欧拉定理公式的证明

作者&投稿:纵斩 (若有异议请与网页底部的电邮联系)
欧拉定理的三种证明方式是什么~

证明1: (归纳面)
将一个图先 "嵌入" 二维平面得到图G.
当G只有一个面时 : E(1) = V(1) - 1 + F(1) - 1
当G有N个面时,
设: E(N) =V(N-1) - 1 +F(N-1) - 1
我们去除一条G中两个面的一条临边, 得到G有 N-1个面时
E(N-1) = E(N)- 1
V(N-1) = V(N)
F(N-1) = F(N)
故: E(N-1) =V(N-1) - 1 + F(N-1) - 1
丛而归纳出欧拉公式成立
证明2: (归纳顶点)
将一个图先 "嵌入" 二维平面得到图G.
当G只有一个顶点时 (一个简单环 )
F(1) + V(1) - E(1) = (E(1) + 1) + 1 - E(1) = 2
当G有N个顶点时, 假设结论成立
我们去除一条G中两个面的一条临边, 得到G有 N-1个面时 ,面和边各减少1. 故结论成立
证明3: (归纳边)
和上面的方法一个思路
略.


欧拉公式
简单多面体的顶点数V、面数F及棱数E间有关系
V+F-E=2

这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。

认识欧拉
欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。
欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。
欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(Gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,∑,f (x)等等,至今沿用。
欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有关系V+F-E=2,此式称为欧拉公式。V+F-E即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”? 欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式......

欧拉定理的意义
(1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律

(2)思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。

(3)引入拓扑学:从立体图到拉开图,各面的形状、长度、距离、面积等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。
定理引导我们进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。

(4)提出多面体分类方法:
在欧拉公式中, f (p)=V+F-E 叫做欧拉示性数。欧拉定理告诉我们,简单多面体f (p)=2。
除简单多面体外,还有非简单多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的表面不能经过连续变形变为一个球面,而能变为一个环面。其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面体的欧拉示性数为0。

(5)利用欧拉定理可解决一些实际问题
如:为什么正多面体只有5种? 足球与C60的关系?否有棱数为7的正多面体?等

欧拉定理的证明
方法1:(利用几何画板)
逐步减少多面体的棱数,分析V+F-E
先以简单的四面体ABCD为例分析证法。
去掉一个面,使它变为平面图形,四面体顶点数V、棱数V与剩下的面数F1变形后都没有变。因此,要研究V、E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1
(1)去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。
(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一条棱。
以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E =2。
对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。

方法2:计算多面体各面内角和
设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和∑α
一方面,在原图中利用各面求内角总和。
设有F个面,各面的边数为n1,n2,…,nF,各面内角总和为:
∑α = [(n1-2)·1800+(n2-2)·1800 +…+(nF-2) ·1800]
= (n1+n2+…+nF -2F) ·1800
=(2E-2F) ·1800 = (E-F) ·3600 (1)
另一方面,在拉开图中利用顶点求内角总和。
设剪去的一个面为n边形,其内角和为(n-2)·1800,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。中间V-n个顶点处的内角和为(V-n)·3600,边上的n个顶点处的内角和(n-2)·1800。
所以,多面体各面的内角总和:
∑α = (V-n)·3600+(n-2)·1800+(n-2)·1800
=(V-2)·3600. (2)
由(1)(2)得: (E-F) ·3600 =(V-2)·3600
所以 V+F-E=2.

欧拉定理的运用方法
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c

(2)复数
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2

(3)三角形
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr

(4)多面体
设v为顶点数,e为棱数,f是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体

(5) 多边形
设一个二维几何图形的顶点数为V,划分区域数为Ar,一笔画笔数为B,则有:
V+Ar-B=1
(如:矩形加上两条对角线所组成的图形,V=5,Ar=4,B=8)

(6). 欧拉定理
在同一个三角形中,它的外心Circumcenter、重心Gravity、九点圆圆心Nine-point-center、垂心Orthocenter共线。

其实欧拉公式是有很多的,上面仅是几个常用的。

使用欧拉定理计算足球五边形和六边形数

问:足球表面由五边型和六边型的皮革拼成,计算一共有多少个这样的五边型和六边型?
答:足球是多面体,满足欧拉公式F-E+V=2,其中F,E,V分别表示面,棱,顶点的个数
设足球表面正五边形(黑皮子)和正六边形(白皮子)的面各有x个和y个,那么
面数F=x+y
棱数E=(5x+6y)/2(每条棱由一块黑皮子和一块白皮子共用)
顶点数V=(5x+6y)/3(每个顶点由三块皮子共用)
由欧拉公式,x+y-(5x+6y)/2+(5x+6y)/3=2,解得x=12
所以共有12块黑皮子
所以,黑皮子一共有12×5=60条棱,这60条棱都是与白皮子缝合在一起的
对于白皮子来说:每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起,所以白皮子所有边的一半是与黑皮子缝合在一起的
那么白皮子就应该一共有60×2=120条边,120÷6=20
所以共有20块白皮子

