非可燃性资源如何储运?

作者&投稿:淡党 (若有异议请与网页底部的电邮联系)
可燃燃料如何储运?~

由于多数的能量应用都有具体的时间和地点条件限制,因此可燃燃料便于储运的特点使其备受青睐。事实上,火车、蒸汽船、汽车、飞机等的出现,一方面使运输业成为最大的能源消费行业,另一方面也更加突出了能源储运特点的重要性。再进一步说,能否将能源运至能源消耗密集区,对推动工业发展非常关键。在美国,钢铁城市多在煤矿附近地区发展,因为钢厂需要大量的能量,钢加工过程中的用煤量比铁矿石本身还要多,这样,将钢厂设在煤矿附近就会节约一大部分燃料运输成本。后来,随着油气在能源市场占据主要地位,其运输的便利特点才改变了钢厂选址的优先考虑因素。
煤是固体,故不需专门的集输技术,几个世纪前,用马车拉煤,甚至装袋由人力扛运,与搬运木柴或木炭差不多。新老资源接替时,新资源一定要在使用性能和储运方面尽可能与老资源接近,显然煤具有这种优势。
采煤规模扩大后,煤矿入口处开始采用倒煤场。最初的倒煤场只是个大箱子,煤车可将装载的煤倾倒进去,故倒煤场又名翻车场。对那种沿山壁向里挖的煤矿来说,倒煤场尤为有效:煤倾倒入煤矿出口处的倒煤场后,就存储在那里,直到货车将煤拉走;货车装煤时,倒煤场底部的圈闭门会打开,煤靠自身重力自动落入货车车厢。因为有了铁路,这项储运技术非常重要,目前已成为煤储运的主要设施,一般都位于煤矿入口附近,甚至露天煤矿也有大型的倒煤场,将煤卸入过往的铁路货运车厢中。虽然需要将煤举升进入倒煤场中,但这一过程耗时很短,倒煤场相当于采煤现场又增加了一个储集场。
现代采煤作业中,煤进入倒煤场前,一般将大块的煤进行粉碎,使其粒度相对均匀。粉碎可使最终燃烧的效率提高,可能也是煤零售前所需的唯一一道处理工序。煤通常含有大量的硫和矿物灰,销售和使用前最好能除去这些污染物,可是,这些污染物组分与含碳组分结合得很紧密,不易处理(偶尔煤中会有大块的黄铁矿,这种矿石主要含硫,可通过机械方法分离)。现代工业通常都使用粉碎的煤,但在20世纪初,市场上大块的煤非常受欢迎,因为这些煤块太大,无法通过分选筛,所以价格便宜,只是成本价。
煤的运输通常采用直达货运列车,这种列车一般有100节车厢,每节车厢载重约100吨,在铁路与公路的交叉口,一位摩托车手等待一列运煤车通过时,煤车似乎望不到尽头。这种专门用来运煤的直达货运列车,将煤运至消费地点后立即返回(空返),再装满一车煤开始下一次的运送。运煤列车可以将煤运给1000英里外甚至更远的买主,目前,美国储量最丰富的煤田在落基山地区,当地因人口密度不大、耗煤量中等,因此这里产出的煤大多运往遥远的、人口更为密集的地区。
有水路的地方,驳船和货船也用来运煤。沿北美五大湖东部开凿的人工运河——伊利运河,其目的之一就是为了运煤。以巨大的相互连通的湖面运输网络为依托的廉价运煤(及运送其他大宗产品)的能力,推动了美国这一地区众多大都市的发展。水路运输比陆路运输更为有效,但不如陆路运输直接(天然水路的走向不利于运输,运河又很有限)。20世纪80年代,美国煤的运输中,驳船仅次于铁路,占运煤量的16%~17%(注2)。
运煤的内陆驳般与海洋货轮有一些区别。驳船是平底而不是“V”形底,且不是机动船。它的优点是费用低廉,可往返于浅水河道,缺点是,平底设计无法经受风浪,不适用于海洋运输,就是在经常出现暴风雨的五大湖区,其应用也非常受限制。
20世纪70年代,一种更为有效的运煤方式受到强烈关注——管输。管输实际上是人工开凿水路的一种变化形式,比任何地面运输都有效。一般情况下,管输是可以实现的,与其他需要笨重载体的运输方式相比,管输只需要移动货物本身。但是,煤是固体,因此需要运载介质,一般建议用水来做这种介质,因而出现了众所周知的煤浆管线。水介质的使用,将节约的车辆成本抵消了,但两种运输方式之间还存在着一个不太明显的区别,即内燃机驱动地面车辆的总效率很低,管输泵的操作效率要高得多。
煤浆管线的主旨是把煤磨成颗粒状,以形成煤浆或使煤在水中悬浮。由于煤基本上不溶于水,故需要一些表面活性剂来保持悬浮状态,煤与水的密度相差无几,有助于二者的混合,之后就可用泵将煤浆打入管线,输送给远方的消费者。最后在使用地点还必须对煤浆进行煤水分离。
煤的管输遇到的不可逾越的障碍是用水量巨大。美国曾有意在落基山地区与美国东部之间建一条输煤管线,但因落基山地区是半干旱地区,当地居民反对将其有限的水源供给更为湿润的东部地区。管线支持者们向居民们保证不使用饮用水,而是用打井的方法汲取盐水,但居民们质疑汲取地下水有可能影响地下水循环,甚至有可能使浅层淡水吸入加压盐水层。研究表明这种情形可能性不大,但无法确保一定不会出现,没有关于地下结构及渗透率规律方面的充分资料来消除这种可能性。比如,如果有一道未监测到的纵向裂缝将浅层与深层的水层相连通,浅层淡水有可能流入下部地层去补充产出盐水层。铁路公司基于经济利益也反对管输,但煤的管输最终夭折还是因为无法解决的水介质问题。最终,反对管输的一方通过否决煤浆管线的支配权获得了胜利。所谓支配权,是指依据法律,高速公路、公路和管线可强迫土地拥有者出租或出售其财产领地的通行权。
