Velocities of Sands[J].J Geophys Res,2009,114: Bl 1205,doi:10.1029/2009JB006284.

[20]Dvorkin J,Berryman J,Nur A.Elastic Moduli of Cemented Sphere Packs[J].Mechanics of Materials,1999,31:461-469

[21]Dvorkin J,Nur A.Elasticity of High-Porosity Sandstones:Theory for Two North Sea Data Sets[J].Geophysic,1996,61:1363-1370.




含水合物沉积物的纵波声速测定
为使水合物在沉积物中分布均匀并能完全填满沉积物孔隙,采用四氢呋喃(THF)水溶液与甲烷气体在沉积物中生成水合物,测定了水合物生成过程中体系的声学性质变化,并分析了沉积物粒径及四氢呋喃水溶液浓度对声速的影响。实验结果表明:在水合物生成过程中,声速随着水合物饱和度的增加而增加,最后趋于定值;四氢呋喃水溶液...

天然气水合物地球物理勘探参数的测定
式中:Φ为岩心的孔隙度,θV为生成水合物的体积。在人工岩心中,纵波速度vp和横波速度vs随着岩心中水合物饱和度的增加而增加;在水合物饱和度20%至47%之间,声波速度随饱和度的增大相对快速增长。图75.11岩心中水合物生成(分解)过程的温压、声速、含水量变化图,图中3条虚线对应的位置分别代表水合...

含天然气水合物沉积层的AVA特征分析
式中:Vp为水合物沉积的纵波速度(m\/s); Vp1为由WOOD方程计算得到的水合物沉积纵波速度(m\/s); Vp2为由时间平均方程计算得到的水合物沉积纵波速度(m\/s);φ为岩石孔隙度;S为水合物的饱和度;w为加权因子;n反映的是水合物在沉积物中的状态;由于缺乏水合物实际的资料, w,n参数比较难以确定,但有一定的规律...

测井在天然气水合物勘探与评价中的应用
电磁波传播测井仪只在 Mallik 5L-38井中使用过(S.R.Dallimore,T.S.Collett,2005),电磁波传播测井的垂向分辨率高于5cm,用来测量天然气水合物的原位介电特性,据此计算天然气水合物的饱和度。天然气水合物储集带的平均介电常数为9,在5到20之间变化;带内的平均电阻率超过5Ω·m,当仪器的工作频率为1.1GHz时,...

Jason反演技术在天然气水合物速度分析中的应用
含水合物地层的声波速度与水合物的含量有关,水合物含量越高,其声波速度越高。从速度方面看,BSR是上覆高速的含水合物地层与下伏较低速的含水层或含气层之间的分界面。通常,海洋中浅层沉积层的地震纵波速度为1600~1800m\/s,如果存在水合物,地震波速度将大幅提高,可达1850~2500m\/s,如果水合物层下面为游离...

海洋天然气水合物地震识别标志
从速度方面看,BSR是其上具有较高声波速度的水合物胶结沉积物与其下低速非胶结沉积物的分界面。通常,海洋中浅层沉积层的地震纵波速度为1.6~1.8km\/s,如果存在水合物,地震波速度将大幅提高,可达1.85~2.5km\/s,如果水合物层下面为游离气层,则地震波速度可以骤减为0.5~0.2km\/s。因此,在速度剖面上,水合物层的...

天然气水合物资源远景预测
与大陆边缘一般的沉积物相比,含天然气水合物的沉积层具有较高的纵波速度,因而可通过岩石物理模型的方法估算水合物的含量,识别BSR,确定其上覆水合物的含量及其下伏游离气体的分布。另外,精细速度分析及波阻抗反演、地震波形反演、叠前AVO技术在资源量评价方面也发挥了重要的作用,如20世纪90年代早期,School等(1993)...

神狐海域天然气水合物声波测井速度与饱和度关系分析
式中:vp为纵波速度(m\/s);K为有效体积模量;μ为剪切模量;α为膨胀系数;T0为初始温度(开氏度);Ce为比热系数;ρm为沉积层有效密度(g\/cm3)。 假定地层为均匀的多孔隙岩石且孔隙中流体饱和,孔隙中填充天然气水合物和水,沉积在孔隙空间的天然气水合物包裹着岩石颗粒,类似于成岩胶结物,影响固体岩石的体积模量,称...

