青藏高原主要断裂构造的航磁特征(彩图)

作者&投稿:祗温 (若有异议请与网页底部的电邮联系)
青藏高原的地质结构~

青藏高原位于中国第一级阶梯,高原面平均海拔4000-5000米。整体上,中国从青藏高原往北和往东地势急剧下降,往北到国境,往东到大兴安岭、太行山、伏牛山、武当山、武陵山一线等广大地区,除少数山地外,地势降到3000米以下,一些盆地高度只有1000米左右,为第二级阶梯。再往东地势更低,形成一些低山丘陵,除沿海山地与台湾山地一些高峰外,海拔多在1500米以下,东部的大平原高度不到200米,向海延伸到浅海大陆架,为第三级阶梯。这种地貌分布特征青藏高原在新生代强烈隆升有关,且每个地貌台阶的边坡常是一些新构造断裂分布位置,许多延绵千里的高大山脉的走向受断裂构造线的控制。距今8000万前,印度板块继续向北漂移,起了强烈的构造运动。地质学上把这段高原崛起的构造运动称为喜马拉雅运动。青藏高原的抬升过程不是匀速的运动,不是一次性的猛增,而是经历了几个不同的上升阶段。每次抬升都使高原地貌得以演进。距今一万年前,高原抬升速度更快,以平均每年7厘米速度上升,使之成为当今地球上的“世界屋脊”。在青藏高原,水和风的共同作用形成了巨厚的沉积地层。据成都理工大学地质调查研究院提交的1:25万温泉兵站幅地质报告,古生代出露的沉积地层厚度为6969米,中生代出露的沉积地层厚度为5353米,新生代出露的沉积地层厚度为2197米,合计厚度为14519米。由于覆盖等原因,各地质剖面是在不同的地点测的。沉积地层岩性主要为碎屑岩和灰岩。巨厚的沉积地层是青藏高原隆起的物质基础。当代青藏高原中部以风化为主,而边缘仍在不断上升。青藏高原外围经常发生强烈地震。这个高原在印度洋板块于五千万年前开始推挤欧亚板块,沉积作用形成了巨厚的欧亚大陆,在由北向赤道方向作用力和由东向西作用力的共同作用下隆起,喜马拉雅山脉就是在这个强大的推力之下形成。这座山脉在不稳定的结构地形推挤下,仍在往上升。每年大约上升一厘米左右。 青藏高原是地球上海拔最高、面积最大、年代最新、并仍在隆升的一个高原。它夹持于塔里木地台、中朝地台、扬子地台和印度地台之间,呈纺锤状。内部有一系列不同演化历史和不同源地的陆块、褶皱带相间排列,反映了特提斯(见特提斯地质)的复杂演化历史。统一高原的出现是新生代以来印度板块与欧亚大陆碰撞(见大陆碰撞)的结果。青藏高原由北向南包括祁连-柴达木、昆仑、巴颜喀拉、羌塘-昌都、冈底斯和喜马拉雅等6个构造带,各构造带之间为蛇绿混杂岩所代表的缝合带隔开。大致以龙木错-金沙江缝合带为界,北面的祁连-柴达木,昆仑、巴颜喀拉构造带等,属于欧亚古陆南缘的构造带,在早中元古代结晶基底上,发育了早古生代优地槽,加里东运动使地槽回返,形成褶皱基底,晚古生代转化为稳定的盖层。其中石炭-二叠纪出现含煤建造,暖水动物群和华夏植物群繁盛。南面的冈底斯、喜马拉雅构造带,在中晚元古代结晶基底上整合递变,从早古生代开始发育了地台盖层,海相沉积一直延续到始新世,其中晚石炭世-早二叠世广泛发育了冈瓦纳相冰海杂砾岩和冷水型生物群,是冈瓦纳古陆北缘的微陆块。由于这6个构造带最新海相地层层位和作为各构造带分界的缝合带,明显地从北向南依次变新,表明青藏高原是由欧亚大陆不断向南增生,冈瓦纳古陆北缘微陆块不断解体、北移、拼贴到欧亚大陆南缘而产生的。始新世青藏高原结束了洋壳演化和洋壳向欧亚大陆俯冲(见俯冲作用)的历史。由于印度洋不断扩张,已拼合的印度板块与欧亚大陆之间发生大陆岩石圈俯冲。在俯冲带地壳缩短,分层变形、分层加厚。经历了构造抬升和均衡隆升的阶段,在晚新生代青藏高原出现。青藏高原的形成主要是中更新世以来近200万年地壳隆升的结果,并且这一隆升过程至今尚未结束。青藏高原中若干条反映不同时期洋壳的蛇绿岩带,揭示了冈瓦纳古陆不断解体,向北漂移,与欧亚古陆碰撞、拼合,欧亚古陆不断增生的历史。主要蛇绿岩带和混杂堆积带如下:北祁连蛇绿岩带位于祁连中央隆起带北侧,沿玉门、肃南、祁连、门源一带出露了一套蛇绿岩,包括蛇纹石化橄榄岩、辉橄岩和纯橄岩;辉长岩、辉长辉绿岩;中基性海底喷发岩,主要为细碧岩、角斑岩,具枕状构造;放射虫硅质岩夹复理石砂板岩。呈北西-北西西向延伸600-700千米。带内发育有蓝闪石片岩,常出现在超镁铁岩上下盘,主要有绿帘石蓝闪片岩、石榴石蓝闪片岩和石英白云母蓝闪片岩3种组合类型,蓝闪石结晶粗大。大量生物化石 证明,本带包括震旦纪晚期、寒武纪和奥陶纪早期3期古蛇绿岩,它们的岩石组合大体相似。蛇绿岩的地球化学特征和放射虫硅质岩的存在,说明古北祁连洋盆处于洋中脊环境。昆仑蛇绿岩带沿西大滩-修沟-玛沁断裂带残留了华力西末期的洋壳残体。蛇绿岩已失序,西段未见重要露头,东段花石峡、玛沁、玛曲一带,发现了百余个超镁铁岩体,属蛇绿岩套。与蛇绿岩伴生的构造混杂岩和泥砾混杂岩的基质是早三叠世复理石,夹有大量二叠纪石灰岩和含煤碎屑岩等外来块体。龙木错-金沙江缝合带总体呈北西西向展布,东段向南偏转,主要表现为右行走滑断裂,有地震活动。在其西段锡金乌兰湖、大鹏湖、玛尔盖茶卡一带,发现了一套混杂堆积,在三叠纪砂板岩中,夹有大量二叠纪灰岩岩块和镁铁、超镁铁岩块;在中段胜利湖、若拉岗、狮头山一带,构造混杂堆积和蛇绿混杂堆积十分发育;东段金沙江混杂堆积带宽40公里,南北向展布,分东西两个带。西带为蛇绿混杂岩,在蛇纹岩基质中包卷了大量二叠纪放射虫硅质岩、石灰岩、细碧角斑岩岩块。东带为野复理石,中三叠统砂板岩中含有大量泥盆纪、石炭纪和二叠纪灰岩岩块。金沙江缝合带闭合于印支运动。班公错-怒江蛇绿岩带曾为古特提斯南域的一个深海盆,保存了一套完整的洋岛环境的蛇绿岩组合,许多地方可以看到完整的洋壳序列。包括超镁铁岩、堆晶辉长岩、粒玄岩岩墙、枕状玄武岩、球颗玄武岩和放射虫硅质岩。放射虫为三叠纪-侏罗纪生物组合。上侏罗统-下白垩统浅海相碎屑岩不整合覆盖其上,其间往往发育有超镁铁岩古风化壳。雅鲁藏布江蛇绿岩带沿印度河-雅鲁藏布江蛇绿岩断续出露,长达1700千米,南北宽10-50千米。多处可以看到完整的洋壳序列。包括地幔超镁铁岩、堆晶辉长岩、辉长岩、枕状拉斑玄武岩、辉绿岩席状岩墙(床)群,上覆灰绿色、紫红色放射虫硅质岩。由于板块俯冲,与蛇绿岩相伴,发育了泥砾混杂岩和蛇绿混杂岩。泥砾混杂岩常在蛇绿岩南侧,从三叠纪末到白垩纪,形成许多构造混杂岩块。晚白垩世泥砾混杂岩,其基质为杂色硅泥质类复理石,含二叠纪石灰岩、玄武岩,三叠纪砂板岩、侏罗纪砂岩、灰岩和早白垩世硅质岩岩块。蛇绿混杂岩往往在蛇绿岩带北侧,在蛇纹岩基质中混入了三叠纪砂岩、白垩纪放射虫硅质岩、辉长岩、火山岩岩块。日喀则蛇绿岩底盘发育了动力变质的角闪石石榴石片岩,其同位素年龄为0.81亿年,是蛇绿岩仰冲侵位形成的。 青藏高原被若干条板块缝合带分为7个地层区。祁连地层区主体由中下元古界结晶片岩组成的结晶基底和由下古生界变质基性、中基性火山岩夹变质碎屑岩组成的褶皱基底构成,上泥盆统红色磨拉石不整合其上。上古生界为浅海相地台型沉积盖层,二叠系为上叠内陆盆地碎屑堆积。柴达木地层区柴达木盆地被厚达6000-7000米的新生代碎屑岩所覆盖,前第三纪地层仅在盆地边缘零星出露。基底岩系包括中下元古界结晶片岩和下古生界巨厚的中酸性火山-沉积变质绿片岩系。在盆地东北欧龙布鲁克山发现一套从震旦系到奥陶系的浅海碳酸盐岩夹碎屑岩系,组成稳定的地台盖层,不整合在下元古界混合片麻岩上。侏罗系、白垩系为陆相碎屑岩,被分割在盆地边缘的一些中生代盆地内。昆仑地层区由下中元古界片岩、片麻岩、下古生界绿片岩和上古生界-中生界沉积盖层组成。沿布尔汉布达山出露的一套厚度巨大的变质中酸性火山岩-碎屑岩系,达绿片岩相,紧密褶皱,上泥盆统红色磨拉石不整合其上。石炭系-三叠系为浅海相碳酸盐岩、碎屑岩系,化石丰富。巴颜喀拉地层区在东昆仑-西秦岭以南,龙门山以西与金沙江之间,以广泛出露三叠系复理石砂板岩为特征,岩性单调,厚度巨大,化石稀少,组成紧密的线型褶皱。古生界及前寒武系仅在其边缘和大断裂带内零星出露。本区可进一步分为3个地层分区:①阿尼马卿地层分区。以中、下三叠统复理石砂板岩为主,夹二叠系碳酸盐岩、中基性火山岩外来块体,组成混杂堆积带。②巴颜喀拉地层分区。巴颜喀拉地层区主体,广泛分布三叠系复理砂板岩,局部夹薄层泥灰岩。东部边缘出露有前震旦纪结晶岩,震旦系-古生代为浅海相沉积盖层。侏罗系、白垩系和老第三系为山间磨拉石。③义敦-中甸地层分区。位于巴颜喀拉地层区西南边缘的金沙江东侧,沿金沙江有古生界出露,呈外来岩块,夹持在蛇绿混杂堆积和中三叠统野复理式碎屑岩中,形成混杂堆积带。羌塘-昌都地层区介于龙木错-金沙江缝合带与班公错-怒江缝合带之间的广大地区。前寒武系仅在喀喇昆仑和昌都地区零星出露,为结晶片岩。下古生界浅变质岩系,羌塘地区叫阿木刚群,昌都地区叫青泥洞组。上古生界在唐古拉地区为浅海-海陆交互相碳酸盐岩、含煤碎屑岩、含Schwagerinasp.,Fusulinasp.,Brac-hiophods等暖水型动物群和以Gigantopteris为代表的华夏植物群,在青海省称为乌丽煤系和开心岭煤系。