目前,布莱克台地(Black Mesa)管线是唯一一条有分量的作业管线,它从犹他州到加利福尼亚州,年运煤量500万吨,相当于每天一列半运煤列车的运送量(注3),迄今为止,大部分煤仍采用铁路和驳船运输。煤形成后,已远离了其原始的植物状态,其储存简单直接,只需堆放即可,不会吸引来白蚁及类似的昆虫,但煤尘会引起环保问题,且煤存储区也是易燃危险区。
石油和天然气
流体能源的运输,尤其是陆上要比固体燃料的运输效率高得多,它所引起的短期问题也很多。在宾夕法尼亚州,石油工业的头十年,石油都是装在木桶中被运输的。早期的桶每桶可容纳42加仑石油,尽管早已不再使用,但至今还被用作石油的计量单位。德瑞克那口著名的井日产10桶,这无疑给当地的制桶人提供了良好的工作机会,但设想一下,两年后出现的第一口高产井日产3000桶,这对制桶人来说又是什么样的影响?石油生产者们就是买桶甚至建储罐也无法储存这么高的产量,石油从匆忙搭就的容器中溢出,依山而下,流入溪流和河水。产量的增长超过了需求,很快容器就比其所盛纳的黑金贵重(注4)。
19世纪后半叶,道路设计主要针对马或双轮马车,城市中的道路多以鹅卵石或砖铺就。而石油工业开始的宾夕法尼亚西部山区,泥泞的道路妨碍了将石油运给消费者,当地将圆木横铺在路上,建成木排路,以抑制泥泞,便于重负荷的拉油车通过,这种路减少了拉油车陷入泥潭的概率,但却无法持久。
油从井里涌到地面,最初阶段基本不受控制,油桶短缺、拉油车运送速度缓慢,将石油工业的发展带到了瓶颈。大量的油被阻在井口,常常有油溢出储罐的现象,因为早期的自喷井一直自然放喷,直到压力衰减为止。在德瑞克以前,也有石油生产,但只是从溪水表面撇出天然渗出的油,完钻的第一批井使产量大增,从地面集油在本质上与早期的天然撇油并没有大的区别,有些产油者甚至将沟壑拦上坎,形成储油池。下游的农民显然不赞成这项技术,当时虽没有什么环保规定,但多数作业者都会自觉地、尽可能地将其产品收拾得较为干净。
木桶越来越短缺,储运量增长极为迅速,没有多久,就铺设了第一条输油管线。1863至1865年间,安装了众多的油田集油管线,这些管线与一条主管线相连,主管线将油运至铁路首站。第一条大型管线名为潮水(Tidewater),将宾夕法尼亚西部的产油区和宾夕法尼亚东部边界以及里丁(Reading)铁路油库相连,该油库位于威廉港(Williamsport)东109英里处,1879年5月该管线投产。此前所建管线最大管径为3英寸,没有哪条管线长度超过30英里,且也没经过地形变化较大的地区,潮水管线长度增加了两倍,创当时管线长度之最,管径为6英寸,且在隆冬时节穿越了阿巴拉契亚山脉(the Appalachain Mountain)(注5)。
铺建这样一条管线的动机并不是为了提高效率、环保或节约成本,而是为了打破J. D.洛克菲勒(J. D. Rockefeller)标准石油公司(J. D. Rockefeller’s Standard oil)的控制。洛克菲勒标准石油公司达到足够大的规模后,便策划了声名狼藉的和铁路部门之间的回扣交易,这些交易不仅仅是以较低的价格将标准石油公司的油运至其炼厂,而且还付给标准石油公司一笔额外费用,这笔额外费用就是标准石油公司的竞争对手所交付的运费(注6)。这种市场控制使得洛克菲勒公司能有效地实施买方垄断——该公司购买了总产量中的大部分,进而可以设定原油价格。第一条输油管线主要是迫于当地运油卡车司机不断提出的运费上涨的压力。而面对洛克菲勒所带来的新的市场压力,石油生产者们联合起来,投建了这条史无前例的潮水管线,以冲破洛克菲勒的控制,开创新的市场。有意思的是,早期的洛克菲勒标准石油公司并不是产油公司,洛克菲勒确信石油炼制和销售会更赚钱。对这些小的产油公司来说,非常不幸的是,洛克菲勒迅速对他们的动机做出了回应:两年之内,标准石油公司铺设了到克立夫兰(Cleveland)、布法罗(Buffalo)、费城和纽约市的管线,又恢复了对下游的控制(注7)。洛克菲勒这种破坏竞争的做法使得众多的市场竞争者们和石油生产者们遭受了断喉的痛苦,最终导致了国家出台反托拉斯法。许多公司的领导者试图保持独立自主,对不公平竞争极其愤慨,而标准石油公司的做法却折断了这些公司的脊梁,但洛克菲勒却将这种阻碍竞争的做法说成是在纷扰的局面中建立秩序,提高效率。这种建立秩序的斗争确实带来了意想不到的效果,即通过铺设管线,可以输送大量的石油,减少了漏油事故,因而大大消除了环境损害。
管线迅速占据了州际运输,几乎在各个方面都有优势。其产品损失小,意味着环境损害小;运送量大,能量投入和物料投入都少。由于对环保的关注越来越趋于立法的边缘,工程设计方面就要使管线更为安全。阿科(ARCO)、埃克森(Exxon)和英国石油公司麾下的财团筹集资金铺设阿利耶斯卡(Alyeska)管线时,管线上安装了众多的压力传感器。该管线从阿拉斯加北坡开始,一直到达瓦尔德斯(Valdez)港的开阔水域,如果出现泄漏,管线压力就会降低,泄漏上游的一个阀门就会自动关闭,防止更多的油从漏点流出,这样就有可能减少所有事故中的漏油量。
