Hadoop读写文件时内部工作机制是怎样的

作者&投稿:雍叛 (若有异议请与网页底部的电邮联系)
hadoop能不能读写其他格式的文件?怎么读写?~

1、默认做wordcount计算是读取txt文本文件的,所以默认wordcount程序只能针对txt文件才行。
2、要想针对doc或excel只要通过pos或tika组件,读取相应的office文件,接入到相应的计数接口就好了。
3、好好看下wordcount的源码你就知道怎么做了,你重写一个相应的wordcount就可以搞定了。
试试看吧。

单机也好,集群也好,读文件速度只跟读取的文件所在地有关,有两种情况:1)读取的文件在本机2)读取的文件不在本机;如果文件在本机,读取速度主要跟磁盘读写速度有关,但是都文件不在本机时,读取文件就涉及到网络IO了。
总之,如果是读取本机文件,集群和单机没有区别,如果不是集群会涉及网络IO,而单机不会

  客户端通过调用FileSystem对象(对应于HDFS文件系统,调用DistributedFileSystem对象)的open()方法来打开文件(也即图中的第一步),DistributedFileSystem通过RPC(Remote Procedure Call)调用询问NameNode来得到此文件最开始几个block的文件位置(第二步)。对每一个block来说,namenode返回拥有此block备份的所有namenode的地址信息(按集群的拓扑网络中与客户端距离的远近排序,关于在Hadoop集群中如何进行网络拓扑请看下面介绍)。如果客户端本身就是一个datanode(如客户端是一个mapreduce任务)并且此datanode本身就有所需文件block的话,客户端便从本地读取文件。

  以上步骤完成后,DistributedFileSystem会返回一个FSDataInputStream(支持文件seek),客户端可以从FSDataInputStream中读取数据。FSDataInputStream包装了一个DFSInputSteam类,用来处理namenode和datanode的I/O操作。

  客户端然后执行read()方法(第三步),DFSInputStream(已经存储了欲读取文件的开始几个block的位置信息)连接到第一个datanode(也即最近的datanode)来获取数据。通过重复调用read()方法(第四、第五步),文件内的数据就被流式的送到了客户端。当读到该block的末尾时,DFSInputStream就会关闭指向该block的流,转而找到下一个block的位置信息然后重复调用read()方法继续对该block的流式读取。这些过程对于用户来说都是透明的,在用户看来这就是不间断的流式读取整个文件。

  当真个文件读取完毕时,客户端调用FSDataInputSteam中的close()方法关闭文件输入流(第六步)。

  如果在读某个block是DFSInputStream检测到错误,DFSInputSteam就会连接下一个datanode以获取此block的其他备份,同时他会记录下以前检测到的坏掉的datanode以免以后再无用的重复读取该datanode。DFSInputSteam也会检查从datanode读取来的数据的校验和,如果发现有数据损坏,它会把坏掉的block报告给namenode同时重新读取其他datanode上的其他block备份。

  这种设计模式的一个好处是,文件读取是遍布这个集群的datanode的,namenode只是提供文件block的位置信息,这些信息所需的带宽是很少的,这样便有效的避免了单点瓶颈问题从而可以更大的扩充集群的规模。


  Hadoop中的网络拓扑


  在Hadoop集群中如何衡量两个节点的远近呢?要知道,在高速处理数据时,数据处理速率的唯一限制因素就是数据在不同节点间的传输速度:这是由带宽的可怕匮乏引起的。所以我们把带宽作为衡量两个节点距离大小的标准。

  但是计算两个节点之间的带宽是比较复杂的,而且它需要在一个静态的集群下才能衡量,但Hadoop集群一般是随着数据处理的规模动态变化的(且两两节点直接相连的连接数是节点数的平方)。于是Hadoop使用了一个简单的方法来衡量距离,它把集群内的网络表示成一个树结构,两个节点之间的距离就是他们离共同祖先节点的距离之和。树一般按数据中心(datacenter),机架(rack),计算节点(datanode)的结构组织。计算节点上的本地运算速度最快,跨数据中心的计算速度最慢(现在跨数据中心的Hadoop集群用的还很少,一般都是在一个数据中心内做运算的)。

  假如有个计算节点n1处在数据中心c1的机架r1上,它可以表示为/c1/r1/n1,下面是不同情况下两个节点的距离:

  • distance(/d1/r1/n1, /d1/r1/n1) = 0 (processes on the same node)

  • distance(/d1/r1/n1, /d1/r1/n2) = 2 (different nodes on the same rack)

  • distance(/d1/r1/n1, /d1/r2/n3) = 4 (nodes on different racks in the same data center)

  • distance(/d1/r1/n1, /d2/r3/n4) = 6 (nodes in different data centers)

  如下图所示:


  Hadoop

  写文件


  现在我们来看一下Hadoop中的写文件机制解析,通过写文件机制我们可以更好的了解一下Hadoop中的一致性模型。


  Hadoop

  上图为我们展示了一个创建一个新文件并向其中写数据的例子。

  首先客户端通过DistributedFileSystem上的create()方法指明一个欲创建的文件的文件名(第一步),DistributedFileSystem再通过RPC调用向NameNode申请创建一个新文件(第二步,这时该文件还没有分配相应的block)。namenode检查是否有同名文件存在以及用户是否有相应的创建权限,如果检查通过,namenode会为该文件创建一个新的记录,否则的话文件创建失败,客户端得到一个IOException异常。DistributedFileSystem返回一个FSDataOutputStream以供客户端写入数据,与FSDataInputStream类似,FSDataOutputStream封装了一个DFSOutputStream用于处理namenode与datanode之间的通信。

  当客户端开始写数据时(第三步),DFSOutputStream把写入的数据分成包(packet), 放入一个中间队列——数据队列(data queue)中去。DataStreamer从数据队列中取数据,同时向namenode申请一个新的block来存放它已经取得的数据。namenode选择一系列合适的datanode(个数由文件的replica数决定)构成一个管道线(pipeline),这里我们假设replica为3,所以管道线中就有三个datanode。DataSteamer把数据流式的写入到管道线中的第一个datanode中(第四步),第一个datanode再把接收到的数据转到第二个datanode中(第四步),以此类推。

  DFSOutputStream同时也维护着另一个中间队列——确认队列(ack queue),确认队列中的包只有在得到管道线中所有的datanode的确认以后才会被移出确认队列(第五步)。

  如果某个datanode在写数据的时候当掉了,下面这些对用户透明的步骤会被执行:

  1)管道线关闭,所有确认队列上的数据会被挪到数据队列的首部重新发送,这样可以确保管道线中当掉的datanode下流的datanode不会因为当掉的datanode而丢失数据包。

  2)在还在正常运行的datanode上的当前block上做一个标志,这样当当掉的datanode重新启动以后namenode就会知道该datanode上哪个block是刚才当机时残留下的局部损坏block,从而可以把它删掉。

  3)已经当掉的datanode从管道线中被移除,未写完的block的其他数据继续被写入到其他两个还在正常运行的datanode中去,namenode知道这个block还处在under-replicated状态(也即备份数不足的状态)下,然后他会安排一个新的replica从而达到要求的备份数,后续的block写入方法同前面正常时候一样。

  有可能管道线中的多个datanode当掉(虽然不太经常发生),但只要dfs.replication.min(默认为1)个replica被创建,我们就认为该创建成功了。剩余的replica会在以后异步创建以达到指定的replica数。

  当客户端完成写数据后,它会调用close()方法(第六步)。这个操作会冲洗(flush)所有剩下的package到pipeline中,等待这些package确认成功,然后通知namenode写入文件成功(第七步)。这时候namenode就知道该文件由哪些block组成(因为DataStreamer向namenode请求分配新block,namenode当然会知道它分配过哪些blcok给给定文件),它会等待最少的replica数被创建,然后成功返回。


  replica是如何分布的


  Hadoop在创建新文件时是如何选择block的位置的呢,综合来说,要考虑以下因素:带宽(包括写带宽和读带宽)和数据安全性。如果我们把三个备份全部放在一个datanode上,虽然可以避免了写带宽的消耗,但几乎没有提供数据冗余带来的安全性,因为如果这个datanode当机,那么这个文件的所有数据就全部丢失了。另一个极端情况是,如果把三个冗余备份全部放在不同的机架,甚至数据中心里面,虽然这样数据会安全,但写数据会消耗很多的带宽。Hadoop 0.17.0给我们提供了一个默认replica分配策略(Hadoop 1.X以后允许replica策略是可插拔的,也就是你可以自己制定自己需要的replica分配策略)。replica的默认分配策略是把第一个备份放在与客户端相同的datanode上(如果客户端在集群外运行,就随机选取一个datanode来存放第一个replica),第二个replica放在与第一个replica不同机架的一个随机datanode上,第三个replica放在与第二个replica相同机架的随机datanode上。如果replica数大于三,则随后的replica在集群中随机存放,Hadoop会尽量避免过多的replica存放在同一个机架上。选取replica的放置位置后,管道线的网络拓扑结构如下所示:


  Hadoop

  总体来说,上述默认的replica分配策略给了我们很好的可用性(blocks放置在两个rack上,较为安全),写带宽优化(写数据只需要跨越一个rack),读带宽优化(你可以从两个机架中选择较近的一个读取)。


  一致性模型


  HDFS某些地方为了性能可能会不符合POSIX(是的,你没有看错,POSIX不仅仅只适用于linux/unix, Hadoop 使用了POSIX的设计来实现对文件系统文件流的读取 ),所以它看起来可能与你所期望的不同,要注意。