在羌塘以西日土地区,石炭-二叠系为冈瓦纳相冰水型杂砾岩,以Eurydesma为代表的冷水型动物群繁盛,称为霍尔巴错岩系。三叠系以上统为主,为陆源碎屑岩、碳酸盐岩。诺利-里阿斯为含煤建造,唐古拉区叫土门坎拉群,昌都地区叫巴贡煤系。侏罗系为浅海-滨海-障壁海红色碎屑岩夹碳酸盐岩,含巨厚的膏盐建造。在唐古拉、昌都等几个陆缘盆地厚达5000米。白垩系、第三系为红色山间磨拉石。冈底斯地层区介于班公错-怒江缝合带与雅鲁藏布江缝合带之间的广大地区,中上元古界结晶岩系零星出露,叫念青唐古拉群和南迦巴瓦群。采自羊八井的眼球状片麻岩锆石铀铅等时线年龄为12.5亿年。奥陶系-白垩系为浅海台地相碳酸盐岩和碎屑岩。奥陶-志留系为生物灰岩、白云岩、瘤状灰岩、笔石页岩,厚仅数百米,化石丰富,其沉积建造、生物组合与喜马拉雅地区所见十分相似。上石炭-下二叠统为冈瓦纳相冰海杂砾岩,常见的冷水型生物有双壳类Eurydesma动物群和腕足类Ambi-kella-Anidanthusfusuformis动物群,以及冷水型珊瑚Amplexocarnia-Cyathaxonia组合。三叠系为浅变质复理石砂板岩,底部夹基性火山熔岩,出露在本区南、北边缘。侏罗-白垩系为浅海台地碎屑岩夹碳酸盐岩,化石丰富,以菊石和有孔虫为主。上白垩统-渐新统为红色山间磨拉石,沿冈底斯山间盆地堆积了巨厚的中酸性-酸性火山熔岩及凝灰岩。喜马拉雅地层区中上元古界结晶片岩沿高喜马拉雅出露,称珠穆朗玛群和聂拉木群。采自亚里的黑云斜长片麻岩锆石铀铅等时线年龄为12.5亿年。寒武系-始新统为连续沉积的地台盖层。其中上泥盆统为陆相碎屑岩。上石炭统-下二叠统为冈瓦纳相冰水沉积杂砾岩,含冷水型动物群(Eurydesma,Stenacisma,Neospirifer,Iylvolasma等)及舌羊齿(Glossopteris)植物群。在本区北部,沿康马-拉轨岗日一线,分布着上古生界结晶片岩,围绕一系列花岗岩穹隆出露。三叠系为浅变质复理石砂板岩,厚度巨大,可能是印度板块北缘陆基部位的沉积。 青藏高原的地质历史中岩浆活动频繁,随着板块构造的演化,形成一系列构造岩浆带。祁连构造岩浆带除早古生代有巨厚中基性火山喷溢外,沿中祁连隆起带还发育了两条花岗岩带,以花岗岩、片麻状花岗岩、花岗闪长岩为主,形成巨大岩基。根据侵位关系和同位素年龄,可分为4期。以加里东期(5.14-4.02亿年)为主,有元古宙中酸性小岩株零星出露,华力西期和燕山期中酸性岩主要在南祁连山。多为同熔性花岗岩,少数为改造型花岗岩。柴达木构造岩浆带岩浆活动主要见于盆地边缘,下古生代堆积了巨厚的中酸性熔岩及其凝灰岩,成为褶皱基底的主体。侏罗纪在个别盆地内有陆相安山岩 喷溢。中酸性侵入岩零星分布,以华力西期(3.28-2.68亿年)为主,其次为燕山期。加里东期侵入岩仅有少量闪长岩类小岩株在盆地北缘出露。布尔汉布达构造岩浆带除下古生代巨厚的中酸性熔岩及其凝灰岩组成浅变质的纳赤台群主体外,沿布尔汉布达山还有一条南北宽50-100千米,东西延长1300千米的花岗岩带,以花岗岩和花岗闪长岩为主。可分为4期,以华力西期(2.73亿年)为主,形成大岩基。有少量印支期、燕山期和加里东期(3.94-3.98亿年)的小岩株。华力西期花岗岩是晚古生代中期柴达木板块向南俯冲,洋壳消减,在岛弧区形成的同熔性花岗岩,少量为改造型花岗岩。巴颜喀拉构造岩浆带火山和中酸性深成活动都很微弱,仅有少量印支期和燕山期后造山期改造型小岩株沿断裂带出露。金沙江构造岩浆带有两条花岗岩带与金沙江蛇绿混杂岩及三叠纪巴塘群中基性火山岩带相伴。西带从江达,过德钦向南,长数百公里,多侵入于古生界,被三叠系不整合覆盖。主要为石英闪长岩和花岗闪长岩,具同熔型特征。东带沿雀儿山向南到义敦,以黑云母花岗岩和二长花岗岩为主,形成于印支期,具改造型特征。唐古拉构造岩浆带与班公错-怒江蛇绿岩带相伴,在其南侧以花岗闪长岩、黑云母花岗岩为主,形成岩基;在其北侧,以黑云母二长花岗岩为主,呈小岩株,侵入于侏罗系中。冈底斯构造岩浆带由钙碱性中酸性-酸性侵入杂岩组成巨大岩基,南北宽50-100千米,沿冈底斯山东西绵延千余千米,向西与拉达克花岗岩相连。形成于距今1.1-0.4亿年,以黑云母花岗岩为主,早期有辉石闪长岩、石英闪长岩。与之相伴,早第三纪发育了一系列火山盆地,堆积了巨厚的中酸性-酸性-偏碱性火山熔岩及其凝灰岩,有几个喷发旋回。在一些火山盆地中保存了较完好的火山机构。拉格岗日构造岩浆带沿喜马拉雅低分水岭,东起康马,向西经拉格岗日,至马拉山,展布着一个穹隆带。穹隆核部为花岗岩,翼部为上古生界、中生界变质地层。由片麻状二云母花岗岩和二云母石英二长岩组成,以康马岩体为典型。岩体为片麻状白云母花岗岩,顶部有侵蚀凹槽和花岗质砾岩,其上为石炭-二叠纪黑云母石榴石片岩,片岩与花岗岩二者片麻理完全一致。康马岩体是西藏花岗岩唯一达到锶均一的岩体,初始值Sri=0.7140±0.001,全岩Rb-Sr法等时线年龄为4.84、4.86亿年,反映了岩浆形成的时代;黑云母K-Ar法和V-Pb法年龄为2.66亿年,可能代表岩体与围岩遭受区域变质作用的时期;黑云母K-Ar法年龄0.1-0.2亿年,记载了康马岩体同喜马拉雅其他地质体遭受的最后一次热事件。这与喜马拉雅南坡、距主边界断裂不远处尼泊尔的马拉斯鲁岩体十分相似。后者是一组堇青石花岗岩,Rb-Sr法等时线年龄为4.66-5.11亿年。古生代岩浆活动为冈瓦纳古陆内陆壳中发育的改造型花岗岩。喜马拉雅构造岩浆带高喜马拉雅有许多浅色花岗岩,呈岩株、岩枝和岩脉沿构造软弱带侵入。以电气石白云母花岗岩、电气石二云母花岗岩为主,形成于距今0.2-0.1亿年,为典型的改造型花岗岩。 在1°×1°布格重力异常图和卫星磁异常图上,青藏高原表现为一个外形呈纺锤状的封闭负异常区,夹持在塔里木地台、扬子地台和印度地台的正异常区之间,形成一个不对称的“重力盆地”。异常边缘陡峭,内部平坦,与地质构造格局和地形轮廓基本一致。航磁异常、布格重力异常等值线和均衡重力异常等值线,主要有两个延展方向:高原中西部近东西向,高原东部呈南北向。地壳厚度与地壳结构在南北方向上的变化大于东西方向。这些特征表明高原地壳深部构造与地壳表层构造一致。高原内部浅源地震断层面解和高原中源地震断层面解,揭示出高原的现今应力场,其主压应力轴多近南北向或北北东向,高原东部边缘近东西向。这说明高原岩石圈存在一个以近南北向水平压应力为主,及与之成正交的张应力为辅的近代构造应力场。高原中西部一系列近东走向的逆冲断裂带、推覆构造带等压性构造和走滑压剪性构造,都是在这种构造应力场的背景下形成的。青藏高原地壳、上地幔介质在纵向与横向上均呈现出明显的不均一。岩石圈存在着清楚的块-层结构:纵向分层,横向分块。岩石圈厚度约140-170千米,地壳平均厚度70千米左右。地壳厚度在东西方向上较均匀,变化不大,而南北方向上变化较大,在几个主要断裂带上,莫霍面均发生错断。例如,雅鲁藏布江断裂带北侧,莫霍面比南侧抬升了8千米。同周围的地块相比,青藏高原地壳厚度要大一倍。爆炸地震和磁大地电流测深,揭示了高原地壳内部存在两个低速低阻层,它们是地壳内部物质对流、地壳加厚的滑移带和浅源地震的发震带。 据中国地质科学院地质力学研究所研究发现,2002年前,地处藏北腹地的中型湖泊兹格塘错持续萎缩;而在2006年,科学家发现2002年前扎过帐篷的湖岸阶地竟被完全淹没。测量结果表明,短短4年,兹格塘错水位竟然上升了1.8米。自20世纪70年代起湖面就在扩张的纳木错湖,近几年水量增速也明显加快。自2005年,湖面每年“长高”20-30厘米。这些数字的变化并不仅仅体现在科学研究上,它已经严重影响了农牧民的生活。据《科学时报》此前的报道,仅那曲地区中西部的6个县(区),就有10余个湖泊湖面出现明显扩张,近16万亩草场被淹没。青藏高原气温逐步升高。过去50年中,以每10年0.26℃的速度上升,远远高于全球变暖的平均速度,冬季升温尤为强烈。另外,青藏高原极端低温升高显著,极端高温也在上升。不断上涨的湖面业已淹没部分肥沃的草场,但更令人措手不及的,则是地质灾害的发生。据介绍,中印、中尼交界的藏东南地区,由地震、冰川、泥石流等因素形成了很多诸如易贡错、然乌错和古乡错的堰塞湖。 青藏高原湖水面积扩大,在纳木错湖多年来“多出的水”中,冰川融水占有了较大比重。纳木错湖自20世纪70年代起一直在扩张。近些年来,纳木错流域的冰川消融水量和降水量都在增加,远大于湖泊蒸发水量。这部分水量增量导致了湖面的迅速扩大。虽然大气降水对纳木错湖泊总水量的补给占有绝对地位,但监测发现,冰川加速消融才是纳木错湖面快速扩大的主导作用。2010年,中国科学院寒区旱区环境与工程研究所研究人员在大量观测试验和分析研究的基础上,初步估算出青藏高原多年冻土区地下冰的总储量达9528立方千米。分析表明,地下冰总储量达9528立方千米。其中,多年冻土上限下1米内地下冰总量为665立方千米,占总储量的7%;上限下1到10米深度段地下冰总量为2650立方千米,占27.8%;上限下10米以下深度段为6213立方千米,占65.2%。

