分子热运动的布朗运动

作者&投稿:蛮董 (若有异议请与网页底部的电邮联系)
有人说布朗运动就是分子的热运动,这种说法对吗?为什么?~

布朗运动和分子热运动不是一回事.
只要有温度的物体,其内部的分子都不会静止,而要做永不停歇不规则的运动,我们把这种物体本身内部分子的运动叫做分子热运动.但是这种运动本身我们无法凭肉眼看到.
发现把花粉颗粒放进液体中,从显微镜中可以看到花粉颗粒在做不规则的运动,其实并不是花粉颗粒自己有动力才运动,而是它周围的液体分子在作分子热运动,热运动又是不规则的,每个分子的运动速度又不一样,所以在这些液体分子的撞击下,花粉颗粒才被迫作不规则的运动,我们把这种运动叫布朗运动.

二者不一样。布朗运动是用比分子大很多倍的花粉粒子浮在液体里,来模拟分子的热运动。其基本依据是:由于分子是无规则运动的,大量分子会碰撞到花粉粒子上,由于其规则性,所以任一时刻花粉粒子在不同方向受到的碰撞的分子数目不同,而使其所受的力为非平衡力,故运动状态必做无规则的变化。所以可以用它来模拟分子的无规则运动。

到了70——80年代,一些学者明确地把布朗运动归结为液体分子撞击微粒的结果,这些学者有卡蓬内尔、德尔索和梯瑞昂,还有耐格里。植物学家耐格里(1879)从真菌、细菌等通过空气传播的现象,认为这些微粒即使在静止的空气中也可以不沉。联系到物理学中气体分子以很高速度向各方向运动的结论,他推测在阳光下看到的飞舞的尘埃是气体分子从各方向撞击的结果。他说:“这些微小尘埃就象弹性球一样被掷来掷去,结果如同分子本身一样能保持长久的悬浮。”不过耐格里又放弃了这一可能达到正确解释的途径,他计算了单个气体分子和尘埃微粒发生弹性碰撞时微粒的速度,结果要比实际观察到的小许多数量级,于是他认为由于气体分子运动的无规则性,它们共同作用的结果不能使微粒达到观察速度值,而在液体中则由于介质和微粒的摩擦阻力和分子间的粘附力,分子运动的设想不能成为合适的解释。  1874——1880年间,卡蓬内尔、德耳索和梯瑞昂的工作解决了耐格里遇到的难题。这里的关键是他们认为由于分子运动的无规则性和分子速度有一分布,在液体或气体中的微观尺度上存在密度和压力的涨落。这种涨落在宏观尺度上抵消掉了。但是如果压方面足够微小,这种不均匀性就不能抵消,液体中的相应的扰动就能表现出来。因此悬浮在液体中的微粒只要足够小,就会不停地振荡下去。卡蓬内尔明确地指出唯一影响此效应的因素是微粒的大小,不过他把这种运动主要看成振荡,而德耳索根据克劳修斯把分子运动归结为平动和转动的观点,认为微粒的运动是无规则位移,这是德耳索的主要贡献。  此后,古伊在1888——1895年期间对布朗运动进行过大量的实验观察。古伊对分子行为的描述并不比卡蓬内尔等人高明,他也没有弄清涨落的见解。不过他的特别之处是他强调的不是对布朗运动的物理解释,而是把布朗运动作为探究分子运动性质的一个工具。他说:“布朗运动表明,并不是分子的运动,而是从分子运动导出的一些结果能向我们提供直接的和可见的证据,说明对热本质假设的正确性。按照这样的观点,这一现象的研究承担了对分子物理学的重要作用。”古伊的文献产生过重要的影响,所以后来贝兰把布朗运动正确解释的来源归功于古伊。  到了1900年,F·埃克斯纳完成了布朗运动前期研究的最后工作。他用了许多悬浊液进行了和他的父亲S·埃克斯纳30年前作过的同类研究。他测定了微粒在1min内的位移,与前人一样,证实了微粒的速度随粒度增大而降低,随温度升高而增加。他清楚地认识到微粒作为巨大分子加入了液体分子的热运动,指出从这一观点出发“就可以得出微粒的动能和温度之间的关系。”他说:“这种可见的运动及其测定值对我们清楚了解液体内部的运动会有进一步的价值”。  以上是1900年前对布朗运动研究的基本情况。