尽管20世纪90年代有报告指出阿利耶斯卡管线的检验和腐蚀控制不充分,使其安全性遭到了质疑。但提高管线的安全性从技术角度看是可行的。早在20年前,阿利耶斯卡管线就采用了当时一系列的先进工程设计技术,不仅降低了漏油风险,还解决了一系列的环保问题。目前,这条著名管线如果存在危险,而危险到什么程度还不能确定,那么只要还有经济价值,修复的技术是具备的。
很明显,管线直径越大,运送的流体也越多;同样,给定管线情况下,泵输液体或压缩气态流体的压力越大,运输量也越大(附录中给出了工程师设计用的通用方程)。管线成本与所选管线的尺寸和强度成正比,包括铺设管线在内的施工可能占项目成本的一大部分,因此安装的管线要具备足够的输送能力,以满足预期的输送要求,如果有新增加的油田开发,管线的设计尺寸应能满足输送总产量的要求。在低收入国家中,产量可能会受到需求的限制,因此,管线要进行优化设计,以满足交付点的预期能量需求。
多数现代管线都是钢质,但现在一些小型应用有时也采用高密度聚乙烯管线。聚乙烯承受的压力比钢管要低,因此只限于小管径,但其安装费用低,不需要重型的挖管沟设备和焊机来确保每个接点,只用犁状设施挖开的窄管沟就可以安装聚乙烯管,每根管的连接用简单的热熔仪器就可完成,比焊接所需的时间短,技术熟练程度低。该技术在低收入国家将石油和天然气输送到小型市场方面已显现出了一定前景。1991年莫桑比克国家油公司(Empresa Nacional de Hidrocarbonetos)安装的中等规模的聚乙烯管线目前给一座50000人口的城市供气,气来自一个30年前发现的气田,但以前认为该气田成本效益低,不能投产。
油罐船
流体燃料陆上运输采用管道输送不失为一种有效方法,20世纪以来,陆上石油管输量大增。但在目前的经济和技术条件限制下,越洋管线的成本太高,因此将产品从生产地点运至消费地点,船运似乎是唯一可行的解决办法。
第一艘成功的散装油轮是索罗亚斯德号(Zoroaster),由路德诺贝尔公司(Ludwig Nobel)建造,目的是将俄罗斯产的油经里海运出。该船于1878年下水,与运桶装油或桶装挥发性及爆炸性煤油的船相比有天壤之别(注8)。二战期间,美国建造了525艘油轮为盟军提供燃料,这些油轮代号为T-2,每艘油轮承载的总重为16000吨,其中包括原油、燃料和自重,这些油轮近400英尺长,有许多一直工作到20世纪70年代。1962年,曼哈顿(Manhattan)号油轮以T-2八倍的能力试航,其自重为116000吨,但也只是超级油轮的一半。到了20世纪70年代,油轮已变得惊人的庞大,所谓的超级油轮占据了市场,超级油轮长度超过400码,装载的油超过200万桶,停泊时半速行驶需1英里才能停住(注9)。远洋运输不经常用超级油轮,而是常采用大型油轮及再大一些的特大油轮(分别为VLCC和ULCC)
VLCC(大型油轮),载重量二十万吨以上的油轮;ULCC(超巨型油轮),载重量三十万吨以上的油轮。。油轮尺寸增加不仅仅基于“如果大就是好,则越大越好”,而且也是因为中东、阿拉斯加及南亚巨型油田的开发,石油产能大增,与之相应的是发达国家需要进口大量石油。石油的国际需求量持续增长,要求的经济规模及油轮的载重能力都是空前的,以便将更多的油运给工业化的耗油大国。
超级油轮发生事故的影响令人震撼。以往曾发生过几次大型油轮的事故,但没有哪一次像第一艘超级油轮在美国海域发生的那次漏油事故那样受到媒体关注(以美国新闻媒体为主)。事故的当事者是恶名昭著的埃克森·瓦尔德斯(Exxon Valdez)号,事故地点就在阿拉斯加的瓦尔德斯(Valdez)港外。尽管瓦尔德斯(Valdez)号不能列入最大的超级油轮行列(充其量只能算是VLCC),漏油量也只是11年前法国海岸阿莫克·卡迪斯(Amoco Cadiz)号漏油量的六分之一,但这次事故却激起了公众对海洋运油业的极大愤怒(注10)。
具有讽刺意味的是,对越洋石油的运输,大部分敌意都指向了不相关的海洋钻井,其实这些敌意更应该针对那些超级油轮的使用。但这其中的逻辑似乎是:进口需求量一定的情况下,使用超级油轮虽然事故影响大,但使用小型油轮意味着要增多油轮的数量、更为频繁的往来,进而事故更多。自身能源生产无法满足需要的国家必须依靠进口,而越洋石油运输又是高风险的活动,有关环保政策方面的讨论将留到“能源应用的影响”一章。