  添加义项
  ?
  青藏高原 这是一个多义词,请在下列义项中选择浏览(共3个义项):

  中国西南部高原
  张千一作词、作曲歌曲
  米线乐团演唱版

  青藏高原 - 中国西南部高原 编辑词条
  青藏高原(Qinghai-Tibet Plateau,或Tibetan Plateau),中国最大、世界海拔最高的高原。大部在中国西南部,包括西藏自治区和青海省的全部、四川省西部、新疆维吾尔自治区南部,以及甘肃、云南的一部分。整个青藏高原还包括不丹、尼泊尔、印度、巴基斯坦、阿富汗、塔吉克斯坦、吉尔吉斯斯坦的部分,总面积250万平方公里。境内面积240万平方公里,平均海拔4000~5000米,有“世界屋脊”和“第三极”之称。是亚洲许多大河的发源地。
  基本信息
  中文名称
  青藏高原
  外文名称
  Qinghai-Tibet Plateau
  
  所属地区
  大部在中国西南
  面积
  240万平方公里(中国境内)

  目录
  1概述
  2地理位置
  3自然气候
  4形成原因
  
  5旅游景区
  6旅游指南
  7历史文化
  8青藏铁路
  
  9自然保护
  10相关新闻
  

  折叠编辑本段概述
  青藏高原(Qinghai-Tibet Plateau,或Tibetan Plateau),中国最大、世界海拔最高的高原。大部在中国西南部,包括西藏自治区和青海省[1]的全部、四川省西部、新疆维吾尔自治区南部,以及甘肃、云南的一部分。整个青藏高原还包括不丹、尼泊尔、印度、巴基斯坦、阿富汗、塔吉克斯坦、吉尔吉斯斯坦的部分,总面积250万平方公里。境内面积240万平方公里,平均海拔4000~5000米,有“世界屋脊”和“第三极”之称。是亚洲许多大河的发源地。
  折叠编辑本段地理位置
  折叠经纬度
  74°E ~104 °E,25°N~40 °N。
  位于昆仑山、祁连山、横断山脉和喜马拉雅山之间。
  折叠地质结构