南海天然气水合物调查技术研究
此外,通过地球化学勘查技术识别海底浅部沉积物中的天然气地球化学异常,也能够为圈定水合物矿体提供重要佐证。 当然,随着技术的发展和天然气水合物勘查的需求,还有其他的技术在探索应用,如O BS技术已经开始应用于水合物调查中,以及可控源电磁法也准备投入应用,这都基于能获取更多的信息(如横波)和天然气水合物电阻...

非常规天然气测井
测井方法在识别含天然气水合物层位中起关键作用。 10.4.3.1 水合物形成机制 天然气水合物的固相稳定条件是在温度0~10℃范围内、压力10MPa以上(图10.4.7)。从海底沉积物和冻土带直接取样时,天然气水合物容易分解。在合成水合物试验获得成功后,可以在实验室中研究气水合物和含气水合物岩样的物理性质。从20...

孟州市15522272710: 可燃冰是什么 化学性质是什么?物理? -
啜哗泽力: 可燃冰是一种混合物,主要成分是甲烷的水合结晶体天然气水合物,也称气体水合物(gas hydrate),是由天然气与水分子在高压(>100大气压或>10MPa)和低温(0~10℃)条件下合成的一种固态结晶物质.因天然气中80%~90%的成分是甲...

孟州市15522272710: 造成超声波涂层测厚仪测量不准确是什么原因呢? -
啜哗泽力: 超声波测厚仪测量不准确的原因分析如下:1、声速选择错误.测量工件前,根据材料种类预置其声速或根据标准块反测出声速.当用一种材料校正仪器后(常用试块为钢)又去测量另一种材料时,将产生错误的结果.2、温度的影响.一般固...

孟州市15522272710: 有谁听过海底底质声学是干什么的?呵呵,做个调查,谢谢! -
啜哗泽力: 海底对从海水入射的声波的反射和散射,以及声波在海底沉积物中的传播速度和衰减等特性.海底对声波在海中的传播,特别是对声波在浅海中的传播影响很大.声波在海底沉积物中的传播速度,通常与频率没有明显的关系.在平均粒径极小...

孟州市15522272710: 地质学中BSR指的是什么? -
啜哗泽力: 指的是海底模拟反射层(也即似海底反射层),英文名全称是Bottom Simulating Reflector,简称BSR.代表含气水合物(气水合物在海洋环境中是稳定的)的沉积物与下伏不含气水合物之间的声反射界面,也基本代表了水合物稳定带的底界. 一般应用于油气资源探索开发或者基础地质情况(如海底地震带)的研究调查.

孟州市15522272710: 什么是可燃冰? -
啜哗泽力: 什么是可燃冰 谈到能源,人们立即想到的是能燃烧的煤、石油或天然气,而很少想到晶莹剔透的“冰”.然而,自 20 世纪 60 年代以来,人们陆续在冻土带和海洋深处发现了一种可以燃烧的“冰”.这种“可燃冰”在地质上称之为天然气水合...

孟州市15522272710: 判断 可燃冰和甲烷是一种物质,他们不仅是能源也是重要的资源 请详细说明理由 -
啜哗泽力: 你的观点合理.理由: 可燃冰全称甲烷气水包合物,也称作甲烷水合物、甲烷冰、天然气水合物.最初人们认为只有在太阳系外围那些低温、常出现冰的区域才可能出现,但后来发现在地球上许多海洋洋底的沉积物底下,甚至地球大陆上也有可...

孟州市15522272710: 天然气水化合物发现的主要意义是什么 -
啜哗泽力: 可燃冰是指水和天然气相结合后形成的一种晶体物质,学术上称为“天然气水化合物”.天然气水合物的形成有三个基本条件,缺一不可.据专家介绍,首先温度不能太高;第二压力要足够大,但不需太大;0℃时,30个大气压以上就可生成;...

孟州市15522272710: 6、一般情况下,海底沉积物声速和衰减随声波频率的变化有. A.声速不...
啜哗泽力: 超声波测厚仪使用窍门超声波测厚仪最基本的测量方法如下: 1:在一个地方调查两个厚度,量测探头的两个相互分离的脸90°,量测工件的厚度是一个较小的值. 30 mm多点量测方法:量测值不稳定时,测点为中心,在圈内的多次约30毫米直...

孟州市15522272710: 天然气水合物的理化性质 -
啜哗泽力: 天然气水合物燃烧后几乎不产生任何残渣,污染比煤、石油、天然气都要小得多.1立方米可燃冰可转化为164立方米的天然气和0.8立方米的水.开采时只需将固体的“天然气水合物”升温减压就可释放出大量的甲烷气体.天然气水合物在海洋...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网