现代超级油轮通过一系列特别设计降低事故发生的可能性和严重性。这些油轮有多个完全分离的货舱,这样,船体一部分损坏不会危及整条货船(所以瓦尔德斯号在悲剧发生的清晨只泄漏了载油量的五分之一)。油轮上装有计算机、航海设备、安全及监控设备,而早期的油轮缺乏技术成熟的设备,真正成功的油轮设计问世要花费若干年的时间。第一艘跨越大西洋的油轮是把油装在木桶中再装船,甚至将炼制好的煤油装入常规货船的货仓,桶移动或破裂,油溢入货舱,明火照明灯会把煤油烟点燃。在引入油轮密封舱的理念前,有些油轮根本没有任何隔挡系统,海浪会使得液体货舱内出现波浪作用,增加了海浪作用在油轮上的冲力,进而增大了油轮倾覆的可能性,现代技术已解决了这一问题。
天然气的运输
用管道输送天然气很容易,效率也很高。石油工业出现以前,曾用管道向大城市供应煤气,用于家居及街道照明。但天然气不是最好的能源,石油工业早期,大量的气体被放空烧掉(这种做法至今还没完全根除),即使大部分美国家庭转而使用天然气做饭、取暖,天然气仍次于油,位居第二,因此,天然气市场一直不景气,1954年,美国政府又决定控制天然气价格,也加剧了这种不景气。天然气管输其他方面的障碍还有气体储存问题。
最早的工业用气是产自煤层的煤气(如前所述)。一般认为苏格兰工程师威廉·莫道克(William Murdock)是用气的先驱者之一,他于1792年在家乡康沃尔(Cornwall)安装了气灯。同一时期许多人也做了许多用气的试验,其中不乏成功者,如145年前乔治·迪克森(George Dixon)安装的照明灯,但莫道克的成功为天然气工业的发展提供了巨大的推动力。早期曾用木质管道输送流体,天然气工业出现的前20年,因气体无法储存,过量的气体被放空烧掉,天然气工业的发展因而受到了限制。1816年,赛缪尔·克莱格(Samuel Clegg)研发了首个气体储罐,该储罐靠水密封,水会污染气体,但直到20世纪之交才出现干式储罐。在用曼内斯曼(Mannesman)穿孔工艺制作无缝钢管之前,钢管线并没有在该市场上占主要地位,但在英格兰,早在200年前,管输气体就很普遍,据说中国3000年前就曾用竹管输气(注11)。
早期成功的木管线和钢管线一般都很小,操作压力低,气体通常只是流过局部管线,有某种调节器控制来自井内的天然压力。当油藏压力降至某一点,无法再以高于管线压力的压力将气体推举至地面时,这一压力点就标志着一口井生产寿命的结束,这种情形在本书写作期间也很常见。如果气田很大,为保持成本效益也可以安装一台压缩机,以低压接收产出气,再将压力提高到管输压力。
随着气体需求量的增长,铺设大管径高压主管线开始变得有利可图。目前有许多气管线直径超过3英尺,有的甚至超过5英尺,这些管线将大量的气体运到发达国家的气体市场上,沿途要经过几级压缩机站增压才能到达。
为了大量储存天然气或用管线以外的方法输送,必须用高压将气体压缩或在极冷状态下液化。将天然气液化(LNG)是一种储存措施,但也可以作为一种输送方法,LNG货轮将世界各地的天然气运给日本。越洋LNG货轮的储存能力一般是125000立方米,可容纳10亿标准立方米(大气条件下)气体的四分之三,或近80亿标准立方英尺(注12)。
压缩天然气(CNG)作为汽车用燃料越来越受到关注。CNG使得汽车燃料箱有限的空间内可以储存足够的能量。安全压力下将气体压缩储存不如液化储存效率高,但在行驶的路上保持LNG的深冷条件又很难,因此,尽管CNG的效率低些,但还足够维持合理的里程范围。曾用公共汽车对CNG和LNG做过测试,城市的公共汽车还没遇到不得不找加气站加气的情况,分析表明,天然气具有良好的燃料性能,但目前其成本还稍稍高于柴油(注13)。
生物燃料
大部分用来获取能量的生物燃料都以木柴或木炭的形式出现,其运输方式通常采用卡车、手推车、甚至人力搬运。木柴的储存堆放即可,在美国及西欧,传统方法是用绳子捆,1捆柴通常为4英尺高、4英尺长、8英尺宽。1捆松木的化学能含量一般为2700万英热单位,木柴可经历多周期的干湿变化,但必须干燥后才能燃烧。不过,木柴储存的主要问题是要防止白蚁及蚂蚁之类的小动物的啮咬。
由于木柴的能量密度低,获取及运输的量就大,运输用卡车消耗的能量会抵消部分从木柴中获取的能量。假设从一点出发,向各个方向行进20英里收集木柴,卡车消耗的能量只占到木柴化学能的10%,视卡车的状况和效率高低会有些浮动。在居民以木柴为主要燃料的国家中,木柴本身的质量(体积)严重影响了木柴商人的经济效益,因此常在把木柴运出森林前加工成木炭。
木炭比原木轻得多,在转换过程中大部分水分得以挥发,因此木炭的能量密度较高。消费者更喜爱木炭可能也推动了这种转换,但运输效率方面的作用更大(当消费者用于煮饭的燃料费用最多只能占其收入的三分之一时,这些人不太可能仅仅因为木炭的方便特点再支付一笔费用),运输效率的提高足以抵消木柴转换成木炭过程中损失的能量。效率提高程度视运送距离远近而定,低收入国家中,森林面积逐步缩减,运送距离可能达到上百英里,居民(多数时候是女人)们外出,可能向各个方向行走20公里(12-13英里)去收集木柴运回家煮饭,在某些木柴缺乏的地区,拾柴这项活动可能要占去女人们30%~40%的时间。从能量转换的角度看,人力比汽车运输更为高效,但因为费时长,故产能很低(图3.1)。

