函数产生的背景是什么?

作者&投稿:用桂 (若有异议请与网页底部的电邮联系)
函数产生的历史背景~

1.早期函数概念——几何观念下的函数
十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。
1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。
2.十八世纪函数概念——代数观念下的函数
1718年约翰•贝努利(Johann Bernoulli ,瑞,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。
1755,欧拉(L.Euler,瑞士,1707-1783) 把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”
18世纪中叶欧拉(L.Euler,瑞,1707-1783)给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。”他把约翰•贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了 “随意函数”。不难看出,欧拉给出的函数定义比约翰•贝努利的定义更普遍、更具有广泛意义。
3.十九世纪函数概念——对应关系下的函数
1821年,柯西(Cauchy,法,1789-1857) 从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限。
1822年傅里叶(Fourier,法国,1768——1830)发现某些函数也已用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。
1837年狄利克雷(Dirichlet,德,1805-1859) 突破了这一局限,认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。”这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有数学家接受。这就是人们常说的经典函数定义。
等到康托(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象。
4.现代函数概念——集合论下的函数
1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”使豪斯道夫的定义很严谨了。
1930 年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”

随机过程的发展

随时间推进的随机现象的数学抽象。例如,某地第n年的年降水量xn由于受许多随机因素的影响,它本身具有随机性,因此便是一个随机过程。类似地,森林中某种动物的头数,液体中受分子碰撞而作布朗运动的粒子位置,百货公司每天的顾客数,等等,都随时间变化而形成随机过程。严格说来,现实中大多数过程都具有程度不同的随机性。
气体分子运动时,由于相互碰撞等原因而迅速改变自己的位置与速度,其运动的过程是随机的。人们希望知道,运动的轨道有什么性质(是否连续、可微等等)?分子从一点出发能达到某区域的概率有多大?如果有两类分子同时运动,由于扩散而互相渗透,那么扩散是如何进行的,要经过多久其混合才会变得均匀?又如,在一定时间内,放射性物质中有多少原子会分裂或转化?电话交换台将收到多少次呼唤?机器会出现多少次故障?物价如何波动?这些实际问题的数学抽象为随机过程论提供了研究的课题。
一些特殊的随机过程早已引起注意,例如1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链(见马尔可夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。虽然如此,随机过程一般理论的研究通常认为开始于30年代。1931年,Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。1951年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积分),为研究马尔可夫过程开辟了新的道路;近年来由于鞅论的进展,人们讨论了关于半鞅的随机微分方程;而流形上的随机微分方程的理论,正方兴未艾。60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。
研究随机过程的方法是多样的,主要可分为两大类:一是概率方法,其中用到轨道性质、停时、随机微分方程等;另一是分析方法,工具是测度论、微分方程、半群理论、函数论、希尔伯特空间等。但许多重要结果往往是由两者并用而取得的。此外,组合方法、代数方法在某些特殊随机过程的研究中也起一定的作用。研究的主要课题有:多指标随机过程、流形上的随机过程与随机微分方程以及它们与微分几何的关系、无穷质点马尔可夫过程、概率与位势、各种特殊过程的专题讨论等。
随机过程论的强大生命力来源于理论本身的内部,来源于其他数学分支如位势论、微分方程、力学、复变函数论等与随机过程论的相互渗透和彼此促进,而更重要的是来源于生产活动、科学研究和工程技术中的大量实际问题所提出的要求。目前随机过程论已得到广泛的应用,特别是对统计物理、放射性问题、原子反应、天体物理、化学反应、生物中的群体生长、遗传、传染病问题、排队论、信息论、可靠性、经济数学以及自动控制、无线电技术等的作用更为显著。
随机过程的定义 设 (Ω,F,p)为概率空间(见概率),T为指标t的集合(通常视t为时间),如果对每个t∈T,有定义在Ω上的实随机变量x(t)与之对应,就称随机变量族x=为一随机过程(简称过程)。研究得最多的是T 为实数集R=(-∞,∞)的子集的情形;如果T为整数n的集,也称为随机序列。如果T是d维欧几里得空间Rd(d为大于1的正整数)的子集,则称x为多指标随机过程。
过程x实际上是两个变元(t,ω)(t∈T,ω ∈Ω)的函数,当t固定时,它是一个随机变量;当ω固定时,它是t的函数,称此函数为随机过程(对应于ω)的轨道或样本函数。
如不限于实值情况,可将随机变量与随机过程的概念作如下一般化:设(E,ε)为可测空间(即E为任意非空集,ε为E的某些子集组成的σ域),称x=(x(ω), ω∈Ω)为取值于E的随机元,如果对任一B∈ε,∈F。特别,如果为Rd中全体波莱尔集所成的σ域(称波莱尔域),则取值于Rd中的随机元即d维随机向量。如果其中RT为全体实值函数ƒ=(ƒ(t),t∈T)的集,而为包含一切RT中有限维柱集 的最小σ域,则取值于E的随机元x 即为上述的(实值)随机过程。如对每个t∈T,有取值于E 的随机元x(t)与之对应,则称为取值于E的随机过程。
以下如无特别声明,只讨论取值于(R 1,B1)的随机过程。
有穷维分布族 一维分布函数描述了随机变量取值的概率规律(见概率分布),对随机过程x=起类似作用的是它的全体有穷维分布函数:对任意 n个tj∈T,i=1,2,…,n,考虑的联合分布函数,,全体联合分布称为x 的有穷维分布族,它显然满足下列相容性条件:
① 对(1,2,…,n)的任一排列(λ1,λ2,…,λn),