自然,这些研究与分子运动论的建立是密切相关的。由麦克斯威和玻尔兹曼在60——70年代建立的气体分子运动论在概念上的一个重大发展是抛弃了对单个分子进行详细跟踪的方法,而代之以对大量分子的统计处理,这为弄清布朗运动的根源打下了基础。与布朗运动的研究有密切关系的还有在60年代由格雷哈姆建立的胶体科学。所谓胶体是由粒度介于宏观粒子和微观分子之间的微粒形成的分散体系,布朗运动正是胶体粒子在液体介质中表现的运动。  对于布朗运动的研究,1900年是个重要的分界线。至此,布朗运动的适当的物理模型已经显明,剩下的问题是需要作出定量的理论描述了。 爱因斯坦的布朗运动理论 1905年,爱因斯坦依据分子运动论的原理提出了布朗运动的理论。就在差不多同时,斯莫卢霍夫斯基也作出了同样的成果。他们的理论圆满地回答了布朗运动的本质问题。  应该指出,爱因斯坦从事这一工作的历史背景是那时科学界关于分子真实性的争论。这种争论由来已久,从原子分子理论产生以来就一直存在。本世纪初,以物理学家和哲学家马赫和化学家奥斯特瓦尔德为代表的一些人再次提出对原子分子理论的非难,他们从实证论或唯能论的观点出发,怀疑原子和分子的真实性,使得这一争论成为科学前沿中的一个中心问题。要回答这一问题,除开哲学上的分歧之外,就科学本身来说,就需要提出更有力的证据,证明原子、分子的真实存在。比如以往测定的相对原子质量和相对分子质量只是质量的相对比较值,如果它们是真实存在的,就能够而且也必须测得相对原子质量和相对分子质量的绝对值,这类问题需要人们回答。  由于上述情况,象爱因斯坦在论文中指出的那样,他的目的是“要找到能证实确实存在有一定大小的原子的最有说服力的事实。”他说:“按照热的分子运动论,由于热的分子运动,大小可以用显微镜看见的物体悬浮在液体中,必定会发生其大小可以用显微镜容易观测到的运动。可能这里所讨论的运动就是所谓‘布朗分子运动’”。他认为只要能实际观测到这种运动和预期的规律性,“精确测定原子的实际大小就成为可能了”。“反之,要是关于这种运动的预言证明是不正确的,那么就提供了一个有份量的证据来反对热的分子运动观”。  爱因斯坦的成果大体上可分两方面。一是根据分子热运动原理推导  是在t时间里,微粒在某一方向上位移的统计平均值,即方均根值,D是微粒的扩散系数。这一公式是看来毫无规则的布朗运动服从分子热运动规律的必然结果。  爱因斯坦成果的第二个方面是对于球形微粒,推导出了可以求算阿  式中的η是介质粘度,a是微粒半径,R是气体常数,NA为阿伏加德罗常数。按此公式,只要实际测得准确的扩散系数D或布朗运动均方位 得到原子和分子的绝对质量。爱因斯坦曾用前人测定的糖在水中的扩散系数,估算的NA值为3.3×10^23,一年后(1906)又修改为6.56×10^23。  爱因斯坦的理论成果为证实分子的真实性找到了一种方法,同时也圆满地阐明了布朗运动的根源及其规律性。下面的工作就是要用充足的实验来检验这一理论的可靠性。爱因斯坦说:“我不想在这里把可供我使用的那些稀少的实验资料去同这理论的结果进行比较,而把它让给实验方面掌握这一问题的那些人去做”。“但愿有一位研究者能够立即成功地解决这里所提出的、对热理论关系重大的这个问题!”爱因斯坦提出的这一任务不久之后就由贝兰(1870——1942)和斯维德伯格分别出色的完成了。这里还应该提到本世纪初在研究布朗运动方面一个重大的实验进展是1902年齐格蒙第(1865——1929)发明了超显微镜,用它可直接看到和测定胶体粒子的布朗运动,这也就是证实了胶体粒子的真实性,为此,齐格蒙第曾获1925年诺贝尔化学奖。斯维德伯格测定布朗运动就是用超显微镜进行的。 贝兰测定阿伏加德罗常数的实验 1908到1913年期间,贝兰进行了验证爱因斯坦理论和测定阿伏加德罗常数的实验研究。