  青藏高原位于我国第一级阶梯,高原面平均海拔4000~5000 m。从高原往北和往东地势急剧下降,往北到国境,往东到大兴安岭、太行山、伏牛山、武当山、武陵山一线等广大地区,除少数山地外,地势降到3000 m以下,一些盆地高度只有1000 m左右,为第二级阶梯。再往东地势更低,形成一些低山丘陵,除沿海山地与台湾山地一些高峰外,海拔多在1500 m以下,东部的大平原高度不到200 m,向海延伸到浅海大陆架,为第三级阶梯。这种地貌分布特征青藏高原在新生代强烈隆升有关,且每个地貌台阶的边坡常是一些新构造断裂分布位置,许多延绵千里的高大山脉的走向受断裂构造线的控制。
  青藏高原外围经常发生严重地震。这个高原在印度于五千万年前开始推挤欧亚大陆时隆起,喜马拉雅山脉就是在这个强大的推力之下形成。这座山脉在不稳定的结构地形推挤下,到现在仍在往上升。每年大约上升一厘米左右。
  折叠地质特点
  青藏高原是地球上海拔最高、面积最大、年代最新、并仍在隆升的一个高原。它夹持于塔里木地台、中朝地台、扬子地台和印度地台之间,呈纺锤状。内部有一系列不同演化历史和不同源地的陆块、褶皱带相间排列,反映了特提斯(见特提斯地质)的复杂演化历史。统一高原的出现是新生代以来印度板块与欧亚大陆碰撞(见大陆碰撞)的结果。
  基本构造格架和演化
  青藏高原由北向南包括祁连-柴达木、昆仑、巴颜喀拉、羌塘-昌都、冈底斯和喜马拉雅等6个构造带,各构造带之间为蛇绿混杂岩所代表的缝合带隔开。大致以龙木错-金沙江缝合带为界,北面的祁连-柴达木,昆仑、巴颜喀拉构造带等,属于欧亚古陆南缘的构造带,在早中元古代结晶基底上,发育了早古生代优地槽,加里东运动使地槽回返,形成褶皱基底,晚古生代转化为稳定的盖层。其中石炭-二叠纪出现含煤建造,暖水动物群和华夏植物群繁盛。南面的冈底斯、喜马拉雅构造带,在中晚元古代结晶基底上整合递变,从早古生代开始发育了地台盖层,海相沉积一直延续到始新世,其中晚石炭世-早二叠世广泛发育了冈瓦纳相冰海杂砾岩和冷水型生物群,是冈瓦纳古陆北缘的微陆块。
  由于这 6个构造带最新海相地层层位和作为各构造带分界的缝合带,明显地从北向南依次变新,表明青藏高原是由欧亚大陆不断向南增生,冈瓦纳古陆北缘微陆块不断解体、北移、拼贴到欧亚大陆南缘而产生的。始新世青藏高原结束了洋壳演化和洋壳向欧亚大陆俯冲(见俯冲作用)的历史。由于印度洋不断扩张,已拼合的印度板块与欧亚大陆之间发生大陆岩石圈俯冲。在俯冲带地壳缩短,分层变形、分层加厚。经历了构造抬升和均衡隆升的阶段,在晚新生代青藏高原出现。青藏高原的形成主要是中更新世以来近200万年地壳隆升的结果,并且这一隆升过程至今尚未结束。青藏高原中若干条反映不同时期洋壳的蛇绿岩带,揭示了冈瓦纳古陆不断解体,向北漂移,与欧亚古陆碰撞、拼合,欧亚古陆不断增生的历史。主要蛇绿岩带和混杂堆积带如下:
  北祁连蛇绿岩带位于祁连中央隆起带北侧,沿玉门、肃南、祁连、门源一带出露了一套蛇绿岩,包括蛇纹石化橄榄岩、辉橄岩和纯橄岩;辉长岩、辉长辉绿岩;中基性海底喷发岩,主要为细碧岩、角斑岩,具枕状构造;放射虫硅质岩夹复理石砂板岩。呈北西-北西西向延伸600~700公里。带内发育有蓝闪石片岩,常出现在超镁铁岩上下盘,主要有绿帘石蓝闪片岩、石榴石蓝闪片岩和石英白云母蓝闪片岩3种组合类型,蓝闪石结晶粗大。大量生物化石证明,本带包括震旦纪晚期、寒武纪和奥陶纪早期 3期古蛇绿岩,它们的岩石组合大体相似。蛇绿岩的地球化学特征和放射虫硅质岩的存在,说明古北祁连洋盆处于洋中脊环境。
  昆仑蛇绿岩带 沿西大滩-修沟-玛沁断裂带残留了华力西末期的洋壳残体。蛇绿岩已失序,西段未见重要露头,东段花石峡、玛沁、玛曲一带,发现了百余个超镁铁岩体,属蛇绿岩套。与蛇绿岩伴生的构造混杂岩和泥砾混杂岩的基质是早三叠世复理石,夹有大量二叠纪石灰岩和含煤碎屑岩等外来块体。
  龙木错-金沙江缝合带 总体呈北西西向展布,东段向南偏转,近期主要表现为右行走滑断裂,有地震活动。在其西段锡金乌兰湖、大鹏湖、玛尔盖茶卡一带,发现了一套混杂堆积,在三叠纪砂板岩中,夹有大量二叠纪灰岩岩块和镁铁、超镁铁岩块;在中段胜利湖、若拉岗、狮头山一带,构造混杂堆积和蛇绿混杂堆积十分发育;东段金沙江混杂堆积带宽40公里,南北向展布,分东西两个带。西带为蛇绿混杂岩,在蛇纹岩基质中包卷了大量二叠纪放射虫硅质岩、石灰岩、细碧角斑岩岩块。东带为野复理石,中三叠统砂板岩中含有大量泥盆纪、石炭纪和二叠纪灰岩岩块。金沙江缝合带闭合于印支运动。
  班公错-怒江蛇绿岩带 曾为古特提斯南域的一个深海盆,保存了一套完整的洋岛环境的蛇绿岩组合,许多地方可以看到完整的洋壳序列。包括超镁铁岩、堆晶辉长岩、粒玄岩岩墙、枕状玄武岩、球颗玄武岩和放射虫硅质岩。放射虫为三叠纪-侏罗纪生物组合。上侏罗统-下白垩统浅海相碎屑岩不整合覆盖其上,其间往往发育有超镁铁岩古风化壳。
  雅鲁藏布江蛇绿岩带 沿印度河-雅鲁藏布江蛇绿岩断续出露,长达1700公里,南北宽10~50公里。多处可以看到完整的洋壳序列。包括地幔超镁铁岩、堆晶辉长岩、辉长岩、枕状拉斑玄武岩、辉绿岩席状岩墙(床)群,上覆灰绿色、紫红色放射虫硅质岩。由于板块俯冲,与蛇绿岩相伴,发育了泥砾混杂岩和蛇绿混杂岩。泥砾混杂岩常在蛇绿岩南侧,从三叠纪末到白垩纪,形成许多构造混杂岩块。晚白垩世泥砾混杂岩,其基质为杂色硅泥质类复理石,含二叠纪石灰岩、玄武岩,三叠纪砂板岩、侏罗纪砂岩、灰岩和早白垩世硅质岩岩块。蛇绿混杂岩往往在蛇绿岩带北侧,在蛇纹岩基质中混入了三叠纪砂岩、白垩纪放射虫硅质岩、辉长岩、火山岩岩块。日喀则蛇绿岩底盘发育了动力变质的角闪石石榴石片岩,其同位素年龄为0.81亿年,是蛇绿岩仰冲侵位形成的。
  折叠地层
  青藏高原被若干条板块缝合带分为 7个地层区。
  祁连地层区 主体由中下元古界结晶片岩组成的结晶基底和由下古生界变质基性、中基性火山岩夹变质碎屑岩组成的褶皱基底构成,上泥盆统红色磨拉石不整合其上。上古生界为浅海相地台型沉积盖层,二叠系为上叠内陆盆地碎屑堆积。
  柴达木地层区 柴达木盆地被厚达6000~7000米的新生代碎屑岩所覆盖,前第三纪地层仅在盆地边缘零星出露。基底岩系包括中下元古界结晶片岩和下古生界巨厚的中酸性火山-沉积变质绿片岩系。在盆地东北欧龙布鲁克山发现一套从震旦系到奥陶系的浅海碳酸盐岩夹碎屑岩系,组成稳定的地台盖层,不整合在下元古界混合片麻岩上。侏罗系、白垩系为陆相碎屑岩,被分割在盆地边缘的一些中生代盆地内。