② 若m<n,则。反之,有著名的柯尔莫哥洛夫定理:设已给T及一族分布函数如果它满足①、②,则必存在概率空间(Ω,F,p)及定义于其上的随机过程x,而且x的有穷维分布族重合于F。
从测度论的观点看,每一随机过程x=在(RT,BT)上产生一概率测度PX,称为x 的分布,它在上述柱集上的值就是
正态过程 有穷维分布都是正态分布的随机过程,又称高斯过程。就象一维正态分布被它的均值(见数学期望)和方差所确定一样,正态过程被它的均值函数m(t)=Ex(t)和协方差函数
λ(s,t)=Ex(s)x(t)-m(s)m(t)

所确定,其中λ(s,t)是对称非负定函数,即λ(s,t)=λ(t,s),而且对任意的 tj∈T及实数αj,1≤i≤n,有反之,对任给的有限实值函数m(t)和对称非负定函数λ(s,t),由柯尔莫哥洛夫定理可证,存在一个正态过程,以m(t)为其均值函数,以λ(s,t)为其协方差函数。
根据中心极限定理,许多实际问题中出现的随机过程可近似地视为正态过程。此外,正态过程有一系列的好性质,如它的最佳线性估计重合于条件期望,这一点在应用上是很方便的,既准确又便于计算。因此正态过程在实际中有广泛的应用,在无线电通讯及自动控制中尤为重要。为方便计,设m(t)呏0。任取tj,t∈T,用L(x(t1),x(t2), …,x(tn))表示由x(t1),x(t2),…,x(tn)的线性组合所构成的希尔伯特空间,x(t)在此空间上的投影记作