  创建了一个文件以后,它是可以在命名空间(namespace)中可以看到的:

  Path p = new Path("p");

  fs.create(p);

  assertThat(fs.exists(p), is(true));

  但是任何向此文件中写入的数据并不能保证是可见的,即使你flush了已经写入的数据,此文件的长度可能仍然为零:

  Path p = new Path("p");

  OutputStream out = fs.create(p);

  out.write("content".getBytes("UTF-8"));

  out.flush();

  assertThat(fs.getFileStatus(p).getLen(), is(0L));

  这是因为,在Hadoop中,只有满一个block数据量的数据被写入文件后,此文件中的内容才是可见的(即这些数据会被写入到硬盘中去),所以当前正在写的block中的内容总是不可见的。

  Hadoop提供了一种强制使buffer中的内容冲洗到datanode的方法,那就是FSDataOutputStream的sync()方法。调用了sync()方法后,Hadoop保证所有已经被写入的数据都被冲洗到了管道线中的datanode中,并且对所有读者都可见了:

  Path p = new Path("p");

  FSDataOutputStream out = fs.create(p);

  out.write("content".getBytes("UTF-8"));

  out.flush();

  out.sync();

  assertThat(fs.getFileStatus(p).getLen(), is(((long) "content".length())));

  这个方法就像POSIX中的fsync系统调用(它冲洗给定文件描述符中的所有缓冲数据到磁盘中)。例如,使用java API写一个本地文件,我们可以保证在调用flush()和同步化后可以看到已写入的内容:

  FileOutputStream out = new FileOutputStream(localFile);

  out.write("content".getBytes("UTF-8"));

  out.flush(); // flush to operating system

  out.getFD().sync(); // sync to disk (getFD()返回与该流所对应的文件描述符)

  assertThat(localFile.length(), is(((long) "content".length())));

  在HDFS中关闭一个流隐式的调用了sync()方法:

  Path p = new Path("p");

  OutputStream out = fs.create(p);

  out.write("content".getBytes("UTF-8"));

  out.close();

  assertThat(fs.getFileStatus(p).getLen(), is(((long) "content".length())));


  由于Hadoop中的一致性模型限制,如果我们不调用sync()方法的话,我们很可能会丢失多大一个block的数据。这是难以接受的,所以我们应该使用sync()方法来确保数据已经写入磁盘。但频繁调用sync()方法也是不好的,因为会造成很多额外开销。我们可以再写入一定量数据后调用sync()方法一次,至于这个具体的数据量大小就要根据你的应用程序而定了,在不影响你的应用程序的性能的情况下,这个数据量应越大越好。



可以只用一行代码来运行MapReduce作业:JobClient.runJon(conf),Job作业运行时参与的四个实体:


     1.JobClient 写代码,配置作业,提交作业。

     2.JobTracker:初始化作业,分配作业,协调作业运行。这是一个java程序,主类是JobTracker。

     3.TaskTracker:运行作业划分后的任务,即分配数据分配上执行Map或Reduce任务。

     4.HDFS:保存作业数据、配置信息等,保存作业结果。


Map/Reduce 作业总体执行流程:

     代码编写 ----> 作业配置  ---->  作业提交 ----> Map任务分配和执行 ----> 处理中间结果 ---->  Reduce任务分配与执行 ---->  输出结果

而对于每个作业的执行,又包含:

     输入准备 ----> 任务执行 ----> 输出结果

作业提交JobClient:

     JobClient的runJob方法产生一个Jobclient实例并调用其submitJob方法,然后runJob开始循环吗,并在循环中调用getTaskCompetionEvents方法,获得TaskCompletionEvent实例,每秒轮询作业进度(后面有介绍进度和状态更新),把进度写到控制台,作业完成后显示作业计数器,若失败,则把错误记录到控制台。


     submitJob方法作业提交的过程:

     1.向JobTracker请求一个新的JobId。

     2.检查作业相关路径,如果路径不正确就会返回错误。

     3.计算作业输入分片及其划分信息。

     4.将作业运行需要的资源(jar文件、配置文件等)复制到Shared HDFS,并

复制多个副本(参数控制,默认值为10)供tasktracker访问,也会将计算的分片复制到HDFS。

     5.调用JobTracker对象的submitJob()方法来真正提交作业,告诉JobTracker作业准备执行。


作业的初始化JobTracker:

     JobTracker收到submitJob方法调用后,会把调用放入到一个内部队列,由作业调度器(Job scheduler)进行调度并对其初始化。Job初始化即创建一个作业对象。

     当作业被调度后,JobTracker会创建一个代表这个作业的JobInProgress对象,并将任务和记录信息封装在这个对象中,以便跟踪任务状态和进程。

     初始化过程就是JobInProgress对象的initTasks方法进行初始化的。


     初始化步骤:

          1.从HDFS中读取作业对应的job.split信息,为后面的初始化做好准备。

          2.创建并初始化map和reduce任务。根据数据分片信息中的个数确定map task的个数,然后为每个map task生成一个TaskInProgress对象来处理数据分片,先将其放入nonRunningMapCache,以便JobTracker分配任务的时候使用。接下来根据JobConf中的mapred.reduce.tasks属性利用setNumReduceTasks()方法设置reduce task的数量,然后同map task创建方式。

          3.最后就是创建两个初始化task,进行map和reduce的初始化。


任务的分配JobTracker:

    消息传递HeartBeat: tasktracker运行一个简单循环定期发送心跳(heartbeat)给JobTracker。由心跳告知JobTracker自己是否存活,同时作为消息通道传递其它信息(请求新task)。作为心跳的一部分,tasktracker会指明自己是否已准备好运行新的任务,如果是,jobtracker会分配它一个任务。


    分配任务所属于的作业:在Jobtracker分配任务前需先确定任务所在的作业。后面会介绍到各种作业调度算法,默认是一个FIFO的作业调度。


    分配Map和Reduce任务:tasktracker有固定数量的任务槽,一个tasktracker可以同时运行多个Map和Reduce任务,但其准确的数量由tasktracker的核的数量和内存大小决定。默认调度器会先填满Map任务槽,再填Reduce任务槽。jobtracker会选择距离离分片文件最近的tasktracker,最理想情况下,任务是数据本地化(data-local)的,当然也可以是机架本地化(rack-local),如果不是本地化的,那么他们就需要从其他机架上检索数据。Reduce任务分配很简单,jobtracker会简单的从待运行的reduce任务列表中选取下一个来执行,不用考虑数据本地化。


任务的执行TaskTracker:

     TaskTracker收到新任务后,就要在本地运行任务了,运行任务的第一步就是通过localizedJob将任务本地化所需要的注入配置、数据、程序等信息进行本地化。


     1.本地化数据:从共享文件系统将job.split 、job.jar (在分布式缓存中)复制本地,将job配置信息写入job.xml。

     2.新建本地工作目录:tasktracker会加压job.jar文件到本工作目录。

     3.调用launchTaskForJob方法发布任务(其中会新建TaskRunner实例运行任务),如果是Map任务就启用MapTaskRunner,对于Reduce就是ReduceTaskRunner。

   

  在这之后,TaskRunner会启用一个新的JVM来运行每个Map/Reduce任务,防止程序原因而导致tasktracker崩溃,但不同任务间重用JVM还是可以的,后续会讲到任务JVM重用。


     对于单个Map,任务执行的简单流程是:

     1.分配任务执行参数

     2.在Child临时文件中添加map任务信息(Child是运行Map和Reduce任务的主进程)

     3.配置log文件夹,配置map任务的通信和输出参数

     4.读取input split,生成RecordReader读取数据

     5.为Map生成MapRunnable,依次从RecordReader中接收数据,并调用Map函数进行处理。

     6.最后将map函数的输出调用collect收集到MapOutputBuffer(参数控制其大小)中。


Streaming和Pipes:

     Streaming和Pipes都运行特殊的Map和Reduce任务,目的是运行用户提供的可执行程序并与之通信。


     Streaming:使用标准输入输出Streaming与进程进行通信。


     Pipes:用来监听套接字,会发送一个端口号给C++程序,两者便可建立链接。

     

进度和状态更新:

     一个作业和它的任务都有状态(status),其中包括:运行成功失败状态、Map/Reduce进度、作业计数器值、状态消息。


     状态消息与客户端的通信:

     1.对于Map任务Progress的追踪:progress是已经处理完的输入所占的比例。

     2.对于Reduce:稍复杂,reduce任务分三个阶段(每个阶段占1/3),复制、排序和Reduce处理,若reduce已执行一半的输入的话,那么任务进度便是1/3+1/3+1/6=5/6。

     3.任务计数器:任务有一组计数器,负责对任务运行各个事件进行计数。

     4.任务进度报告:如果任务报告了进度,便会设置一个标记以表明状态将被发送到tasktracker。有一个独立线程每隔三秒检查一次此标记,如果已设置,则告知tasktracker当前状态。

     5.tasktracker进度报告:tasktracker会每隔5秒(这个心跳是由集群大小决定,集群越大时间会越长)发送heartbeat到jobtracker,并且tasktracker运行的所有状态都会在调用中被发送到jobtracker。

     6.jobtracker合并各任务报告:产生一个表明所有运行作业机器所含任务状态的全局视图。

     前面提到的JobClient就是通过每秒查询JobTracker来接收最新状态,而且客户端JobClient的getJob方法可以得到一个RunningJob的实例,其包含了作业的所以状态信息。

     