  昆仑地层区 由下中元古界片岩、片麻岩、下古生界绿片岩和上古生界-中生界沉积盖层组成。沿布尔汉布达山出露的一套厚度巨大的变质中酸性火山岩-碎屑岩系,达绿片岩相,紧密褶皱,上泥盆统红色磨拉石不整合其上。石炭系-三叠系为浅海相碳酸盐岩、碎屑岩系,化石丰富。
  巴颜喀拉地层区 在东昆仑-西秦岭以南,龙门山以西与金沙江之间,以广泛出露三叠系复理石砂板岩为特征,岩性单调,厚度巨大,化石稀少,组成紧密的线型褶皱。古生界及前寒武系仅在其边缘和大断裂带内零星出露。本区可进一步分为 3个地层分区:①阿尼马卿地层分区。以中、下三叠统复理石砂板岩为主,夹二叠系碳酸盐岩、中基性火山岩外来块体,组成混杂堆积带。②巴颜喀拉地层分区。巴颜喀拉地层区主体,广泛分布三叠系复理砂板岩,局部夹薄层泥灰岩。东部边缘出露有前震旦纪结晶岩,震旦系-古生代为浅海相沉积盖层。侏罗系、白垩系和老第三系为山间磨拉石。③义敦-中甸地层分区。位于巴颜喀拉地层区西南边缘的金沙江东侧,沿金沙江有古生界出露,呈外来岩块,夹持在蛇绿混杂堆积和中三叠统野复理式碎屑岩中,形成混杂堆积带。
  羌塘-昌都地层区 介于龙木错-金沙江缝合带与班公错-怒江缝合带之间的广大地区。前寒武系仅在喀喇昆仑和昌都地区零星出露,为结晶片岩。下古生界浅变质岩系,羌塘地区叫阿木刚群,昌都地区叫青泥洞组。上古生界在唐古拉地区为浅海-海陆交互相碳酸盐岩、含煤碎屑岩、含Schwagerina sp.,Fusulina sp.,Brac-hiophods等暖水型动物群和以 Gigantopteris为代表的华夏植物群,在青海省称为乌丽煤系和开心岭煤系。在羌塘以西日土地区,石炭-二叠系为冈瓦纳相冰水型杂砾岩,以Eurydesma为代表的冷水型动物群繁盛,称为霍尔巴错岩系。三叠系以上统为主,为陆源碎屑岩、碳酸盐岩。诺利-里阿斯为含煤建造,唐古拉区叫土门坎拉群,昌都地区叫巴贡煤系。侏罗系为浅海-滨海-障壁海红色碎屑岩夹碳酸盐岩,含巨厚的膏盐建造。在唐古拉、昌都等几个陆缘盆地厚达5000米。白垩系、第三系为红色山间磨拉石。
  冈底斯地层区 介于班公错-怒江缝合带与雅鲁藏布江缝合带之间的广大地区,中上元古界结晶岩系零星出露,叫念青唐古拉群和南迦巴瓦群。采自羊八井的眼球状片麻岩锆石铀铅等时线年龄为12.5亿年。奥陶系-白垩系为浅海台地相碳酸盐岩和碎屑岩。奥陶-志留系为生物灰岩、白云岩、瘤状灰岩、笔石页岩,厚仅数百米,化石丰富,其沉积建造、生物组合与喜马拉雅地区所见十分相似。上石炭-下二叠统为冈瓦纳相冰海杂砾岩,常见的冷水型生物有双壳类 Eurydesma动物群和腕足类Ambi-kell a-Anidanthus fusuformis动物群,以及冷水型珊瑚 Amplexocarnia-Cyathaxonia组合。三叠系为浅变质复理石砂板岩,底部夹基性火山熔岩,出露在本区南、北边缘。侏罗-白垩系为浅海台地碎屑岩夹碳酸盐岩,化石丰富,以菊石和有孔虫为主。上白垩统-渐新统为红色山间磨拉石,沿冈底斯山间盆地堆积了巨厚的中酸性-酸性火山熔岩及凝灰岩。
  喜马拉雅地层区 中上元古界结晶片岩沿高喜马拉雅出露,称珠穆朗玛群和聂拉木群。采自亚里的黑云斜长片麻岩锆石铀铅等时线年龄为12.5亿年。寒武系-始新统为连续沉积的地台盖层。其中上泥盆统为陆相碎屑岩。上石炭统-下二叠统为冈瓦纳相冰水沉积杂砾岩,含冷水型动物群(Eurydesma,Stenacisma,Neospirifer,Iylvolasma等)及舌羊齿(Glossopteris)植物群。在本区北部,沿康马-拉轨岗日一线,分布着上古生界结晶片岩,围绕一系列花岗岩穹隆出露。三叠系为浅变质复理石砂板岩,厚度巨大,可能是印度板块北缘陆基部位的沉积。
  岩浆活动
  青藏高原的地质历史中岩浆活动频繁,随着板块构造的演化,形成一系列构造岩浆带。祁连构造岩浆带 除早古生代有巨厚中基性火山喷溢外,沿中祁连隆起带还发育了两条花岗岩带,以花岗岩、片麻状花岗岩、花岗闪长岩为主,形成巨大岩基。根据侵位关系和同位素年龄,可分为 4期。以加里东期(5.14~4.02亿年)为主,有元古宙中酸性小岩株零星出露,华力西期和燕山期中酸性岩主要在南祁连山。多为同熔性花岗岩,少数为改造型花岗岩。
  柴达木构造岩浆带 岩浆活动主要见于盆地边缘,下古生代堆积了巨厚的中酸性熔岩及其凝灰岩,成为褶皱基底的主体。侏罗纪在个别盆地内有陆相安山岩喷溢。中酸性侵入岩零星分布,以华力西期(3.28~2.68亿年)为主,其次为燕山期。加里东期侵入岩仅有少量闪长岩类小岩株在盆地北缘出露。
  布尔汉布达构造岩浆带 除下古生代巨厚的中酸性熔岩及其凝灰岩组成浅变质的纳赤台群主体外,沿布尔汉布达山还有一条南北宽 50~100公里,东西延长1300公里的花岗岩带,以花岗岩和花岗闪长岩为主。可分为4期,以华力西期(2.73亿年)为主,形成大岩基。有少量印支期、燕山期和加里东期(3.94~3.98亿年)的小岩株。华力西期花岗岩是晚古生代中期柴达木板块向南俯冲,洋壳消减,在岛弧区形成的同熔性花岗岩,少量为改造型花岗岩。
  巴颜喀拉构造岩浆带 火山和中酸性深成活动都很微弱,仅有少量印支期和燕山期后造山期改造型小岩株沿断裂带出露。
  金沙江构造岩浆带 有两条花岗岩带与金沙江蛇绿混杂岩及三叠纪巴塘群中基性火山岩带相伴。西带从江达,过德钦向南,长数百公里,多侵入于古生界,被三叠系不整合覆盖。主要为石英闪长岩和花岗闪长岩,具同熔型特征。东带沿雀儿山向南到义敦,以黑云母花岗岩和二长花岗岩为主,形成于印支期,具改造型特征。
  唐古拉构造岩浆带 与班公错-怒江蛇绿岩带相伴,在其南侧以花岗闪长岩、黑云母花岗岩为主,形成岩基;在其北侧,以黑云母二长花岗岩为主,呈小岩株,侵入于侏罗系中。
  冈底斯构造岩浆带 由钙碱性中酸性-酸性侵入杂岩组成巨大岩基,南北宽50~100公里,沿冈底斯山东西绵延千余公里,向西与拉达克花岗岩相连。形成于距今1.1~0.4亿年,以黑云母花岗岩为主,早期有辉石闪长岩、石英闪长岩。与之相伴,早第三纪发育了一系列火山盆地,堆积了巨厚的中酸性-酸性-偏碱性火山熔岩及其凝灰岩,有几个喷发旋回。在一些火山盆地中保存了较完好的火山机构。
  拉格岗日构造岩浆带 沿喜马拉雅低分水岭,东起康马,向西经拉格岗日,至马拉山,展布着一个穹隆带。穹隆核部为花岗岩,翼部为上古生界、中生界变质地层。由片麻状二云母花岗岩和二云母石英二长岩组成,以康马岩体为典型。岩体为片麻状白云母花岗岩,顶部有侵蚀凹槽和花岗质砾岩,其上为石炭-二叠纪黑云母石榴石片岩,片岩与花岗岩二者片麻理完全一致。康马岩体是西藏花岗岩唯一达到锶均一的岩体,初始值Sri=0.7140±0.001,全岩Rb-Sr法等时线年龄为4.84、4.86亿年,反映了岩浆形成的时代;黑云母K-Ar法和V-Pb法年龄为2.66亿年,可能代表岩体与围岩遭受区域变质作用的时期;黑云母K-Ar法年龄0.1~0.2亿年,记载了康马岩体同喜马拉雅其他地质体遭受的最后一次热事件。这与喜马拉雅南坡、距主边界断裂不远处尼泊尔的马拉斯鲁岩体十分相似。后者是一组堇青石花岗岩,Rb-Sr法等时线年龄为4.66~5.11亿年。古生代岩浆活动为冈瓦纳古陆内陆壳中发育的改造型花岗岩。