图3.1 肯尼亚妇女拾柴资料来源:Mrs. Nancy Polling, Rochester, NY.生物燃料的前景无疑在于是否能转换成二次流体燃料(乙醇或气体)。生物燃料一旦转换成二次流体燃料,就有和石油、天然气一样的运输优缺点。固体生物燃料转换受集输的限制,不易将其运至转换设施之处;排泄物是极好的生物气生产原料,但散养动物产生的肥料太过分散,无法收集起来应用;一般来说,在现有废物流比较集中的地方,就地生产生物气是最佳方法。用植物生产的酒精最有可能同石油产品混合用于内燃机,其运输方法与石油相同。

能量要有效地满足人类的需要,最基本的一点是能量载体要能输送给消费者,需要时就可以使用。这可以是方便性的问题,如同一个人想看电视,打开开关就看到画面;但也可以是生存问题,如冬天为居室供暖。人类的能量应用从木柴进步到煤,又进步到油和气,与此同时,能量的储与运也有了极大的进步,一个人如果携带1桶5加仑的汽油,其所携带的储存化学能量即使低效使用,也足以驱动一辆1000磅的汽车行驶100英里以上。
可燃燃料
可燃燃料提供的都是存储在有机分子中的化学能量。从木柴到煤再到石油,最后到天然气,有机含量的纯度不断提高,说明这些燃料的能量密度也在不断提高。油和气是最清洁的燃料,而且管输效率很高。这也是人们愿意把固体燃料(生物燃料和煤)在使用前转换成流体燃料的原因之一,与其他效率较为低下的液化和气化工艺一样,煤浆也不失为一种选择。生物燃料中长碳链可以通过微生物作用转换成液体和气体,这种转换有两种方式,一是发酵制成酒精,二是厌氧消化生成甲烷。转换成液体可更为有效地利用生物燃料,环保方面也更为合理。
电力
所有的非可燃性资源输送前基本上都要转换成电。与其他已知的能量载体相比,电是一种多功能的能量载体,使用时几乎绝对清洁。像管输液体一样,电也是在需要时出现,而且在能够使用这种最为方便的能量形式以前,也要求有大量的基础设施投入。
最近,电的一项外部成本日益受到关注,即导致超高压电线附近的居民(尤其儿童)患癌症总数上升。美国一直在研究癌症发病率与暴露于电线周围电晕离子空气流之间的关系,而其他一些非工业化国家已得出这种危险的确存在的结论,并已开展如何降低这一危险的研究。