称为x(t)关于x(t1),x(t2),…,x(tn)的最佳线性估计,即线性最小均方误差估计;条件期望E(x(t)|x(t1),x(t2),…,x(tn))则是非线性的最小均方误差估计。对正态过程来讲,这两种估计以概率1相等。
可分性 设F是p-完备的,即F包含任何概率为零的集的一切子集。在随机过程的研究中,Ω的某些重要的子集并不能由事件(即F中的元素)经可列次集运算而得到。例如对一切若T不可列,则作为不可列多个事件的交,A未必是一个事件,也就谈不上它的概率。为了解决这类问题,杜布引进了随机过程可分性的概念。称过程x 关于T 的某一可列稠集Q可分(或简称可分),是指除了一个概率为零的集N外,x在每一t∈T 处的值,可以用限于Q的x在t附近的值来任意逼近;即任给不属于N的ω,存在∈Q,使得rj→t,且x(rj,ω)→x(t,ω)。所谓Q为T 的稠集,是指T 的每一点必是Q 中某个点列的极限。如果x 关于Q 可分,则可以证明上述的 A是一个事件,而且有p(A)=p()。如果过程x关于T的任一可列稠集都可分,则称x完全可分。
设x=与Y=为定义在概率空间(Ω,F,p),上的两个随机过程,如果对任何t∈T,p(x(t)=Y(t))=1,则称x与Y等价(x与Y互为修正);这时,x和Y有相同的有穷维分布族。虽然任给的过程 x未必可分,但杜布证明了下列重要结果:对任一过程x,必存在与它等价的可分过程Y 。因此在讨论仅与有穷维分布有关的性质时,可取一可分过程Y来代替x。
过程x称为随机连续,如果对任一t0∈T,在依概率收敛的意义下(见概率论中的收敛)有,对随机连续的过程x,必存在一个完全可分过程Y与之等价。
可测性 为了研究样本函数对t的积分等问题,需要x(t,ω)关于两个变量(t,ω)的可测性。设T是R中某区间,B(T)是T中全体波莱尔集所成的σ域,B(T)×F表示乘积σ域,μ=L×P表示勒贝格测度L(见测度论)与p的乘积测度,表示 B(T)×F关于μ的完备化σ域。
称随机过程x为可测的,如果对任一实数α,有: 称随机过程x 为波莱尔可测的,如果对任一实数α,有。如果过程x 随机连续,则必存在与x 等价的、可测而且完全可分的过程Y。
有时还需要更强的可测性。设给了F的一族子σ 域,其中T=R+=)×。
循序可测过程一定是适应的而且是波莱尔可测的,但逆之不然,除非样本函数性质较好。例如所有样本函数都右连续的适应过程一定是循序可测。使一切样本函数右连续的适应过程都可测的T×Ω上的最小σ域,称为可选σ域,关于可选σ域可测的过程称为可选过程。可见,可选可测性是比循序可测性更强的一种可测性。进一步,使一切样本函数连续的适应过程都可测的T ×Ω上的最小σ域,称为可料σ域,关于可料σ域可测的过程称为可料过程。这又是一种比可选可测性更强的可测性。可以证明,样本函数左连续的适应过程都是可料过程。
轨道性质 当人们观察物体作随机运动时,最感兴趣的问题之一是它的轨道性状,因此随机过程论中一个重要问题是研究轨道性质,例如探讨在什么条件下,过程的轨道x(t,ω), α≤t≤b,以概率1有界,或无第二类断点,或是阶梯函数,或是连续函数,等等。函数ƒ(t)在上无第二类断点是指:对每一个t0∈(α,b),存在左、右极限及 而在α、b)处,则存在单侧极限。
设过程可分,而且存在常数α>0,ε>0,с≥0,使得对任意的t∈,t+Δt∈,有,则过程的轨道以概率1在上一致连续。设可分过程随机连续,而且存在常数p>0,q>0,r>0,с≥0,使得对任意的α≤t1≤t2≤t3≤b,有


