如何用三个全等直角三角形证明勾股定理

作者&投稿:陈林 (若有异议请与网页底部的电邮联系)
如何用三个全等的三角形证明勾股定理~

勾股定理的证明
【证法1】(课本的证明)









做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
, 整理得 .
【证法2】(邹元治证明)
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.
∵ RtΔHAE ≌ RtΔEBF,
∴ ∠AHE = ∠BEF.
∵ ∠AEH + ∠AHE = 90º,
∴ ∠AEH + ∠BEF = 90º.
∴ ∠HEF = 180º―90º= 90º.
∴ 四边形EFGH是一个边长为c的
正方形. 它的面积等于c2.
∵ RtΔGDH ≌ RtΔHAE,
∴ ∠HGD = ∠EHA.
∵ ∠HGD + ∠GHD = 90º,
∴ ∠EHA + ∠GHD = 90º.
又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD是一个边长为a + b的正方形,它的面积等于 .
∴ . ∴ .
【证法3】(赵爽证明)
以a、b 为直角边(b>a), 以c为斜
边作四个全等的直角三角形,则每个直角
三角形的面积等于 . 把这四个直角三
角形拼成如图所示形状.
∵ RtΔDAH ≌ RtΔABE,
∴ ∠HDA = ∠EAB.
∵ ∠HAD + ∠HAD = 90º,
∴ ∠EAB + ∠HAD = 90º,
∴ ABCD是一个边长为c的正方形,它的面积等于c2.
∵ EF = FG =GH =HE = b―a ,
∠HEF = 90º.
∴ EFGH是一个边长为b―a的正方形,它的面积等于 .
∴ .
∴ .
【证法4】(1876年美国总统Garfield证明)
以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 . 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.
∵ RtΔEAD ≌ RtΔCBE,
∴ ∠ADE = ∠BEC.
∵ ∠AED + ∠ADE = 90º,
∴ ∠AED + ∠BEC = 90º.
∴ ∠DEC = 180º―90º= 90º.
∴ ΔDEC是一个等腰直角三角形,
它的面积等于 .
又∵ ∠DAE = 90º, ∠EBC = 90º,
∴ AD‖BC.
∴ ABCD是一个直角梯形,它的面积等于 .
∴ .
∴ .
【证法5】(梅文鼎证明)
做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180º―90º= 90º.
又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形.
∴ ∠ABC + ∠CBE = 90º.
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90º.
即 ∠CBD= 90º.
又∵ ∠BDE = 90º,∠BCP = 90º,
BC = BD = a.
∴ BDPC是一个边长为a的正方形.
同理,HPFG是一个边长为b的正方形.
设多边形GHCBE的面积为S,则

,
∴ .

【证法6】(项明达证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.
过点Q作QP‖BC,交AC于点P.
过点B作BM⊥PQ,垂足为M;再过点
F作FN⊥PQ,垂足为N.
∵ ∠BCA = 90º,QP‖BC,
∴ ∠MPC = 90º,
∵ BM⊥PQ,
∴ ∠BMP = 90º,
∴ BCPM是一个矩形,即∠MBC = 90º.
∵ ∠QBM + ∠MBA = ∠QBA = 90º,
∠ABC + ∠MBA = ∠MBC = 90º,
∴ ∠QBM = ∠ABC,
又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA.
同理可证RtΔQNF ≌ RtΔAEF.
从而将问题转化为【证法4】(梅文鼎证明).
【证法7】(欧几里得证明)
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结
BF、CD. 过C作CL⊥DE,
交AB于点M,交DE于点
L.
∵ AF = AC,AB = AD,
∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面积等于 ,
ΔGAD的面积等于矩形ADLM
的面积的一半,
∴ 矩形ADLM的面积 = .
同理可证,矩形MLEB的面积 = .
∵ 正方形ADEB的面积
= 矩形ADLM的面积 + 矩形MLEB的面积
∴ ,即 .
【证法8】(利用相似三角形性质证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
在ΔADC和ΔACB中,
∵ ∠ADC = ∠ACB = 90º,
∠CAD = ∠BAC,
∴ ΔADC ∽ ΔACB.
AD∶AC = AC ∶AB,
即 .
同理可证,ΔCDB ∽ ΔACB,从而有 .
∴ ,即 .
【证法9】(杨作玫证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.
∵ ∠BAD = 90º,∠PAC = 90º,
∴ ∠DAH = ∠BAC.
又∵ ∠DHA = 90º,∠BCA = 90º,
AD = AB = c,
∴ RtΔDHA ≌ RtΔBCA.
∴ DH = BC = a,AH = AC = b.
由作法可知, PBCA 是一个矩形,
所以 RtΔAPB ≌ RtΔBCA. 即PB =
CA = b,AP= a,从而PH = b―a.
∵ RtΔDGT ≌ RtΔBCA ,
RtΔDHA ≌ RtΔBCA.
∴ RtΔDGT ≌ RtΔDHA .
∴ DH = DG = a,∠GDT = ∠HDA .
又∵ ∠DGT = 90º,∠DHF = 90º,
∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º,
∴ DGFH是一个边长为a的正方形.
∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a .
∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a).
用数字表示面积的编号(如图),则以c为边长的正方形的面积为