  喜马拉雅构造岩浆带 高喜马拉雅有许多浅色花岗岩,呈岩株、岩枝和岩脉沿构造软弱带侵入。以电气石白云母花岗岩、电气石二云母花岗岩为主,形成于距今0.2~0.1亿年,为典型的改造型花岗岩。
  地球物理场与地壳结构
  在1°×1°布格重力异常图和卫星磁异常图上,青藏高原表现为一个外形呈纺锤状的封闭负异常区,夹持在塔里木地台、扬子地台和印度地台的正异常区之间,形成一个不对称的“重力盆地”。异常边缘陡峭,内部平坦,与地质构造格局和地形轮廓基本一致。航磁异常、布格重力异常等值线和均衡重力异常等值线,主要有两个延展方向:高原中西部近东西向,高原东部呈南北向。地壳厚度与地壳结构在南北方向上的变化大于东西方向。这些特征表明高原地壳深部构造与地壳表层构造一致。高原内部浅源地震断层面解和高原中源地震断层面解,揭示出高原的现今应力场,其主压应力轴多近南北向或北北东向,高原东部边缘近东西向。这说明高原岩石圈存在一个以近南北向水平压应力为主,及与之成正交的张应力为辅的近代构造应力场。高原中西部一系列近东走向的逆冲断裂带、推覆构造带等压性构造和走滑压剪性构造,都是在这种构造应力场的背景下形成的。
  青藏高原地壳、上地幔介质在纵向与横向上均呈现出明显的不均一。岩石圈存在着清楚的块-层结构:纵向分层,横向分块。岩石圈厚度约140~170公里,地壳平均厚度70公里左右。地壳厚度在东西方向上较均匀,变化不大,而南北方向上变化较大,在几个主要断裂带上,莫霍面均发生错断。例如,雅鲁藏布江断裂带北侧,莫霍面比南侧抬升了8公里。同周围的地块相比,青藏高原地壳厚度要大一倍。爆炸地震和磁大地电流测深,揭示了高原地壳内部存在两个低速低阻层,它们是地壳内部物质对流、地壳加厚的滑移带和浅源地震的发震带。
  折叠编辑本段自然气候
  由于其高度,青藏高原的空气比较干燥,稀薄,太阳辐射比较强,气温比较低。由于其地形的复杂和多变,青藏高原上气候本身也随地区的不同而变化很大。总的来说高原上降雨比较少。
  青藏高原本身也是影响地球气候的一个重要因素。古生物学和地质学的考察表面,青藏高原的隆起使全球的气候发生了巨大的变化。作为一个高大的阻风屏,它有效地将北方大陆的寒冷空气阻挡住了,使它们不能进入南亚。同时喜马拉雅山脉阻挡了南方温暖潮湿的空气北进,是造成南亚雨季的一个重要因素。
  青藏高原,被喻为“世界屋脊”,一向以其独特的人文和自然景观闻名于世,是科学探险、考察和生态旅游的胜地。而位于青藏高原地区形形色色的自然保护区,又是世界屋脊上生态环境最奇特、生物资源最丰富的自然资源宝库,具有极高的科学价值。[2][2]
  青藏高原地域辽阔,面积240万平方公里,占中国国土总面积的1/4。青藏高原自然保护区的一大特色是面积大。位于西藏北部高寒地区羌塘自然保护区,面积达24.7万平方公里,不仅冠居中国和亚洲,在全世界也是数一数二的特大面积自然保护区。此外,西藏申扎、珠峰等保护区的面积也达到了3至4万平方公里。这对于内地的自然保护区来说,是无法与之相比的。在漫长的地质发育与自然演替过程中,青藏高原不仅形成了与世了迥异的高寒草原与草甸生态系统,还兼有沙漠、湿地及多种森林类型自然生态系统。在这特殊的地理环境中保有许多蔚为奇观的地质遗迹和绚丽多姿的自然景观,蕴育了极其丰富的野生动植物资源。因此,青藏高原的自然保护区的类型也极为丰富多彩。
  在青藏高原,人们既可以看到以保护高原特有的综合性自然生态系统为目的的保护区,如拥有高山寒漠、草原与森林等山地垂直带的珠穆朗玛峰保护区;也可以见到以保护某一特殊植被类型或珍稀物种为目 的的保护区,如以保护热带季雨林为主的墨脱保护区和专为保护林芝巴吉的古老巨柏林而设置的保护点。
  青藏高原特殊的生态环境中生存着一些极具特色的珍稀野生动物,而专为保护这些“国宝”建立的保护区,更为全球野生动物保护组织和动物学家所瞩目。如为保护大熊猫为主的川西卧龙保护区就位于青藏高原东缘的横断山区,还有藏东类乌齐马鹿自然保护区和昌都芒康滇金丝猴保护区等。
  青藏高原地区自然风光奇丽,具有许多特有的地质地貌类型,为保护这些自然遗迹而建立的保护区,对于一般旅游者来说,更显得魅力无穷。其中最为著名的是以保护自然风景为主的四川南坪九寨沟保护区。此外,距九寨沟不远的松潘黄龙石灰泉钙华地貌保护区、贡嘎山海螺沟冰川森林公园、青海卓尼莲花山保护区和云南中甸碧塔海保护区等,也各具特色,具有很高的观赏价值。
  青藏高原的自然保护区丰富多彩,涵盖着深邃的科学内容。在全球最高、自然环境最为独特多样的区域内所建立的各类保护区,几乎包括了我国境内所有的主要陆地生态系统,尤其高原特有的高寒草地、荒漠及湖泊湿地等生态系统与有关的珍稀野生动植物及奇异的自然景观相结合而放射出的异彩,为世界罕见。它们不仅为人类提供了高原自然界的原始“本底”,保存了许多珍稀濒危动植物,而且也为开展有关青藏高原的地学、生物学等学科的研究,提供了理想的基地和天然实验室。
  青藏高原的自然保护区,为在这一地区独特多样的生态环境中生存的野生动植物提供了较为安全的繁衍场所。在青藏高原上,生活着大约210种野生哺乳动物,占全国总种数的50%左右。在这些野生动物中国家一、二级保护种占有很大比例,大熊猫、金丝猴、藏羚、野牦牛、藏野驴、 盘羊、雪豹、羚牛、白唇鹿、梅花鹿等著名动物都在其中。青藏高原地区有维管植物12000种以上,占全国总种数的40%左右,桫椤、巨柏、喜马拉雅长叶松、喜马拉雅红豆杉、长叶云杉、千果榄仁等珍稀濒危植物都在这一地区有分布或特产于此。尤其值得一提的是,青藏高原是世界上杜鹃花种类最为丰富的地区,有“杜鹃花王国”之誉。而这些珍稀动植物均是青藏高原自然保护区的主要保护对象。
  由于青藏高原地广人稀,人为干扰破坏相对较轻,大部分保护区自然生态系统保存完好,又由于高原自然生态系统较脆弱,易受外界因素干扰破坏,所以大多数采取封闭式的保护方式,禁止在保护区内进行非法或不合理的经营活动。对于一些已经开放旅游的森林公园和保护区,应提倡生态旅游,严格禁止破坏自然生态环境和动植物资源的旅游活动,正确处理好旅游与保护的矛盾,实现可持续发展的战略目标。