则过程的轨道以概率 1无第二类断点。正态过程的轨道性质有更好的结果:对均值函数m(t)呏0的可分正态过程,只要存在с≥0,α>0,使得
,

x的轨道就以概率1连续。
停时 这一概念的引进是随机过程论发展史中的一件大事,它带来了许多新的研究课题,而且扩大了理论的应用范围。早在1945年,J.L.杜布关于马尔可夫链的文章中已经有了停时的思想。60年代杜布、Ε.Б.登金(又译邓肯)、R.M.布卢门塔尔等应用停时于鞅及强马尔可夫过程的研究;70年代,由于法国概率论学派的工作而使停时的理论更加完善。
直观上,停时是描述某种随机现象发生的时刻,它是普通时间变量t的随机化。例如,灯泡的寿命、一场球赛持续的时间都可看成是停时。又如,作随机运动的粒子首次到达某集A 的时刻τ,τ(ω)=inf,且约定inf═=∞,当x 的轨道连续而且A是一个闭集时,τ就是一个停时,它是一个随机变量,而且对任何t≥0,∈σ。
一般地,设在可测空间(Ω,F)中已给F的一族单调、右连续、完备的子σ 域族,称定义在Ω上的非负可测函数τ=τ(ω)(可取+∞为值)为 停时,如果对任意 t≥0,总有∈。这一定义的直观背景是:把理解为到t为止的全部信息,一个可观测的随机现象发生的时刻τ是否不迟于t这一信息应包含在之中。
类似于,对停时τ可以定义σ域,其中为包含一切的最小σ域。Fτ可理解为过程到τ为止的全部信息。
停时有许多好的性质,例如,若τ1、τ2是停时,则τ1∨τ2、τ1∧τ2也是停时,其中,;还有,这里表示包含、的最小σ域;进一步,若是一列停时,则也是停时。更细致地研究停时,需要对其进行分类,重要的类型有可料时、绝不可及时等。
二阶过程 均值和方差都有限的实值或复值随机过程称为二阶过程。二阶过程理论的重要结果之一是它的积分表示。设F是可测空间(∧,A)上的有限测度,如果对每一A∈A,有一复值随机变量Z(A)与它对应,且满足:①E|Z(A)|2< ∞;②则称Z=为(∧,A)上的正交随机测度。定义在∧上、关于A可测而且关于F平方可积的函数全体记为L2(∧,A,F)。给了一个正交随机测度Z,一族函数,, 就可以产生一个二阶过程,满足
(1)

它的二阶矩为
。 (2)

反之,对给定的二阶过程,只要它的二阶矩有积分表示(2),就一定存在一个正交随机测度Z,使过程本身有积分表示(1)。(1)和(2)分别称为过程x和它的二阶矩的谱表示。对均方连续的实二阶过程,则有级数展开式 其中是标准正交实随机变量序列,即;δnm=0,n=m时,δnm=1),λn是积分方程的本征值,ψn是相应的本征函数
Γ(t,s)=Ex(t)x(s)。

特殊随机过程类 对过程的概率结构作各种假设,便得到各类特殊的随机过程。除上述正态过程、二阶过程外,重要的还有独立增量过程、马尔可夫过程、平稳过程、鞅点过程和分支过程等。贯穿这些过程类的有两个最重要最基本的过程,布朗运动和泊松过程,它们的结构比较简单,便于研究而应用又很广泛。从它们出发,可以构造出许多其他过程。这两种过程的轨道性质不同,前者连续而后者则是上升的阶梯函数。
广义过程 正如从普通函数发展到广义函数一样,随机过程也可发展到广义过程。设D为R上全体无穷次可微且支集有界的实值函数φ的集,定义在D上的连续线性泛函称为广义函数、全体广义函数的集记为Dx。考虑D×Ω上的二元函数x(φ,ω),如果对固定的ω,x(·,ω)∈Dx是广义函数,而对固定的φ,x(φ,·)是随机变量,则称为定义在(Ω,F,p)上的广义过程。它在φ1,φ2,…,φn上的联合分布为


全体这种联合分布构成了广义过程x的"有穷维分布族"。前两阶矩分别称为均值泛函


和相关泛函


根据有穷维分布族的性质,也可以定义特殊的广义过程类,象广义平稳过程、广义正态过程等。例如,若对D中任意有限个线性独立函数φ1,φ2,…,φn,有限维分布都是正态分布,则称x=为广义正态过程。