∵ = ,

∴ = . ②
把②代入①,得

= = .
∴ .

【证法10】(李锐证明)
设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).
∵ ∠TBE = ∠ABH = 90º,
∴ ∠TBH = ∠ABE.
又∵ ∠BTH = ∠BEA = 90º,
BT = BE = b,
∴ RtΔHBT ≌ RtΔABE.
∴ HT = AE = a.
∴ GH = GT―HT = b―a.
又∵ ∠GHF + ∠BHT = 90º,
∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,
∴ ∠GHF = ∠DBC.
∵ DB = EB―ED = b―a,
∠HGF = ∠BDC = 90º,
∴ RtΔHGF ≌ RtΔBDC. 即 .
过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE
= ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌
RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即 .
由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE.
∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE,
∴ ∠FQM = ∠CAR.
又∵ ∠QMF = ∠ARC = 90º,QM = AR = a,
∴ RtΔQMF ≌ RtΔARC. 即 .
∵ , , ,
又∵ , , ,

=
= ,
即 .


【证法11】(利用切割线定理证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得

=
=
= ,
即 ,
∴ .

【证法12】(利用多列米定理证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图). 过点A作AD‖CB,过点B作BD‖CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有

∵ AB = DC = c,AD = BC = a,
AC = BD = b,
∴ ,即 ,
∴ .

【证法13】(作直角三角形的内切圆证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.
∵ AE = AF,BF = BD,CD = CE,

= = r + r = 2r,
即 ,
∴ .
∴ ,
即 ,
∵ ,
∴ ,
又∵ = =
= = ,
∴ ,
∴ ,
∴ , ∴ .
【证法14】(利用反证法证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
假设 ,即假设 ,则由
= =
可知 ,或者 . 即 AD:AC≠AC:AB,或者 BD:BC≠BC:AB.
在ΔADC和ΔACB中,
∵ ∠A = ∠A,
∴ 若 AD:AC≠AC:AB,则
∠ADC≠∠ACB.
在ΔCDB和ΔACB中,
∵ ∠B = ∠B,
∴ 若BD:BC≠BC:AB,则
∠CDB≠∠ACB.
又∵ ∠ACB = 90º,
∴ ∠ADC≠90º,∠CDB≠90º.
这与作法CD⊥AB矛盾. 所以, 的假设不能成立.
∴ .

【证法15】(辛卜松证明)









设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长是a+b的正方形ABCD. 把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为 ;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为 = .
∴ ,
∴ .

【证法16】(陈杰证明)
设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上. 用数字表示面积的编号(如图).
在EH = b上截取ED = a,连结DA、DC,
则 AD = c.
∵ EM = EH + HM = b + a , ED = a,
∴ DM = EM―ED = ―a = b.
又∵ ∠CMD = 90º,CM = a,
∠AED = 90º, AE = b,
∴ RtΔAED ≌ RtΔDMC.
∴ ∠EAD = ∠MDC,DC = AD = c.
∵ ∠ADE + ∠ADC+ ∠MDC =180º,
∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,
∴ ∠ADC = 90º.
∴ 作AB‖DC,CB‖DA,则ABCD是一个边长为c的正方形.
∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,
∴ ∠BAF=∠DAE.
连结FB,在ΔABF和ΔADE中,
∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE,
∴ ΔABF ≌ ΔADE.
∴ ∠AFB = ∠AED = 90º,BF = DE = a.
∴ 点B、F、G、H在一条直线上.
在RtΔABF和RtΔBCG中,
∵ AB = BC = c,BF = CG = a,
∴ RtΔABF ≌ RtΔBCG.
∵ , , ,


=
=
=
∴ .