太阳能

太阳能在太阳的电磁辐射中,以较窄的光谱范围到达地球表面(见图3.2)。由于现有技术(及科学理解)认为电磁辐射是能量流,因此,如果不转换成其他形式就无法储存。被看做是能量包的光子能以多种方式同物质发生相互反应,它们可以撞击核子,使其产生更快的振动,进而使物质生热,以这种方式加热的空气就产生了风。光子还可以和电子发生反应,向电子施加能量,如果是硅和其他半导体,则外围的电子价基本上为全价,不易流动,但如果电子从光子接收了1.1电子伏特以上的值,则电子就会跳出价电子轨道进入导电带,产生电流。图3.3给出了太阳能启动电子流的过程,光电系统就是利用了这一原理将入射的太阳辐射即时转换成电能(注14)。

图3.2 电磁光谱资料来源:Jack Kraushaar and Robert Ristinen, Energy and Problems of a Technical Society, p. 149.到达地球表面的太阳辐射集中于可见光谱部分,其中大部分又从地球表面以红外光谱的形式再次放射出来

图3.3 电子能带资料来源: Jack Kraushaar,Robert Ristinen, Energy and Problems of a Technical Society, p. 176.光子向价电子施加了恰到好处的能量,电子进入导电带,电子流产生电流存储

太阳辐射与植物中的叶绿素和其他色素相互作用,使能量流转换成化学能,存储在进行光合作用的植物组织中,以及以这些植物为食物的动物身体中。一般情况下,穿过电子云的光能向电子施加足够的能量,使电子充分移动,结合成高能分子,这是一种非常有效的储存过程,这种储存过程不仅生产出地球上所有的生物燃料能量,而且经过世世代代的变迁,还储存了所有的化石燃料能量。这种天然的存储过程是人工光合作用无法比拟的,但以化学能形式进行储存具有强制性,且因传输过程中没有损失,故可无限存储。