8.2.1 雅鲁藏布江断裂

该断裂带总体呈北西西—东西向,由两条主要断裂构成,航磁异常展现为两条基本平行的异常带。北带紧依冈底斯火山—岩浆弧,连续性好,以正负伴生的规则异常为特征,长度约1400km。南带长度约550km,沿已出露的蛇绿岩带分布。航磁异常带经上延20km后,该带仍为一高磁异常带,可见断裂的延伸较深。从重力资料来看,雅鲁藏布江断裂位于重力梯度带上。

8.2.2 噶尔(狮泉河)-申扎断裂

该断裂呈北西西-东西向延伸,其位置相当于前人所确定的噶尔(狮泉河)-纳木错深断裂(刘增乾等,1990),但航磁反映的断裂延伸更长,约1500km,航磁特征明显,主要显示为东西向延伸的强磁异常,呈串珠状分布,峰值高,一般为300~400nT,高者达400nT以上,主要由昂拉仁错、查木错、蔡尔错、阿果错、强果、浪木作等异常组成。磁场化极上延20km后仍有明显反映。

8.2.3 班公错-怒江断裂

该断裂为羌塘-昌都地块与冈底斯-念青唐古拉地块的分界线。总体走向为北西西—东西向,呈波状延伸,从班公错开始,经改则、东巧、丁青至怒江一线,测区内长约1500km,以发育有侏罗纪的复理石、类复理石、玄武质、安山质火山岩和蛇绿混杂岩为特征。

班公错-怒江断裂的磁场特征表现为一条线性排列的串珠状异常,局部以正、负异常峰值伴生为特征,峰值为100~300nT。磁异常带与地面展布的班公错-东巧深断裂带相对应,主要为基性、超基性岩体及中基性火山岩体的反映。

8.2.4 拉竹龙-金沙江断裂

该断裂呈近东西向延伸,为羌塘-昌都地块与可可西里-巴颜喀拉地块的分界线。由拉竹龙向东,该带大致沿金沙江展布,过玉树后随金沙江向东南急剧偏转,之后与哀牢山蛇绿岩带相连,绵延出境,在测区内长度约1450km。该断裂带在地面显示为一条岩浆岩隆起带,沿断裂断续分布了数十个华力西期、印支期、燕山期中酸性、中基性和超基性小岩体,带状分布明显。该断裂的东段航磁特征较明显,呈带状展布,而中西段反映较差,呈串珠状磁异常展布,幅值较低。但断裂两侧的区域场特征差异较大,北侧为平静的弱磁场,南侧为在平静弱磁场上叠加了条带状、团块状强磁异常。

8.2.5 南昆仑断裂

南昆仑断裂西起木孜塔格峰北侧,向东经鲸鱼湖、库赛湖向东延伸,总体呈向北突出的弧形展布,测区内长约830km。在阿尼玛卿至阿拉克湖一段发育有蛇绿岩套,蛇绿岩主要由超镁铁岩、辉长岩和枕状熔岩及放射虫硅质岩组成,混杂堆积的基质为下、中三叠统的巴颜喀拉群,外来岩块为石炭纪—二叠纪灰岩和蛇绿岩。沿断裂出现印支期及燕山期花岗岩,还可见到始新世至更新世火山口多处。在磁场图上断裂显示为断续分布的串珠状异常,两侧磁场具有不同的特征,南侧为可可西里-巴颜喀拉平静磁场区,局部磁异常缺乏;北侧为东昆仑变化磁场区,其中有不少跳跃变化的磁异常。

8.2.6 中昆仑断裂

该断裂沿东昆仑山主脊延伸,西起吐拉,向东经大干沟、清水泉、青根河至鄂拉山,在测区内长约700km。在航磁图上该断裂显示为串珠状异常,其南北两侧具有不同的磁场特征,北侧显示出较强磁异常,南侧较为平静。断裂带北侧中酸性岩体成带出现,断裂以南中酸性岩大为减少,分布零星。沿断裂带有基性—超基性岩分布,由超镁铁岩、辉长岩、辉绿岩和基性熔岩组成。在重力图上断裂显示为重力梯度带。

8.2.7 阿尔金断裂

阿尔金断裂大致呈北东东向延伸,其西南端与西昆仑相交,向东北延伸,长约1200km以上。在磁场图中它显示为剧烈变化的线性正负磁异常带,分隔塔里木盆地和青藏高原两个磁异常迥然不同的地区。西北侧塔里木盆地为强度较大的区域性宽缓正磁异常,东南侧青藏高原北部为强度很低的弱磁异常。沿断裂有元古宙及华力西期蛇绿岩分布。断裂带主干线位于重力异常梯级带陡变位置上,前人认为它是切过地壳的深断裂。中元古代基性、中酸性和酸性火山岩主要集中在该断裂以北,而古生代华力西期侵入岩主要分布在南侧,紧靠深断裂展布。

8.2.8 西昆中断裂

相当于地质上所划分的库地缝合带。该带呈狭窄带状,在库地东侧走向北西西,西侧走向北西—北北西,长约800km。在航磁图上断裂反映为梯度带、线性磁异常带和不同磁异常走向的交汇带等特征,磁异常峰值较高,达300nT。地表可见蛇绿岩混杂体呈带状展布其中,如库地、柯岗、乌依塔克,有较强的磁性。该断裂规模较大,可与西昆仑南断裂相比,是分隔西昆仑南带和北带的分界线。

8.2.9 西昆南断裂

相当于前人所划的康西瓦断裂或康西瓦缝合带,断裂呈北西、北西西向弧形延伸,在东段转为北东向。西起塔什库尔干,向东经麻扎北、康西瓦北、艾依克勒克、乌鲁克库勒,再向东止于东西昆仑交接处,测区内长约720km。断裂显示为线性强磁异常带、串珠状强磁异常及磁场分区界线。西南侧磁场峰值较低,一般为30~50nT,其上叠加部分磁力高;东北侧磁场峰值较高,一般为100~300nT。沿断裂分布的阿尔克萨依南和赛力亚克达坂南元古宙和华力西期蛇绿岩都有较强的磁性,中酸性岩体也有磁性。




青藏高原主要断裂构造的航磁特征(彩图)
该断裂呈北西西-东西向延伸,其位置相当于前人所确定的噶尔(狮泉河)-纳木错深断裂(刘增乾等,1990),但航磁反映的断裂延伸更长,约1500km,航磁特征明显,主要显示为东西向延伸的强磁异常,呈串珠状分布,峰值高,一般为300~400nT,高者达400nT以上,主要由昂拉仁错、查木错、蔡尔错、阿果错、强果、...