如图做辅助线
分析:四边形ACED的面积从大的一方面来说属于直角梯形,可利用直角梯形的面积公式进行表示;从组成来看,由三个直角三角形组成.应利用三角形的面积公式来进行表示.
解:依题意,图中的四边形ACED为直角梯形,△BDA为等腰直角三角形,
Rt△ABC和Rt△BDE的形状和大小完全一样,
设梯形ACED的面积为S,则S= (a+b)(a+b)= (a2+b2)+ab,
又S=SRtBDA+2SRt△ABC= c2+2× ab= c2+ab,
∴(a2+b2)+ab= c2+ab,
因此,a2+b2=c2.

勾股定理的证明
【证法1】(课本的证明)

做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
, 整理得 .
【证法2】(邹元治证明)
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.
∵ RtΔHAE ≌ RtΔEBF,
∴ ∠AHE = ∠BEF.
∵ ∠AEH + ∠AHE = 90º,
∴ ∠AEH + ∠BEF = 90º.
∴ ∠HEF = 180º―90º= 90º.
∴ 四边形EFGH是一个边长为c的
正方形. 它的面积等于c2.
∵ RtΔGDH ≌ RtΔHAE,
∴ ∠HGD = ∠EHA.
∵ ∠HGD + ∠GHD = 90º,
∴ ∠EHA + ∠GHD = 90º.
又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD是一个边长为a + b的正方形,它的面积等于 .
∴ . ∴ .
【证法3】(赵爽证明)
以a、b 为直角边(b>a), 以c为斜
边作四个全等的直角三角形,则每个直角
三角形的面积等于 . 把这四个直角三
角形拼成如图所示形状.
∵ RtΔDAH ≌ RtΔABE,
∴ ∠HDA = ∠EAB.
∵ ∠HAD + ∠HAD = 90º,
∴ ∠EAB + ∠HAD = 90º,
∴ ABCD是一个边长为c的正方形,它的面积等于c2.
∵ EF = FG =GH =HE = b―a ,
∠HEF = 90º.
∴ EFGH是一个边长为b―a的正方形,它的面积等于 .
∴ .
∴ .
【证法4】(1876年美国总统Garfield证明)
以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 . 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.
∵ RtΔEAD ≌ RtΔCBE,
∴ ∠ADE = ∠BEC.
∵ ∠AED + ∠ADE = 90º,
∴ ∠AED + ∠BEC = 90º.
∴ ∠DEC = 180º―90º= 90º.
∴ ΔDEC是一个等腰直角三角形,
它的面积等于 .
又∵ ∠DAE = 90º, ∠EBC = 90º,
∴ AD‖BC.
∴ ABCD是一个直角梯形,它的面积等于 .
∴ .
∴ .
【证法5】(梅文鼎证明)
做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.
∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
∴ ∠BEG =180º―90º= 90º.
又∵ AB = BE = EG = GA = c,
∴ ABEG是一个边长为c的正方形.
∴ ∠ABC + ∠CBE = 90º.
∵ RtΔABC ≌ RtΔEBD,
∴ ∠ABC = ∠EBD.
∴ ∠EBD + ∠CBE = 90º.
即 ∠CBD= 90º.
又∵ ∠BDE = 90º,∠BCP = 90º,
BC = BD = a.
∴ BDPC是一个边长为a的正方形.
同理,HPFG是一个边长为b的正方形.
设多边形GHCBE的面积为S,则

,
∴ .