他的工作包括好几方面。在初期,他的想法是,既然在液体中进行布朗运动的微粒可以看成是进行热运动的巨大分子,它们就应该遵循分子运动的规律,因此只要找到微粒的一种可用实验观测的性质,这种性质与气体定律在逻辑上是等效的,就可以用来测定阿伏加德罗常数。1908年,他想到液体中的悬浮微粒相当于“可见分子的微型大气”,所以微粒浓度(单位体积中的数目)的高度分布公式应与气压方程有相同的形式,只是对粒子受到的浮力应加以校正。这一公式是:ln(n/n0)=-mgh(1-ρ/ρ0)/kt。式中k是波尔兹曼常数,自k和NA的关系,公式也可写成ln(n/n0)=-NA mgh(1-ρ/ρ0)/RT。根据此公式,从实验测定的粒子浓度的高度分布数据就可以计算k和NA。  为进行这种实验,先要制得合用的微粒。制备方法是先向树脂的酒精溶液中加入大量水,则树脂析出成各种尺寸的小球,然后用沉降分离的方法多次分级,就可以得到大小均匀的级份(例如直径约3/4μm的藤黄球)。用一些精细的方法测定小球的直径和密度。下一步是测定悬浮液中小球的高度分布,是将悬浮液装在透明和密闭的盘中,用显微镜观察,待沉降达到平衡后,测定不同高度上的粒子浓度。可以用快速照相,然后计数。测得高度分布数据,即可计算NA。贝兰及其同事改变各种实验条件:材料(藤黄、乳香),粒子质量(从1到50),密度(1.20到1.06),介质(水,浓糖水,甘油)和温度(-90°到60°),得到的NA值是6.8×1023。  贝兰的另一种实验是测量布朗运动,可以说这是对分子热运动理论的更直接证明。根据前述的爱因斯坦对球形粒子导出的公式,只要实验液,在选定的一段时间内用显微镜观察粒子的水平投影,测得许多位移数值,再进行统计平均。贝兰改变各种实验条件,得到的NA值是(5.5-7.2)×1023。贝兰还用过一些其它方法,用各种方法得到的NA值是:  6.5×1023 用类似气体悬浮液分布法,  6.2×1023 用类似液体悬浮液分布法,  6.0×1023 测定浓悬浮液中的骚动,  6.5×1023 测定平动布朗运动,  6.5×1023 测定转动布朗运动。  这些结果相当一致,都接近现代公认的数值6.022×1023。考虑到方法涉及许多物理假设和实验技术上的困难,可以说这是相当了不起的。以后的许多研究者根据其它原理测定的NA值都肯定了贝兰结果的正确性。与贝兰差不多同时,斯维德伯格(1907)用超显微镜观测金溶胶的布朗运动,在测定阿伏加德罗常数和验证爱因斯坦理论上也作出了出色的工作。可以说他们是最先称得原子质量的人,所以在1926年,贝兰和斯维德伯格分别获得了诺贝尔物理学奖和化学奖。  就这样,布朗运动自发现之后,经过多半个世纪的研究,人们逐渐接近对它的正确认识。到本世纪初,先是爱因斯坦和斯莫卢霍夫斯基的理论,然后是贝兰和斯维德伯格的实验使这一重大的科学问题得到圆满地解决,并首次测定了阿伏加德罗常数,这也就是为分子的真实存在提供了一个直观的、令人信服的证据,这对基础科学和哲学有着巨大的意义。从这以后,科学上关于原子和分子真实性的争论即告终结。正如原先原子论的主要反对者奥斯特瓦尔德所说:“布朗运动和动力学假说的一致,已经被贝兰十分圆满地证实了,这就使那怕最挑剔的科学家也得承认这是充满空间的物质的原子构成的一个实验证据”。数学家和物理学家彭加勒在1913年总结性地说道:“贝兰对原子数目的光辉测定完成了原子论的胜利”。“化学家的原子论现在是一个真实存在”。  布朗运动代表了一种随机涨落现象,它的理论在其他领域也有重要应用。如对测量仪器的精度限度的研究;高倍放大电讯电路中的背景噪声的研究等  布朗运动与分子热运动不一样,与温度和粒子个数有关,温度越高,布朗运动越剧烈,粒子越少,分子热运动越剧烈。