函数就是在某变化过程中有两个变量X和Y,变量Y随着变量X一起变化,而且依赖于X。如果变量X取某个特定的值,Y依确定的关系取相应的值,那么称Y是X的函数。这一要领是由法国数学家黎曼在19世纪提出来的,但是最早产生于德国的数学家菜布尼茨。他和牛顿是微积分的发明者。17世纪末,在他的文章中,首先使用了“function"一词。翻译成汉语的意思就是“函数。不过,它和我们今天使用的函数一词的内涵并不一样,它表示”幂”、“坐标”、“切线长”等概念。
直到18世纪,法国数学家达朗贝尔在进行研究中,给函数重新下了一个定义,他认为,所谓变量的函数,就是指由这些变量和常量所组成的解析表达式,即用解析式表达函数关系。后来瑞士的数学家欧拉又把函数的定义作了进一步的规范,他认为函数是能描画出的一条曲线。我们常见到的一次函数的图像、二次函数的图像、正比例函数的图像、反比例的图像等都是用图像法表示函数关系的。如果用达朗贝尔和欧拉的方法来表达函数关系,各自有它们的优点,但是如果作为函数的定义,还有欠缺。因为这两种方法都还停留在表面现象上,而没有提示出函数的本质来。
19世纪中期,法国数学家黎紧吸收了莱布尼茨、达朗贝尔和欧拉的成果,第一次准确地提出了函数的定义:如果某一个量依赖于另一个量,使后一个量变化时,前一个量也随着变化,那么就把前一个量叫做后一个量的函数。黎曼定义的最大特点在于它突出了就是之间的依赖、变化的关系,反映了函数概念的本质属性。

参考资料:中国教育信息网

你想问什么?什么叫函数的背景,我没有听懂


自然数和数产生的背景
因为生活和生产的需要,人类发明了数,也创造了数学。数学在我们的周围可以说无处不在。像0,1,2,3…这些自然数是人类历史上最早出现的数,在古代原始社会里,为了表示自然界物体的个数和事物的顺序,以及对物体的测量。

数系产生的社会背景
从数学发展史看,人类对无理数的发蒙始于古希腊毕达哥拉斯(Pythagoras,公元前582-497)学派,但二千四百年后才产生包括无理数在内的实数严格定义;从当今教育的知识体系看,学生在初中阶段开始接触无理数,直到大学毕业却仍然不明白无理数的实质含义。历史与现实两者的契合正好说明无理数的两面特征,应用性使得它是常见的...

数学发展史的背景?
数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。 第二时期 第一时期,初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成现在中学数学的主要内容。这个时期从公元5世纪开始,...

大数据时代已经到来,什么是大数据
一、大数据出现的背景进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上渗咐雀过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的证券公司等写进了投...

代数数和超越数产生的背景
代数数和超越数的产生背景是为了更好地描述实数集合中数的性质。明确结论是,实数集合中存在一些数,它们是代数数;还有一些数,它们是超越数。原因是,代数数是可以通过一个代数方程的多项式系数来描述的,而超越数是不能通过代数方程获得的。代数数和超越数的区分常常在数学中起着至关重要的作用,因为...

近代数学兴起的的背景是什么?
2、文艺复兴的推动,直接催生了近代科学。发现了人,提倡理性、追求科学。3、近代数学的产生不仅仅是古希腊数学的成长壮大,而且也受益于基督教文化传统的滋润与培育。基督教文化的主要作用是促成了一种新的实验数学观的形成,这种数学观对近代数学的实践产生了极大的影响;二是强烈的宗教动机成为近代数学的...

数字时代是什么意思
数字时代的意思如下:在信息技术高度发达的背景下,数字化和网络化成为社会经济发展的主要特征和基础,人们生活和工作中普遍依赖数字技术和互联网。知识拓展:数字时代是指随着信息技术的迅猛发展,数字化和网络化已经深入到各个领域和方面,对社会生活、经济发展、人们的生产、消费、交流等产生了深远的影响。...

定积分,导数的背景是什么?
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的...