【证法6】(项明达证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.
过点Q作QP‖BC,交AC于点P.
过点B作BM⊥PQ,垂足为M;再过点
F作FN⊥PQ,垂足为N.
∵ ∠BCA = 90º,QP‖BC,
∴ ∠MPC = 90º,
∵ BM⊥PQ,
∴ ∠BMP = 90º,
∴ BCPM是一个矩形,即∠MBC = 90º.
∵ ∠QBM + ∠MBA = ∠QBA = 90º,
∠ABC + ∠MBA = ∠MBC = 90º,
∴ ∠QBM = ∠ABC,
又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c,
∴ RtΔBMQ ≌ RtΔBCA.
同理可证RtΔQNF ≌ RtΔAEF.
从而将问题转化为【证法4】(梅文鼎证明).
【证法7】(欧几里得证明)
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结
BF、CD. 过C作CL⊥DE,
交AB于点M,交DE于点
L.
∵ AF = AC,AB = AD,
∠FAB = ∠GAD,
∴ ΔFAB ≌ ΔGAD,
∵ ΔFAB的面积等于 ,
ΔGAD的面积等于矩形ADLM
的面积的一半,
∴ 矩形ADLM的面积 = .
同理可证,矩形MLEB的面积 = .
∵ 正方形ADEB的面积
= 矩形ADLM的面积 + 矩形MLEB的面积
∴ ,即 .
【证法8】(利用相似三角形性质证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
在ΔADC和ΔACB中,
∵ ∠ADC = ∠ACB = 90º,
∠CAD = ∠BAC,
∴ ΔADC ∽ ΔACB.
AD∶AC = AC ∶AB,
即 .
同理可证,ΔCDB ∽ ΔACB,从而有 .
∴ ,即 .
【证法9】(杨作玫证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.
∵ ∠BAD = 90º,∠PAC = 90º,
∴ ∠DAH = ∠BAC.
又∵ ∠DHA = 90º,∠BCA = 90º,
AD = AB = c,
∴ RtΔDHA ≌ RtΔBCA.
∴ DH = BC = a,AH = AC = b.
由作法可知, PBCA 是一个矩形,
所以 RtΔAPB ≌ RtΔBCA. 即PB =
CA = b,AP= a,从而PH = b―a.
∵ RtΔDGT ≌ RtΔBCA ,
RtΔDHA ≌ RtΔBCA.
∴ RtΔDGT ≌ RtΔDHA .
∴ DH = DG = a,∠GDT = ∠HDA .
又∵ ∠DGT = 90º,∠DHF = 90º,
∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º,
∴ DGFH是一个边长为a的正方形.
∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a .
∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a).
用数字表示面积的编号(如图),则以c为边长的正方形的面积为

∵ = ,

∴ = . ②
把②代入①,得

= = .
∴ .

【证法10】(李锐证明)
设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).
∵ ∠TBE = ∠ABH = 90º,
∴ ∠TBH = ∠ABE.
又∵ ∠BTH = ∠BEA = 90º,
BT = BE = b,
∴ RtΔHBT ≌ RtΔABE.
∴ HT = AE = a.
∴ GH = GT―HT = b―a.
又∵ ∠GHF + ∠BHT = 90º,
∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,
∴ ∠GHF = ∠DBC.
∵ DB = EB―ED = b―a,
∠HGF = ∠BDC = 90º,
∴ RtΔHGF ≌ RtΔBDC. 即 .
过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE
= ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌
RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即 .
由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE.
∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE,
∴ ∠FQM = ∠CAR.
又∵ ∠QMF = ∠ARC = 90º,QM = AR = a,
∴ RtΔQMF ≌ RtΔARC. 即 .
∵ , , ,
又∵ , , ,

=
= ,
即 .

【证法11】(利用切割线定理证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得

=
=
= ,
即 ,
∴ .

【证法12】(利用多列米定理证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图). 过点A作AD‖CB,过点B作BD‖CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有

∵ AB = DC = c,AD = BC = a,
AC = BD = b,
∴ ,即 ,
∴ .

【证法13】(作直角三角形的内切圆证明)
在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.
∵ AE = AF,BF = BD,CD = CE,

= = r + r = 2r,
即 ,
∴ .
∴ ,
即 ,
∵ ,
∴ ,
又∵ = =
= = ,
∴ ,
∴ ,
∴ , ∴ .
【证法14】(利用反证法证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.
假设 ,即假设 ,则由
= =
可知 ,或者 . 即 AD:AC≠AC:AB,或者 BD:BC≠BC:AB.
在ΔADC和ΔACB中,
∵ ∠A = ∠A,
∴ 若 AD:AC≠AC:AB,则
∠ADC≠∠ACB.
在ΔCDB和ΔACB中,
∵ ∠B = ∠B,
∴ 若BD:BC≠BC:AB,则
∠CDB≠∠ACB.
又∵ ∠ACB = 90º,
∴ ∠ADC≠90º,∠CDB≠90º.
这与作法CD⊥AB矛盾. 所以, 的假设不能成立.
∴ .