即使是用于居室取暖的被动太阳能应用,也能达到白天储存热量、夜晚释放热量的效果。最简单的应用方法可在玻璃窗对面放置一大块暗墙,因为颜色暗,所以不反射光谱的可见光部分(可见光谱占太阳辐射的大部分),而是吸收了大量的太阳能,吸收的太阳能存储在墙体材料的焓中。如果用被动太阳能取暖,存储墙一般都是涂黑的木墙或石墙,当周围温度降到储存物质温度以下时,墙体就向外散发出热量,保持一种更为恒定的温度。

该技术的一个变化形式是特朗布墙[Trombe,以其发明者菲力克斯·特朗布(Felix Trombe)博士的名字命名],具体内容是将大面积的黑色墙体置于玻璃墙后,二者相对距离较近,均位于朝南曝光位置,黑色墙体上有通风孔,可使对流空气通过。大气温度较低时,顶部和底部的通风孔都打开,暖空气通过顶部通风孔进入居室,冷空气通过底部通风孔进入墙体与玻璃墙之间的空间按受太阳加热,日落后,通风孔关闭,墙体中存储的热量可向居室内散发(部分热量不可避免地向南辐射,一部分还会透过玻璃窗外溢)。特朗布墙的一个优点是:夏季,顶部通风孔可关闭,底部通风孔及玻璃墙顶部的一个通风孔都可打开,两墙之间的受热空气上升,通过玻璃墙顶部通风孔排出,它起到了烟囱的作用,等于将北面的窗子打开,让凉空气进入居室,替换屋内从底部通风孔排出的空气。试验表明,朝向正南的房子,加上特朗布墙,冬季太阳能取暖效果达100%,问题是夏季会出现热量积累,需加强通风(注15)。如各方面因素比较适合,特朗布墙的造价不贵,只比砌一堵朝南的石墙外覆温室膜贵一点点。特朗布墙看起来只是一堵光秃秃的、刻板的墙,审美问题可能是最主要的限制因素。

还有一种更为有效的储热方法利用了物理相态变化。当固体溶化或液体气化时,需要大量的能;相反,气体冷凝成低能量液态或液体冻结变成更低能量固态时,也会释放出大量的能。这样,如果大面积的暗色物体中含有一种固体,其熔点接近室温,则该固体吸收太阳辐射后就会融化,当它(在室温下)再次变为固态时,就会将相态变化阶段存储的能量释放到室内。芒硝(硫酸钠+水合物)是这些材料中最为有效的一种,其熔点为93华氏度,融化热量(固体转换成液体或反向转换所需的热量)为100英热单位/磅,大大超过了单位重量(或体积)水的热容量(注16)。该技术最简单的方法是在室内放一只装满芒硝的黑色桶,其放置位置应能使其接收大量的冬日阳光,桶吸收光热,桶内芒硝存热,当温度开始下降时,芒硝就把储存的热散发出来。不过居室内摆一只黑桶有碍观瞻,可努力把桶改成具有装饰特点的摆设,一个解决办法是采用黑色空心柱,里面装满所选材料;另外,经过较长时间以后,芒硝或其他相态变化材料会降解,无法重新结晶。

运输

太阳能可以用来产蒸汽(或使其他挥发性液体气化),驱动透平,将能量转换成电,这一过程被称为热电转换(STEC)。电是STEC和光电应用过程中产生的能量载体,STEC的优点是:由于发电过程中采用透平,故可直接产生交流电。交流电可传输至几英里以外,而光电电池产生的直流电无法长距离传输。

介质流体(水或空气)分子吸收的热可短距离传输。和探讨地热资源时详细讨论的那样,传热过程中,热扩散不可避免,振动的高温分子接触管线或其他密封装置材质,将其热量传给该材质,该材质又将新获得的热量扩散到周围,将载热流体的热量传走。因此,当所需要能量为热量时,只能在很短距离内有效传输。

用太阳能给水加热是收集太阳能热量的一种应用形式,可短距离输送到储存点,再短距离输送到需要的热水水龙头处。为了达到这一目的,大部分太阳能热水系统都采用了电动泵,泵将水打入储罐或加热器内,这一过程中,水流经太阳能收集板,泵消耗的能量远低于常规的水加热炉,但这种应用耗电产生一定费用。

意识到这一成本效率问题后,研究人员设计了一种不带泵的水循环系统。水受热后,会稍稍膨胀,以此来带动循环,这一工艺被称为热虹吸现象,即将储罐置于集热盘管之上,可以不用泵就使水循环。这些系统有自定的能量周期,因此均属于被动太阳能应用系统。