作业的完成:

     当jobtracker收到作业最后一个任务已完成的通知后,便把作业状态设置成成功。JobClient查询状态时,便知道任务已成功完成,于是JobClient打印一条消息告知用户,然后从runJob方法返回。


     如果jobtracker有相应设置,也会发送一个Http作业通知给客户端,希望收到回调指令的客户端可以通过job.end.notification.url属性来进行设置。


     jobtracker情况作业的工作状态,指示tasktracker也清空作业的工作状态,如删除中间输出。

     

失败

     实际情况下,用户的代码存在软件错误进程会崩溃,机器也会产生故障,但Hadoop能很好的应对这些故障并完成作业。


     1.任务失败    

     子任务异常:如Map/Reduce任务中的用户代码抛出异常,子任务JVM进程会在退出前向父进程tasktracker发送错误报告,错误被记录用户日志。tasktracker会将此次task attempt标记为tailed,并释放这个任务槽运行另外一个任务。


     子进程JVM突然退出:可能由于JVM bug导致用户代码造成的某些特殊原因导致JVM退出,这种情况下,tasktracker会注意到进程已经退出,并将此次尝试标记为failed。


     任务挂起:一旦tasktracker注意一段时间没有收到进度更新,便会将任务标记为failed,JVM子进程将被自动杀死。任务失败间隔时间通常为10分钟,可以以作业或者集群为基础设置过期时间,参数为mapred.task.timeout。注意:如果参数值设置为0,则挂起的任务永远不会释放掉它的任务槽,随着时间的推移会降低整个集群的效率。


     任务失败尝试次数:jobtracker得知一个tasktracker失败后,它会重新调度该任务执行,当然,jobtracker会尝试避免重新调度失败过的tasktracker任务。如果一个任务尝试次数超过4次,它将不再被重试。这个值是可以设置的,对于Map任务,参数是mapred.map.max.attempts,对于reduce任务,则由mapred.reduce.max.attempts属性控制。如果次数超过限制,整个作业都会失败。当然,有时我们不希望少数几个任务失败就终止运行的整个作业,因为即使有些任务失败,作业的一些结果可能还是有用的,这种情况下,可以为作业设置在不触发作业失败情况下的允许任务失败的最大百分比,Map任务和Reduce任务可以独立控制,参数为mapred.max.map.failures.percent 和mapred.max.reduce.failures.percent。


     任务尝试中止(kill):任务终止和任务失败不同,task attempt可以中止是因为他是一个推测副本或因为它所处的tasktracker失败,导致jobtracker将它上面的所有task attempt标记为killed。被终止的task attempt不会被计入任务运行尝试次数,因为尝试中止并不是任务的错。


     2.tasktracker失败

     tasktracker由于崩溃或者运行过慢而失败,他将停止向jobtracker发送心跳(或很少发送心跳)。jobtracker注意已停止发送心跳的tasktracker(过期时间由参数mapred.tasktracker.expiry.interval设置,单位毫秒),并将它从等待调度的tasktracker池中移除。如果是未完成的作业,jobtracker会安排次tasktracker上已经运行成功的Map任务重新运行,因为此时reduce任务已无法访问(中间输出存放在失败的tasktracker的本地文件系统上)。


     即使tasktracker没有失败,也有可能被jobtracker列入黑名单。如果tasktracker上面的失败任务数量远远高于集群的平均失败任务次数,他就会被列入黑名单,被列入黑名单的tasktracker可以通过重启从jobtracker黑名单中移除。


     3.jobtracker失败

     老版本的JobTracker失败属于单点故障,这种情况下作业注定失败。


作业调度:

     早期作业调度FIFO:按作业提交顺序先进先出。可以设置优先级,通过设置mapred.job.priority属性或者JobClient的setJobPriority()方法制定优先级(优先级别:VERY_HIGH,HIGH,NORMAL,LOW,VERY_LOW)。注意FIFO调度算法不支持抢占(preemption),所以高优先级作业仍然会被那些已经开始的长时间运行的低优先级作业所阻塞。


     Fair Scheduler:目标是让每个用户公平地共享集群能力。当集群存在很多作业时,空闲的任务槽会以”让每个用户共享集群“的方式进行分配。默认每个用户都有自己的作业池。FairScheduler支持抢占,所以,如果一个池在特定的一段时间未得到公平地资源共享,它会终止池中得到过多的资源任务,以便把任务槽让给资源不足的池。FairScheduler是一个后续模块,使用它需要将其jar文件放在Hadoop的类路径下。可以通过参数map.red.jobtracker.taskScheduler属性配置(值为org.apache.hadoop.mapred.FairScheduler)


     Capacity Scheduler:

     集群由很多队列组成,每个队列都有一个分配能力,这一点与FairScheduler类似,只不过在每个队列内部,作业根据FIFO方式进行调度。本质上说,Capacity Scheduler允许用户或组织为每个用户模拟一个独立使用FIFO的集群。


shuffle和排序:

     MapReduce确保每个Reducer的输入都是按键排序的。系统执行排序的过程-将map输出作为输入传给reducer的过程称为shuffle。shuffle属于不断被优化和改进的代码库的一部分,从许多方面来看,shuffle是MapReduce的心脏。


     整个shuffle的流程应该是这样:

     map结果划分partition  排序sort 分割spill   合并同一划分   合并同一划分  合并结果排序 reduce处理 输出


     Map端:

     写入缓冲区:Map函数的输出,是由collector处理的,它并不是简单的将结果写到磁盘。它利用缓冲的方式写到内存,并处于效率的考虑进行预排序。每个map都有一个环形的内存缓冲区,用于任务输出,默认缓冲区大小为100MB(由参数io.sort.mb调整),一旦缓冲区内容达到阈值(默认0.8),后台进程边开始把内容写到磁盘(spill),在写磁盘过程中,map输出继续被写到缓冲区,但如果缓冲区被填满,map会阻塞知道写磁盘过程完成。写磁盘将按照轮询方式写到mapred.local.dir属性制定的作业特定子目录中。


     写出缓冲区:collect将缓冲区的内容写出时,会调用sortAndSpill函数,这个函数作用主要是创建spill文件,按照key值对数据进行排序,按照划分将数据写入文件,如果配置了combiner类,会先调用combineAndSpill函数再写文件。sortAndSpill每被调用一次,就会写一个spill文件。


     合并所有Map的spill文件:TaskTracker会在每个map任务结束后对所有map产生的spill文件进行merge,merge规则是根据分区将各个spill文件中数据同一分区中的数据合并在一起,并写入到一个已分区且排序的map输出文件中。待唯一的已分区且已排序的map输出文件写入最后一条记录后,map端的shuffle阶段就结束了。


     在写磁盘前,线程首先根据数据最终要传递到的reducer把数据划分成响应的分区(partition),在每个分区中,后台线程按键进行内排序,如果有一个combiner,它会在排序后的输出上运行。


     内存达到溢出写的阈值时,就会新建一个溢出写文件,因为map任务完成其最后一个输出记录之后,会有几个溢出写文件。在任务完成前,溢出写文件会被合并成一个已分区且已排序的输出文件。配置属性io.sort.facor控制一次最多能合并多少流,默认值是10。


     如果已经指定combiner,并且写次数至少为3(通过min.mum.spills.for.combine设置)时,则combiner就会在输出文件写到磁盘之前运行。运行combiner的意义在于使map输出更紧凑,舍得写到本地磁盘和传给reducer的数据更少。


     写磁盘时压缩:写磁盘时压缩会让写的速度更快,节约磁盘空间,并且减少传给reducer的数据量。默认情况下,输出是不压缩的,但可以通过设置mapred.compress.map.output值为true,就可以启用压缩。使用的压缩库是由mapred.map.output.compression.codec制定。


     reducer获得文件分区的工作线程:reducer通过http方式得到输出文件的分区,用于文件分区的工作线程数量由tracker.http.threads属性指定,此设置针对的是每个tasktracker,而不是每个map任务槽。默认值为40,在大型集群上此值可以根据需要而增加。


     Reduce端:

     复制阶段:reduce会定期向JobTracker获取map的输出位置,一旦拿到输出位置,reduce就会从对应的TaskTracker上复制map输出到本地(如果map输出很小,则会被复制到TaskTracker节点的内存中,否则会被让如磁盘),而不会等到所有map任务结束(当然这个也有参数控制)。


     合并阶段:从各个TaskTracker上复制的map输出文件(无论在磁盘还是内存)进行整合,并维持数据原来的顺序。


     Reduce阶段:从合并的文件中顺序拿出一条数据进行reduce函数处理,然后将结果输出到本地HDFS。


     Map的输出文件位于运行map任务的tasktracker的本地磁盘,现在,tasktracker要为分区文件运行reduce任务。每个任务完成时间可能不同,但是只要有一个任务完成,reduce任务就开始复制其输出,这就是reduce任务的复制阶段(copy phase)。reduce任务有少量复制线程,因此能够并行取得map输出。默认值是5个线程,可以通过mapred.reduce.parallel.copies属性设置。


     Reducer如何得知从哪个tasktracker获得map输出:map任务完成后会通知其父tasktracker状态已更新,tasktracker进而通知(通过heart beat)jobtracker。因此,JobTracker就知道map输出和tasktracker之间的映射关系,reducer中的一个线程定期询问jobtracker以便获知map输出位置。由于reducer有可能失败,因此tasktracker并没有在第一个reducer检索到map输出时就立即从磁盘上删除它们,相反他会等待jobtracker告示它可以删除map输出时才删除,这是作业完成后最后执行的。