【证法15】(辛卜松证明)

设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长是a+b的正方形ABCD. 把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为 ;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为 = .
∴ ,
∴ .

【证法16】(陈杰证明)
设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上. 用数字表示面积的编号(如图).
在EH = b上截取ED = a,连结DA、DC,
则 AD = c.
∵ EM = EH + HM = b + a , ED = a,
∴ DM = EM―ED = ―a = b.
又∵ ∠CMD = 90º,CM = a,
∠AED = 90º, AE = b,
∴ RtΔAED ≌ RtΔDMC.
∴ ∠EAD = ∠MDC,DC = AD = c.
∵ ∠ADE + ∠ADC+ ∠MDC =180º,
∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,
∴ ∠ADC = 90º.
∴ 作AB‖DC,CB‖DA,则ABCD是一个边长为c的正方形.
∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,
∴ ∠BAF=∠DAE.
连结FB,在ΔABF和ΔADE中,
∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE,
∴ ΔABF ≌ ΔADE.
∴ ∠AFB = ∠AED = 90º,BF = DE = a.
∴ 点B、F、G、H在一条直线上.
在RtΔABF和RtΔBCG中,
∵ AB = BC = c,BF = CG = a,
∴ RtΔABF ≌ RtΔBCG.
∵ , , ,


=
=
=
∴ .

到底用几个证明啊
用一个直角三角形是这样证明的。

直角三角形为ABC C为直角。
过C点做AB上的高 利用三角形相似。
三角形ADC相似于三角形ACB
AD:AC=AC:AB
得到 AC的平方=AD*AB
同理可得:
BC的平方=BD*AB
相加=AC的平方+BC的平方=AD*AB+AB*BD=AB(AD+BD)=AB*AB 证明完毕

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。如图所示,我们

图1 直角三角形

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:

勾2+股2=弦2

亦即:

a2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)

亦即:

c=(a2+b2)(1/2)

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化简后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

图2 勾股圆方图

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。
中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”

参考资料: http://www.mmit.stc.sh.cn/telecenter/CnHisScience/ggdl.h

斜边²=底边²+直角边²
例如:斜边=13CM,底边=5cm,求直角边:
13²-5²=169-25=144=12²

可以用三角形的面积相等,就可以了~


如何用勾股定理证明直角三角形全等。???
直角三角形常用公式包括坡度公式、二倍角公式、三倍角公式。1、坡度公式。通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h\/l,坡度的一般形式写成l:m形式,如i=1:5。如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h\/l=tan a。2、二倍角公式。正弦:sin...

初二几何数学。证明全等三角形有哪些方法 例如直角三角形中线是斜边一...
2.边角边(SAS):两条边和它们的夹角对应相等的两三角形全等。3.角角边(AAS):两个角和一条边对应相等的两三角形全等。4.角边角(ASA):两个角和它们的夹边对应相等的两三角形全等。5.HL:直角三角形中,斜边和一条直角边对应相等的两三角形全等。二个假命题 1.三个角对应相等的两三角形...

全等三角形的判定方法有哪几种
简称SAS(边角边)。 三、三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等。 简称ASA(角边角)。 四、三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等。简称AAS(角角边)。 五、在直角三角形中一条斜边和一条直角边对应相等...

怎么证明一个三角形是直角三角形
判定3:若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。判定4:两个锐角互余的三角形是直角三角形。判定5:证明直角三角形全等时可以利用HL ,两个三角形的斜边长对应相等,以及一个直角边对应相等,则两直角三角形全等。判定6:若两直线相交且它们的...

全等三角形的知识点总结
R.H.S. \/ H.L. (Right Angle-Hypotenuse-Side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:A.A.A. (Angle-...

证明全等三角形的方法有几种 全等三角形有何特征
4、角角边(AAS):角边角是指两个角和这两个角的公共边,角边角定理可以推出全等。角角边是指两个角和另外一个非公共边,角角边也可以推出全等。5、直角边(HL):HL定理是证明两个直角三角形全等的定理,通过证明两个直角三角形直角边和斜边对应相等来证明两个三角形全等。判定定理为:如果两...

把一个三角形平均分成三份,至少用三种不同方法表示?急!
1、方法一:连接重心与三个顶点,得到三个全等的三角形。(三角形重心是三角形三边中线的交点。当几何体为匀质物体时,重心与形心重合。)2、方法二:将任意一边分成三等份,将等分点与对面顶点连接,得到三个等底同高的三角形。3、方法三:连接重心与三边中点得到三个全等的四边形。

全等三角形的判定的过程,三
2.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。3.有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。4.有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)S...