简单多面体的顶点数V、面数F及棱数E间有关系
V+F-E=2

这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。

方法1:(利用几何画板)
逐步减少多面体的棱数,分析V+F-E
先以简单的四面体ABCD为例分析证法。
去掉一个面,使它变为平面图形,四面体顶点数V、棱数V与剩下的面数F1变形后都没有变。因此,要研究V、E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1
(1)去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。
(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一条棱。
以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E =2。
对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。

方法2:计算多面体各面内角和
设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和∑α
一方面,在原图中利用各面求内角总和。
设有F个面,各面的边数为n1,n2,…,nF,各面内角总和为:
∑α = [(n1-2)·1800+(n2-2)·1800 +…+(nF-2) ·1800]
= (n1+n2+…+nF -2F) ·1800
=(2E-2F) ·1800 = (E-F) ·3600 (1)
另一方面,在拉开图中利用顶点求内角总和。
设剪去的一个面为n边形,其内角和为(n-2)·1800,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。中间V-n个顶点处的内角和为(V-n)·3600,边上的n个顶点处的内角和(n-2)·1800。
所以,多面体各面的内角总和:
∑α = (V-n)·3600+(n-2)·1800+(n-2)·1800
=(V-2)·3600. (2)
由(1)(2)得: (E-F) ·3600 =(V-2)·3600
所以 V+F-E=2.
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c

(2)复数
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2

(3)三角形
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr

(4)多面体
设v为顶点数,e为棱数,f是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体

(5) 多边形
设一个二维几何图形的顶点数为V,划分区域数为Ar,一笔画笔数为B,则有:
V+Ar-B=1
(如:矩形加上两条对角线所组成的图形,V=5,Ar=4,B=8)

(6). 欧拉定理
在同一个三角形中,它的外心Circumcenter、重心Gravity、九点圆圆心Nine-point-center、垂心Orthocenter共线。

其实欧拉公式是有很多的,上面仅是几个常用的。


拉普拉斯延迟定理证明
拉普拉斯延迟定理证明:利用拉普拉斯变换的基本定理,拉普拉斯变换表以及部分分式展开法对常见函数进行拉普拉斯反变换。相量与正弦量的变换为了计算正弦稳态响应,可将激励源变为相量,然后在频率域里求相量(即相量法),然后再变回时域得到正弦时间函数响应。拉普拉斯定理 计算降阶行列式的一种方法。该定理...

拉格郎日定理来证明(x-y)py^(p-1)<=x^p-y^p<=(x-y)px^(p-1), ( 0<...
设 函数u=v^p(p≥1),当 x>y>0时,函数u在【x,y】上连续。应用拉格郎日定理(ξ^p)′=p【ξ^(p-1)】=(x^p-y^p)\/(x-y)(y<ξ<x),即x^p-y^p=(x-y)p【ξ^(p-1)】,函数u在【x,y】上是单调递增函数,py^(p-1)<ξ^(p-1)<px^(p-1),因此(...

如何证明无理数是有理数的数学表达式?
利用“欧拉公式”:1+1\/2+1\/3+……+1\/n=ln(n)+C,C为欧拉常数 数值是0.5772。则1+1\/2+1\/3+1\/4+...+1\/2007+1\/2008=ln(2008)+C=8.1821(约) 。就不出具体数字的,如果n=100那还可以求的,然而这个n趋近于无穷,所以算不出的。具体证明过程如下:首先我们可以知道实数包括有理...

euler公式
复变函数中,e^(ix)=(cos x+isin x)称为欧拉公式,e是自然对数的底,i是虚数单位。拓扑学中,在任何一个规则球面地图上,用 R记区域个 数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,这就是欧拉定理 ,它于 1640年由 Descartes首先给出证明。后来 Euler(欧拉 )于 1752年又独立...

魏尔斯特拉斯定理如何证明???
,然后设g(m,r)表示f在区间[a,b]内等分点的函数值,则 令p(x)=g(m,0)*C0+g(m,1)*C1+...+g(m,m)*Cm 由于上式中的每一项都是关于x的多项式(m次),用该多项式逼近f(x),然后证明max | f(x)-p(x) |<n 当然要求m的取值和n有关,你可以看看数学分析,有这个证明,呵呵 ...

毕达哥拉斯勾股定理怎么证明?
毕达哥拉斯证明勾股定理的方法如下:第一步,以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。第二步,AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。第三步,证明四边形EFGH是一个边长为c的正方形后即可推出勾股定理。勾股定理,...