     如果map输出很小,则会被直接复制到reduce tasktracker的内存缓冲区(大小由mapred.job.shuffle.input.buffer.percent控制,占堆空间的百分比),否则,map输出被复制到磁盘。一旦内存缓冲区达到阈值大小(由mapred.iob.shuffle.merge.percent)

或达到map输出阈值大小(mapred.inmem.threadhold),则合并后溢出写到磁盘中。


     随着磁盘上副本增多,后台线程会将他们合并为更大的、排好序的文件。注意:为了合并,压缩的map输出必须在内存中被解压缩。


     排序阶段:复制阶段完成后,reduce任务会进入排序阶段,更确切的说是合并阶段,这个阶段将合并map输出,维持其顺序排列。合并是循环进行的,由合并因子决定每次合并的输出文件数量。但让有可能会产生中间文件。


     reduce阶段:在最后reduce阶段,会直接把排序好的文件输入reduce函数,不会对中间文件进行再合并,最后的合并即可来自内存,也可来自磁盘。此阶段的输出会直接写到文件系统,一般为hdfs。


     细节:这里合并是并非平均合并,比如有40个文件,合并因子为10,我们并不是每趟合并10个,合并四趟。而是第一趟合并4个,后三趟合并10,在最后一趟中4个已合并的文件和余下6个未合并会直接并入reduce。




Hadoop读写文件时内部工作机制是怎样的
首先客户端通过DistributedFileSystem上的create()方法指明一个欲创建的文件的文件名(第一步),DistributedFileSystem再通过RPC调用向NameNode申请创建一个新文件(第二步,这时该文件还没有分配相应的block)。namenode检查是否有同名文件存在以及用户是否有相应的创建权限,如果检查通过,namenode会为该文件创建一个新的记录,...

hadoop集群搭建时hadoop. env文件只能读怎么办?
在hadoop配置目录下通过命令ls -l hadoop.env查看hadoop.env 当前的具有的权限项,若显示行开头是-r--或者-r-x,那么就表明所属文件无法进行修改;这时可通过命令chmod u=rwx,go=rx hadoop.env,意思是该文件所属者具有读、写、执行权限,所属群组以及其他人却无法进行写操作;再次通过ls -l h...

如何使用Hadoop读写数据库
1、选择开始菜单中→程序→【Management SQL Server 2008】→【SQL Server Management Studio】命令,打开【SQL Server Management Studio】窗口,并使用Windows或 SQL Server身份验证建立连接。2、在【对象资源管理器】窗口中展开服务器,然后选择【数据库】节点 3、右键单击【数据库】节点,从弹出来的快捷...

hdfs api创建文件并写入内容
hdfs api创建文件写入内容全部程序如下:(1):import java.io.IOException;import java.net.URI;import java.net.URISyntaxException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FSDataInputStream;import org.apache.hadoop.fs.FSDataOutputStream;import org.apache.hadoop.fs...

HDFS文件
在第一种情况中,namenode和datanode内嵌的web服务作为WebHDFS的端节点运行(是否启用WebHDFS可通过dfs.webhdfs.enabled设置,默认为true)。文件元数据在namenode上,文件读写操作首先被发往namenode,有namenode发送一个HTTP重定向至某个客户端,指示以流的方式传输文件数据的目的或源datanode。第二种方法...

修修改hdfs上的文件所属用户、所属组等读写执行控制权限
HDFS支持权限控制,但支持较弱。HDFS的设计是基于POSIX模型的,支持按用户、用户组、其他用户的读写执行控制权限。在linux命令行下,可以使用下面的命令修改文件的权限、文件所有者,文件所属组:sudo addgroup Hadoop#添加一个hadoop组 sudo usermod -a -G hadoop larry#将当前用户加入到hadoop组 sudo ...

hadoop是做什么的?
Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。特点 1、快照支持在一个特定时间存储一个数据拷贝,快照可以...

从文件系统、编程模型、分布式存储系统和Hadoop等方面阐释大数据处理...
1. 文件系统:大数据处理涉及到处理大量数据文件,因此需要一个高效的文件系统来管理和存储这些文件。传统的文件系统在处理大数据时存在一些性能瓶颈,因此需要使用分布式文件系统来解决这个问题。分布式文件系统将数据和元数据分散存储在多个计算节点上,提高了文件系统的读写性能和可扩展性。2. 编程模型:...

大数据 HDFS 有哪些基础操作?
1. 文件与目录管理 首先,使用hadoop fs –ls查看目录内容,例如:hadoop fs –ls \/user\/wangwu,能清晰展示指定路径下的文件和子目录。通过hadoop dfs –cat [file_path],可以轻松查看文件内容,如:hadoop fs -cat \/user\/wangwu\/data.txt。2. 文件上传与下载 将本地文件上传至HDFS,使用hadoop ...