怎么证明三个角对应相等?
三角形全等有五种判别方法:1、SSS,即边边边。三边对应相等的三角形是全等三角形。2、SAS,即边角边。两边及其夹角对应相等的三角形是全等三角形。3、ASA,即角边角。两角及其夹边对应相等的三角形全等。4、AAS,即角角边。两角及其一角的对边对应相等的三角形全等。5、RHS,即直角、斜边、边,又...

全等三角形判定方法有哪些?
下列两种方法不能验证为全等三角形:AAA(Angle-Angle-Angle)(角角角):三角相等,不能证全等,但能证相似三角形。SSA(Side-Side-Angle)(边边角):其中一角相等,且非夹角的两边相等。不能验证全等三角形的判定 AAA(角、角、角),指两个三角形的任何三个角都对应地相同。但这不能判定全等三角形,但...

峨边彝族自治县18480616341: 利用三个全等的直角三角形验证勾股定理利用三个全等的直角三角形拼成如图所示的形状来验证勾股定理. 我画的不准~题目上这三个直角三角形全等 -
泊狡四环:[答案] 如图做辅助线 分析:四边形ACED的面积从大的一方面来说属于直角梯形,可利用直角梯形的面积公式进行表示;从组成来看,由三个直角三角形组成.应利用三角形的面积公式来进行表示. 依题意,图中的四边形ACED为直角梯形,△BDA为等腰直...

峨边彝族自治县18480616341: 利用三个全等的直角三角形验证勾股定理 -
泊狡四环: 如图做辅助线 分析:四边形ACED的面积从大的一方面来说属于直角梯形,可利用直角梯形的面积公式进行表示;从组成来看,由三个直角三角形组成.应利用三角形的面积公式来进行表示. 解:依题意,图中的四边形ACED为直角梯形,△BDA为等腰直角三角形, Rt△ABC和Rt△BDE的形状和大小完全一样, 设梯形ACED的面积为S,则S= (a+b)(a+b)= (a2+b2)+ab, 又S=SRtBDA+2SRt△ABC= c2+2* ab= c2+ab, ∴(a2+b2)+ab= c2+ab, 因此,a2+b2=c2. 点评:本题考查了勾股定理的证明,需注意:组成的图形的面积有两种表示方法:大的面积的表示方法和各个组成部分的面积的和.

峨边彝族自治县18480616341: 用两块全等直角三角形证明勾股定理 -
泊狡四环:[答案] 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP‖BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥...

峨边彝族自治县18480616341: 4个全等直角三角形证明勾股定理 -
泊狡四环:[答案] 证明:由图得, 1/2*ab*4+(b-a)*(b-a)=c2, 整理得,2ab+b2-2ab+a2=c2, 即,a2+b2=c2.

峨边彝族自治县18480616341: 用三种方法证明勾股定理 -
泊狡四环: 勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + ...

峨边彝族自治县18480616341: 最简单的勾股定理的证明方法是什么? -
泊狡四环: 简单的勾股定理的证明方法如下: 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 发现四个直角三角形和一个边长为a的正方形和一个边...

峨边彝族自治县18480616341: 证明勾股定理的方法 -
泊狡四环: 1.画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边.这两个正方形全等,故面积相等.左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等.从左右两图中都把四个三角形去掉,图形剩下部...

峨边彝族自治县18480616341: 勾股定理最简单的证明方法 -
泊狡四环: 设两直角边和斜边分别由向量a、b、c表示,且有c=a+b,∵a*b=0 ∴│c│^2=│a+b│^2=│a│^2+│b│^2+2a*b=│a│^2+│b│^2向量的方法不是初步方法,但最简单!

峨边彝族自治县18480616341: 勾股定理的证明方法有那些? -
泊狡四环: 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名.首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊.1.中国方法:画两个边长为(a+b)的正方形,如图...

峨边彝族自治县18480616341: 你能否利用给出的3个直角三角形得到勾股定理吗?要求:画出图形并给出验证过程 -
泊狡四环: 如图,梯形的面积= 1 2 (a+b)(a+b)= 1 2 ab+ 1 2 ab+ 1 2 c2, 整理得,a2+b2=c2.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网