布朗运动具体解释是什么?
构成物质的大量分子、原子等所进行的不规则运动。热运动越剧烈,物体的温度越高。分子热运动的试验是布朗运动。分子热运动的典型现象是分子扩散。布朗运动是通过花粉在水中的无规则运动的现象表现了水分子的无规则运动,即分子的热运动。而不是花粉的热运动。典型现象就是日常生活中的啊,比如香味的扩散。...

分子热运动的布朗运动
不过他的特别之处是他强调的不是对布朗运动的物理解释,而是把布朗运动作为探究分子运动性质的一个工具。他说:“布朗运动表明,并不是分子的运动,而是从分子运动导出的一些结果能向我们提供直接的和可见的证据,说明对热本质假设的正确性。按照这样的观点,这一现象的研究承担了对分子物理学的重要作用。”古伊的文献产生...

布朗运动是什么运动
布朗运动是指微小颗粒在流体中无规则运动的现象。布朗运动:1、布朗运动是由英国植物学家R.布朗于1827年发现的,它是胶体稳定的原因。2、布朗运动是分子热运动的宏观表现,是一种独特的、随机和无规律的颗粒运动。3、布朗运动的发生与微小颗粒有关,也与温度有关。如果温度越高,布朗运动就越明显;如果...

热运动发生布朗运动的原因
热运动,实质上是组成液体或气体的微观粒子的运动表现。在常温常压下,空气分子以平均速度500m\/s高速运动,它们每秒钟撞击其他分子的次数高达500亿次。这些无序的碰撞对悬浮的小颗粒产生影响,导致它们在各个方向上受到不均衡的力,从而引发小颗粒的随机运动,这种现象即为布朗运动。通过对比实验,我们可以观...

布朗运动是胶体特有的吗
布朗运动是指分子或微小颗粒在无规则运动中受到的随机冲击和碰撞,这种现象在液体和气体中都可以观察到。然而,布朗运动并不是胶体特有的现象。1、普遍存在 布朗运动是分子或微小颗粒在液体或气体中受到的随机冲击和碰撞,是分子热运动的体现。这种现象在各种系统和环境下都可以观察到,如液体、气体、固体、...

布朗运动和热运动的区别
布朗运动指分散系中固体小颗粒的运动,分子热运动指一切分子的无规则运动,二者指向不同。布朗运动指的是在分子热运动的影响下,分散系中小颗粒的运动。是由于分子无规则热运动的撞击,小颗粒做的无规则运动。布朗运动是指悬浮在液体或气体中的微粒所做的永不停息的无规则运动。分子的热运动是物体都由...

布朗运动是分子热的运动 对还是错?
错,布朗运动是 固体小颗粒 的运动是固体颗粒在液体分子的撞击下的 无规则运动, 不是分子热运动 但是 属于能够反映分子热运动的一种表现,分子热运动是微观分子运动,布朗运动是宏观物质受分子热运动碰撞不均匀而运动,正因为有分子运动,才会导致宏观物质受到碰撞,而碰撞不平衡,所以才有布朗运动,...

布朗运动是热运动吗
布朗运动是指悬浮在液体或气体中的微粒所做的永不停息的无规则运动。其因由英国植物学家布朗所发现而得名。作布朗运动的微粒的直径一般为10-5~10-3厘米,这些小的微粒处于液体或气体中时,由于液体分子的热运动,微粒受到来自各个方向液体分子的碰撞,当受到不平衡的冲撞时而运动,由于这种不平衡的冲撞,...

布朗运动与分子热运动是一回事吗?
布朗运动和分子热运动不是一回事。只要有温度的物体,其内部的分子都不会静止,而要做永不停歇不规则的运动,我们把这种物体本身内部分子的运动叫做分子热运动。但是这种运动本身我们无法凭肉眼看到。发现把花粉颗粒放进液体中,从显微镜中可以看到花粉颗粒在做不规则的运动,其实并不是花粉颗粒自己有动力才...