拉氏变换中复微分定理怎么证明?
拉普拉斯变换中的复微分定理可以用分部积分法来证明。设函数 f(t) 和 g(t) 的拉普拉斯变换为 F(s) 和 G(s),则有:∫[0,+∞)f(t)g'(t)e^(-st)dt = [f(t)g(t)e^(-st)]|_[0,+∞) + sF(s)G(s) - ∫[0,+∞)f'(t)g(t)e^(-st)dt 下面我们来逐步证明上式。首先...

毕达哥拉斯勾股定理证明方法勾股定理证明方法
毕达哥拉斯勾股定理证明方法,勾股定理证明方法很多朋友还不知道,现在让我们一起看看吧!1、勾股定理证明方法:以a b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于2分之一ab。AEB三点在一条直线上,BFC三点在一条直线上,CGD三点在一条直线上。证明四边形EFGH是一个...

毕达哥拉斯定理的证法
勾股定理(毕达哥拉斯定理)是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国...

波尔查诺-魏尔斯特拉斯定理怎么证明?
于是取k0 = N + 1, 为第一个大于的元素的下标,为第一个大于的元素的下标,依此类推,就可以得到的一个子列,它是单调递增的,构造完毕。综上可得,有界的实数列必然包含单调的子列。(2)定理的证明:先考虑n = 1的情况。对于一个有界闭集中的实数列,取它的一个单调子列。不妨设这个子列单调...

林口县18674125499: 欧拉公式的证明及各方面的应用 -
定民雅邦: e^ix=cosx+isinx,e是自然对数的底,i是虚数单位.它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位. e^ix=cosx+isinx的证明: 因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+…… cos x=1-...

林口县18674125499: 数学上三角形的欧拉定理如何证明? -
定民雅邦:[答案] 欧拉公式简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫欧拉公式.公式描述了简单多面体顶点数、面数、棱数特有的规律.证明方法:方法1:(利用几何画板)逐步减少多面体的棱数,分析V+F-E先以简单的四...

林口县18674125499: 请证明欧拉公式? -
定民雅邦:[答案] 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) ((((就是就是就是就是q239urjuq239urjuq239urjuq239urju空间里的那个空间里的那个空间里的那个空间里的那个)))) 再抄一遍:设z = x+iy 这...

林口县18674125499: 欧拉定理怎么证明 -
定民雅邦: 简单多面体的顶点数V、面数F及棱数E间有关系 V+F-E=2 这个公式叫欧拉公式.公式描述了简单多面体顶点数、面数、棱数特有的规律. 方法1:(利用几何画板) 逐步减少多面体的棱数,分析V+F-E 先以简单的四面体ABCD为例分析证法. ...

林口县18674125499: 欧拉定理公式的证明: d^2=R^2 - 2Rr要过程,只需要这一个证明 -
定民雅邦:[答案] 简单多面体的顶点数V、面数F及棱数E间有关系 V+F-E=2 这个公式叫欧拉公式.公式描述了简单多面体顶点数、面数、棱数特有的规律.方法1:(利用几何画板) 逐步减少多面体的棱数,分析V+F-E 先以简单的四面体ABCD为例分...

林口县18674125499: 叙述关于欧拉图的欧拉定理,并请证明该定理. -
定民雅邦:[答案] 对于互质的整数a和n,有a^φ(n) ≡ 1 (mod n) 简单多面体的顶点数V、面数F及棱数E间有关系 V+F-E=2 这个公式叫欧拉公式.公式描述了简单多面体顶点数、面数、棱数特有的规律.

林口县18674125499: 欧拉公式 证明 -
定民雅邦:[答案] 欧拉(Leonhard Euler ,1707-1783)著名的数学家,瑞士人,大部分时间在俄国和法国度过.他17岁获得硕士学位,早年在数学天才贝努里赏识下开始学习数学,毕业后研究数学,是数学史上最高产的作家.在世发表论文700多篇,去世后...

林口县18674125499: 数学上三角形的欧拉定理如何证明? -
定民雅邦: 欧拉公式 简单多面体的顶点数V、面数F及棱数E间有关系 V+F-E=2 这个公式叫欧拉公式.公式描述了简单多面体顶点数、面数、棱数特有的规律. 证明方法: 方法1:(利用几何画板) 逐步减少多面体的棱数,分析V+F-E 先以简单的四面体...

林口县18674125499: 如何证明欧拉公式? -
定民雅邦: 假设在任意凸多面体中放置一个点光源,以这个点光源为中心作一个单位球,凸多面体的顶点、棱、面都会在球上形成投影.那么只要证明在球面上形成的点、线、面满足欧拉公式即可. 然后将球面上的所有面剖分成三角形,剖分一个面时,...

林口县18674125499: 欧拉公式怎么证明的? -
定民雅邦: 用拓朴学方法证明欧拉公式 尝欧拉公式:对于任意多面体(即各面都是平面多边形并且没有洞的立体),假 设F,E和V分别表示面,棱(或边),角(或顶)的个数,那么 F-E+V=2.试一下用拓朴学方法证明关于多面体的面、棱、顶点数的欧拉...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网