阿拉伯数字的形成背景和过程是什么?
“0”的出现是数学史上一大创造。“0”一直被人们称为阿拉伯数字,其实,它的诞生地却是在古代印度,它的起源深受佛教大乘空宗的影响。大乘空宗流行于公元三至六世纪的古代印度。恰正是在它流行后期,在印度产生了新的整数的十进位值制记数法,规定出十个数字的符号。以前计算到十数时空位加一点。...

大数据的历史
大数据提出的背景:进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《 *** 》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券...

涪城区13134103474: 函数产生的历史背景和发展过程 -
云庾幸露:[答案] (一) ?马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽. ?自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思...

涪城区13134103474: 函数的背景和发展 -
云庾幸露: 数学是研究现实世界的空间形式和数量关系的.它研究的对象本来是十分具体的,但为了在比较纯粹的状况下来研究空间形式和数量关系,才不得不把客观对象的所有其它特征抛开不管,因此,数学的抽象完全舍弃了事物的质的内容,而仅仅保留...

涪城区13134103474: 函数产生的历史背景 -
云庾幸露: 1.早期函数概念——几何观念下的函数十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系.1673年前后笛卡尔(Descartes,法,1596...

涪城区13134103474: 函数产生的背景是什么? -
云庾幸露: 函数就是在某变化过程中有两个变量X和Y,变量Y随着变量X一起变化,而且依赖于X.如果变量X取某个特定的值,Y依确定的关系取相应的值,那么称Y是X的函数.这一要领是由法国数学家黎曼在19世纪提出来的,但是最早产生于德国的数学...

涪城区13134103474: 函数产生的社会背景?函数符号的故事?谢拉! -
云庾幸露:[答案] 数学史表明,重要的数学概念的产生和发展对数学发展起着不可估量的作用.有些重要的数学概念对数学分支的产生起着奠定性的作用.我们刚学过的函数就是这样的重要概念.在笛卡儿引入变量以后,变量和函数等概念日益渗透到...

涪城区13134103474: 1 函数产生的历史背景 2 函数的发展历程 3 与函数有关的数学家 -
云庾幸露:[答案] 1.1 早期函数概念——几何观念下的函数 十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系.1673年前后笛卡尔(De...

涪城区13134103474: 函数产生的社会背景
云庾幸露: 上世纪60年代,因为程序出错太多,程序员加班加点,修改错误的速度还比不上发现错误的速度快,很多程序员都进精神病院住院了,这样修改错误的人更少了,程序错误引起客户非常不满,影响社会稳定,因此函数就诞生了,使用函数可以减少错误,精神病院的程序员也出院了,重新投身编程的伟大事业中.

涪城区13134103474: 求数学中的函数发展史?注意紧扣一下几点:1)了解函数形成,发展的历史 2)函数产生的社会背景 3)函数概念发展的历史过程 4)函数符号的故事 5)... -
云庾幸露:[答案] 函数小史 数学史表明,重要的数学概念的产生和发展,对数学发展起着不可估量的作用,有些重要的数学概念对数学分支的产生起着奠定性的作用.我们刚学过的函数就是这样的重要概念. 在笛卡尔引入变量以后,变量和函数等概...

涪城区13134103474: 函数单调性的产生背景及意义?麻烦具体点 -
云庾幸露:[答案] 产生背景:现实生活中,常遇到这样的情形:一个量不断增加时,另一个量也随着不断增加;或者一个量不断增加时,另一个量反而随着不断减少.其实这就是单调性的概念.另外,如果用描点法作出函数的图象,我们会发现当我们的视线从左往右看...

涪城区13134103474: 函数的详细发展史和产生背景 -
云庾幸露: 随机过程的发展 随时间推进的随机现象的数学抽象.例如,某地第n年的年降水量xn由于受许多随机因素的影响,它本身具有随机性,因此便是一个随机过程.类似地,森林中某种动物的头数,液体中受分子碰撞而作布朗运动的粒子位置,百...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网