藏东高原整体隆升构造
对藏东高原整体隆升起关键作用的断裂主要是NNW—NW向的壳幔型和较大的壳型断裂。其他小断裂对矿产的形成有利。这些壳幔型断裂和较大的断裂,不是青藏高原整体抬升阶段形成的断裂,而是青藏高原在古特提斯、新特提斯构造域发展过程中逐渐形成的,皆为高原整体隆升奠定了良好的断裂构造基础。青藏高原(...

青藏高原内部冲断带
图1-2-1 三江地区及青藏高原新生代构造简图 1—缝合线;2—平移断层;3—逆冲断层。断层名称:①澜沧江右旋走滑断层;②字呷寺右旋走滑断层;③沙马乡—理塘左旋走滑断层;④怒江右旋走滑断层;⑤阿尔金左旋走滑断层;⑥野牛沟—达日左旋走滑断层;⑦鲜水河左旋走滑断层;⑧玉树—邓柯—甘孜左旋走滑断层...

青藏高原构造体系
青藏高原构造体系在本区是另一个重要的构造体系,位于本研究区西部青藏高原的东南边缘横断山系地区。在本区有:①澜沧江断裂构造带,以近南北向由滇西北延伸,以南东向跨越滇西经向构造带至思茅、勐腊一带。②金沙江断裂构造带,由藏东南、滇西北以南南东走向延伸,与南东走向的红河断裂带相连。

青藏高原现今的地壳运动
图1.3.1 青藏高原的主要断裂构造和块体的现今地壳运动 据喜马拉雅山前恒河平原的GPS观测资料,印度地块的平均运动方向约为北20°东,平均运动速率为40~42mm\/a,而喜马拉雅山北坡的观察资料表明喜马拉雅地体的运动方向为北东30°~47°东,平均运动速率为29~31mm\/a,说明喜马拉雅地体和印度地块不仅运动速率不一致,而且...

青藏高原的地质结构
这种地貌分布特征青藏高原在新生代强烈隆升有关,且每个地貌台阶的边坡常是一些新构造断裂分布位置,许多延绵千里的高大山脉的走向受断裂构造线的控制。距今8000万前,印度板块继续向北漂移,起了强烈的构造运动。地质学上把这段高原崛起的构造运动称为喜马拉雅运动。青藏高原的抬升过程不是匀速的运动,不是一次性的猛增,...

新生代盆地、活动断裂的分布特征
2.青藏高原新生代活动断裂 高原新生代活动断裂特别发育,有三种基本组合型式。一为挤压性活动构造带,二为张性活动断裂带,三为走滑性活动带。沿走滑断裂带常有新生代走滑拉分盆地、断陷盆地,沿盆地边缘常为南北向正断层、裂谷、断陷等,南北向的张性活动断裂比较发育。按方向划分,高原发育4组不同...

青藏高原的特点
1、地质环境 青藏高原由北向南包括祁连-柴达木、昆仑、巴颜喀拉、冈底斯、喜马拉雅、羌塘-昌都等6个构造带,各构造带之间为蛇绿混杂岩所代表的缝合带隔开,大致以龙木错-金沙江缝合带为界。2、地貌特征 青藏高原高山大川密布,地势险峻多变,地形复杂,其平均海拔远远超过同纬度周边地区。青藏高原各处...

阿尔金断裂带的构造轮廓
阿尔金构造带横亘于青藏高原的西北部并构成青藏高原的西北部边界(图6-1)。关于这条构造带的性质和成因,前人从不同的学术观点有过较多的论述,结合近代板块构造观点对此构造断裂带进行研究的代表性意见主要有:李春昱(1980)认为“祁连山西端为阿尔金山大断裂所斜切,这个断裂是在地层褶皱的同时,由于...

青藏高原的地质地貌可以讲下吗
青藏高原的形成成因非常复杂。青藏高原是由可可西里-巴颜喀喇山、羌塘-青南、冈底斯山-念青唐古拉山和喜马拉雅山五大版块构成的,这五大版块在构造形态上有许多共同性。在地形上每一块体南部为山系,山脉不对称,南陡北缓,北部为湖区或谷地;南部通常为正常浅海相沉积,北部为大洋深海沉积;南部有一...

海南区19694886265: 从板块运动角度分析青藏高原的形成 -
濯育西利: 青藏高原每年向北推移与地壳板块运动有何关系------我国地势自西向东呈明显的梯级下降,西南部最高的一级阶梯是青藏高原,高原面平均海拔4000~5000 m,从高原往北和往东地势急剧下降,往北到国境,往东到大兴安岭,太行山,伏牛山,...

海南区19694886265: 中国四大盆地是什么(四大盆地都有何特色)
濯育西利: 1、塔里木盆地:位于新疆南部: 塔里木盆地是中国最大的内陆盆地,位于天山山脉... 地质构造上是周围被许多深大断裂所限制的稳定地块.地块基底为古老结晶岩,基底...

海南区19694886265: 青少年应该知道的青藏高原读后感 -
濯育西利: 你们看过《青少年应该知道的青藏高原》这本书吗?如果没有看过,那就听我来讲吧!、 首先我给你们介绍一下青藏高原. 青藏高原:中国最大、世界海拔最高的高原.大部在中国西南部,包括西藏自治区和青海省的全部、四川省西部、新...

海南区19694886265: 断层的类型及特征 -
濯育西利: 原发布者:内蒙银都大勇断层的类型及特征压性断62616964757a686964616fe59b9ee7ad9431333433623766层1.断裂面往往呈舒缓波状,沿走向方向尤其明显2.断裂面上常有较多的擦痕、阶步、磨光面.并出现动力变质的新生片状物(如云...

海南区19694886265: 青藏高原以什么为主? -
濯育西利: 西南部最高的一级阶梯是青藏高原.高原面平均海拔4000~5000 m,从高原往北和 鸟瞰青藏高原往东地势急剧下降,往北到国境,往东到大兴安岭、太行山、伏牛山、武当山、武陵山一线等广大地区.除少数山地外,地势降到3000 m以下,一...

海南区19694886265: 青藏高原平均海拔多高? -
濯育西利: 青藏高原平均海拔4000-5000米,是世界海拔最高的高原,有“世界屋脊”和“第三极”之称,是亚洲许多大河的发源地. 整个青藏高原还包括不丹、尼泊尔、印度、巴基斯坦、阿富汗、塔吉克斯坦、吉尔吉斯斯坦的部分,总面积近300万平方千米.中国境内面积257万平方千米.

海南区19694886265: 青藏高原多构造湖原因 -
濯育西利: 构造湖形成一般原因:大地表面,它可能是高山高原,也许是丘陵、平原,地面发生断裂,沿断裂方向出现坳陷.坳陷处逐渐储水,形成湖泊.青藏高原由于受高原隆起的影响,区内近似东西向的深大断裂谷发育,在构造谷地低洼处多有纵向延伸的湖泊带分布,湖泊长轴与区域构造线方向相吻合,说明湖盆的形成明显受区域断裂构造线的控制.如在唐古拉山和冈底斯山-念青唐古拉山之间的宽阔洼地中发育了众多的湖泊,较大的有纳木错、色林错、加仁错、昂则错等.以上仅供参考,希望对您有所帮助

海南区19694886265: 请介绍一下青海湖. -
濯育西利: 青海湖位于青藏高原上,距西宁150公里,面积4500平方公里,海拔3200米,湖水冰冷且盐份很高.青海湖蒙语叫“库诺尔”,藏语叫“错温布”,也就是“青色的湖”的意思.青海湖是我国最大的内陆湖泊.也是我国最大的咸水湖,面积...

海南区19694886265: 青藏高原是怎么样形成的?
濯育西利: 2.4亿年前,由于板块运动,分离出来的印度板块以较快的速度向北移动、挤压,其北部发生了强烈的褶皱断裂和抬升,促使昆仑山和可可西里地区隆生为陆地,随着印度...

海南区19694886265: 地球的圈层结构及各圈层的主要特点 -
濯育西利: 地球的圈层结构及各圈层的主要特点: 一、地球的圈层结构:包括由地核、地幔、地壳组成的内部圈层和由大气圈、水圈、生物圈组成的外部圈层.地球圈层结构分为地球外部圈层和地球内部圈层两大部分.地球外部圈层可进一步划分为三个基...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网