分子热运动和布朗运动和扩散现象的关系和不同点是什么。有什么例子可...
布朗运动是分子热运动的宏观表现。主要是指显微镜下看到的那个现象。就是水分子的分子热运动撞击悬浮小颗粒,导致悬浮小颗粒无规则运动。例子如下。一滴墨水滴到清水里,看到的墨水弥散,这个过程是分子热运动的表现,而且是扩散。等到液体颜色均匀了,扩散就终止了,但是墨水分子仍然在做分子热运动。但是这个...

喀喇沁旗13275714155: 分子热运动定义?标准点的 -
益乖合比:[答案] 构成物质的大量分子、原子等所进行的不规则运动.热运动越剧烈,物体的温度越高. 分子热运动的试验是布朗运动. 分子热运动的典型现象是分子扩散. 布朗运动是通过花粉在水中的无规则运动的现象表现了水分子的无规则运动,即分子的热运动.而不...

喀喇沁旗13275714155: 分子热运动问题在布朗运动中,是与固体微粒碰撞的液体分子数目越多还是越少时,布朗运动越明显?为什么? -
益乖合比:[答案] 与固体微粒相碰撞的液体分子数目越少,布朗运动越明显 微观界不会以一个两个分子来计算,在大量的分子碰撞一个分子时,由于受到各个方向上的作用力,反而会趋向整个分子的受力平衡,碰撞的分子数越少像这种平衡的趋向也就越少,布朗运动...

喀喇沁旗13275714155: 布朗运动与热运动的联系与区别 -
益乖合比:[答案] 布朗运动 在化学领域中使用 悬浮在气体或液体中的固态微粒受到气体或液体分子的撞击作永不停止的,无规则的运动,叫做布朗运动. 分子热运动 在物理领域中使用 分子不停地做无规则的运动 虽然都是不停的动,但是前者是因为受分子撞击,而后...

喀喇沁旗13275714155: 下列关于布朗运动的说法中正确的是() -
益乖合比:[选项] A. 布朗运动就是分子的无规则热运动 B. 温度越高布朗运动越激烈 C. 布朗运动反映了组成固体小颗粒的分子在做无规则热运动 D. 空气中尘埃颗粒的运动是布朗运动

喀喇沁旗13275714155: 分子热运动和布朗运动和扩散现象的关系和不同点是什么.有什么例子可以比较容易区分 -
益乖合比:[答案] 扩散现象是分子热运动的一个特殊情况.就是当存在有分子浓度差的时候,由于分子热运动的作用,分子会自发由高浓度地方向低浓度地方流动.布朗运动是分子热运动的宏观表现.主要是指显微镜下看到的那个现象.就是水分子的分...

喀喇沁旗13275714155: 关于布朗运动和分子的热运动,以下叙述正确的是() -
益乖合比:[选项] A. 布朗运动就是分子的热运动 B. 布朗运动表明组成固体小颗粒的分子在做无规则运动 C. 布朗运动反映了液体分子永不停息的无规则 D. 物体运动的速率越大,其内部的分子热运动就越激烈

喀喇沁旗13275714155: 分子热运动是布朗运动吗? -
益乖合比: 布朗运动就是悬浮微粒永不停息地做无规则运动的现象.分子热运动不属于布朗运动,因为分子悬浮颗粒.布朗运动指的是在分子热运动的影响下,是由于分子无规则热运动的撞击,小颗粒做的无规则运动.

喀喇沁旗13275714155: 下列关于布朗运动的说法中正确的是() -
益乖合比:[选项] A. 布朗运动就是分子的无规则热运动 B. 温度越高布朗运动越激烈 C. 布朗运动反映了组成固体小颗粒的分子在做无规则热运动 D. 空气中尘埃颗粒的运动是布朗运动

喀喇沁旗13275714155: 关于分子的热运动,以下叙述正确的是[ ] -
益乖合比:[选项] A. 布朗运动就是分子的热运动ؤ B. 布朗运动是分子的无规则运动,同种物质的分子的热运动激烈程度相同ؤ C. 气体分子的热运动不一定比液体分子激烈ؤ D. 物体运动的速率越大,其内部的分子热运动就越激烈

喀喇沁旗13275714155: 分子热运动的原理是什么? -
益乖合比:[答案] 布朗运动.大量分子做无规则运动.条件是能量,表征是温度,当达到绝对零度的时候,0K,即-273.15℃的时候,分子将停止运动.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网