Hadoop分布式文件系统有什么不同?
1、运行模式不同:单机模式是Hadoop的默认模式。这种模式在一台单机上运行,没有分布式文件系统,而是直接读写本地操作系统的文件系统。伪分布模式这种模式也是在一台单机上运行,但用不同的Java进程模仿分布式运行中的各类结点。2、配置不同:单机模式(standalone)首次解压Hadoop的源码包时,Hadoop无法了解...

淮滨县18353581294: hadoop里有哪些机制 -
圣符先强: Hadoop的核心机制是通过HDFS文件系统和MapReduce算法进行存储资源、内存和程序的有效利用与管理.然后Hadoop还包括的项目: mapreduce分布式处理模型;HDFS分布式文件系统;pig数据流语言和运行环境;hive分布式按列存储的数据仓库;HBase,ZooKeeper,Sqoop

淮滨县18353581294: 关于Hadoop的运行机制 -
圣符先强: map分类,reduce整合,通过相同的key将需要的信心通过map整合到同一个reduce中,在reduce中实现算法

淮滨县18353581294: hadoop并行过程,是由什么机制来进行控制 -
圣符先强: 并行过程包括hdfs的文件读写和hive的并行计算.hdfs的文件读写请求都是通过namenode控制,hive并行计算job一般通过yarn控制

淮滨县18353581294: Hadoop可以运行的模式 -
圣符先强: 1、单机(本地)模式:这种模式在一台单机上运行,没有分布式文件系统,而是直接读写本地操作系统的文件系统.在单机模式(standalone)中不会存在守护进程,所有东西都运行在一个JVM上.这里同样没有DFS,使用的是本地文件系统...

淮滨县18353581294: hadoop 对实时处理不好的原因 -
圣符先强: Hadoop可以处理大规模数据集,包括结构化数据、非结构化数据和半结构化数据,但Hadoop是按照批量处理系统来设计的,这也就限制了它的反应速度. 阻碍Hadoop实现实时分析的主要有两点: 首先,大部分的新的Hadoop查询引擎运行速度没能像主流关系型数据库中的查询那样快.在Impala和Hawq这样的工具中,最终用户可以用SQL语言写查询指令,在Hadoop集群执行的时候,这些指令要翻译成MapReduce语言.整个过程是很慢的,远逊于直接在关系型数据库中运行SQL查询. 其次,与关系型数据库相比,Hadoop目前还是一个只读的系统.数据一旦写入Hadoop分布式文件系统(HDFS),用户很难插入、删除或修改存储的数据.

淮滨县18353581294: 如何使用Hadoop读写数据库 -
圣符先强: 1、选择开始菜单中→程序→【Management SQL Server 2008】→【SQL Server Management Studio】命令,打开【SQL Server Management Studio】窗口,并使用Windows或 SQL Server身份验证建立连接.2、在【对象资源管理器】窗口中...

淮滨县18353581294: hadoop,storm和spark的区别,比较 -
圣符先强: 一、hadoop、Storm该选哪一个?为了区别hadoop和Storm,该部分将回答如下问题:1.hadoop、Storm各是什么运算2.Storm为什么被称之为流式计算系统3.hadoop适合什么场景,什么情况下使用hadoop4.什么是吞吐量 首先整体认识:Hadoop...

淮滨县18353581294: hadoop中存储文件系统hdfs的冗余机制是怎么进行的?有什么特点? -
圣符先强: 其实就是简单的 replica ... 冗余存在的目的就是为了防止挂掉 任何形式的挂掉都要防止 基本的原理异常的简单 如下: 每一个replica ... HDFS ,HBse 这些都有各自的replica 每一个replica都会企图在 zookeeper 的某一个目录节点获取一个锁 ... 拿到...

淮滨县18353581294: hadoop中fsimage和edits的区别 -
圣符先强: hadoop中fsimage和edits的区别 1、概念:fsimage保存了最新的元数据检查点.edits保存自最新检查点后的命名空间的变化.2、工作原理:从最新检查点后,hadoop将对每个文件的操作都保存在edits中,为避免edits不断增大,secondary namenode就会周期性合并fsimage和edits成新的fsimage,edits再记录新的变化.这种机制有个问题:因edits存放在Namenode中,当Namenode挂掉,edits也会丢失,导致利用secondary namenode恢复Namenode时,会有部分数据丢失.

淮滨县18353581294: “HDFS 采用数据流方式来访问文件,只支持单个客户端向一个文件追加数据”是什么意思啊? -
圣符先强: 上半句话,访问文件不外乎读和写,需要读写时调用函数FileSystem&open()和FileSystem&create(),返回的对象是FSDataInputStream和FSDataOutputStream. data直译成中文就是数据,stream直译成中文就是流. 这两个对象分别继承...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网