风力

风,即流动空气的动能,可以以其原始形式储运,人们将风的动能集于一点来做功已有几百年的历史,现代应用也极有潜力。如果对这部分能量加以储存和输送,一般是先将其转换成多功能载体——电,然后再对电进行储存和输送。

多数乡间风力泵系统都包括能量储存部分,泵将水打入储罐,这一过程向水施加了动能,在水抽出之前,动能又作为势能储存。储存的能量表现为水龙头处的压力,这样就可在水罐出口处放置一个透平利用水中的动能。利用水储存风力而产生动力的储存原理目前正日益受到关注。

水动力

水的动能就像风力一样,可直接用来做功如水磨。由于水的流动包含了势能转换成动能的过程,那么就可以用水坝将有一定落差的水拦住,这其实就是把水的势能集中并储存起来。这种储存过程的效率在热动力学允许的范围内几近完美,但需要储存的水量大,需要容纳这一大部分水的地表面积会对环保产生一些不利影响,具有环保破坏性的大坝尤为如此。大型水坝因为储水能力强,动力强度大,其规模效益好,由于成本可分摊到巨大的发电量中,故生产的电力价格低廉。很明显,大型水坝可存储大量的水和更多的势能,同理,较高的大坝和较深的水库可更为迅速地产出更多的能量。

可以假定通过开凿河流的方式将这部分能量输送到消耗点。但是,开凿一定规模的河流是一项庞大的工程,对环境造成的影响非同小可,因此,将这种能量传送给消费者之前还是需要转换成电。

潮汐资源的开发与常规的河流水力资源的开发相同,但波浪的动力不同于用大坝储存的势能,这两种海洋动力(潮汐和波浪)的储存均与7力的势能储存不同,波浪的强度虽然随时间变化所不同,但它有连续性,潮汐能量则呈有规律的间歇性,确实需要短时的储存来消除这种间歇性。

水力发电也可以作为二次能量载体来储存。间歇性能源的额外动力(如太阳能或风能)可以用来驱动泵,将水打入水库或高架罐,有效地将剩余动力作为势能储存起来。同理,非高峰时间产出的能量,其多余部分也可以储存起来备用,需求量达到高峰或一次能量不够用时,就可以让水再向下流过透平发电,这种系统的净效率可高达64%,如果是商业规模的应用,就必须建两个大水库,二者之间要有充分高差。目前规模最大的这种设施在密执安州的路丁顿(Luddington),该项目在海拔高于密执安湖250英尺处建了一座大人工湖,非高峰期时,将密执安(Michigan)的湖水打入人工湖中,高峰期需要更多动力时,使这部分水就经透平再流回密执安湖,可生产2000兆瓦的能量,其最高储存能力可达15000兆瓦小时。目前还有几处正在建的地下蓄水库,以达到同样目的(注16,原书有两处注16),这些项目由于地形的原因,成本是很严重的制约因素。

地热

顾名思义,地热能量的表现形式就是热,要想有效地储运非常困难。确实,该能量形式有一个很大的限制因素,热量一般从高温处向低温处流动,这样,传输介质不可避免地将热量向周围扩散,隔热措施也只是材质散热速度慢而已,就像把稻草垫在漏水的桶底部——它可以放慢损失速度,但无法消除损失,所以,用稻草补过的水桶还需要快速移动才行。即使在井简内,生产初期产出的蒸汽或水也会向井简周围扩散大量的热,造成热损失,一段时间之后,井简周围岩石热量累积,热损失大大降低。将热流体输送到发电机地面管网的过程中热损失更为严重,且不会随时间的推进而有所好转,蒸汽管线周围的空气流动,迅速将热量带走,持续较高的温差,又加剧了热损失。

如前所述,管线热膨胀与热损失是需要同样关注的问题。地热蒸汽使钢受热,造成井口膨胀,高出地面,同样也使得井口到电厂的蒸汽管线产生膨胀。如果生产管线为两端固定的直管线,则膨胀后就会弯曲,因此,地面管网施工时,一定要留出膨胀余地,采用膨胀圈或者采用平口管。膨胀圈是预制成环形的管节,形状类似于过山车轨道,出现热膨胀时,环形管两端的管趋于聚到一起,使回路增大;平口管也是一种管节,两端的连接处均旋转90°,管节连接的一端是母螺纹接箍(螺纹在内侧),另一端是公螺纹接箍(螺纹在外),管节连接时,母螺纹接头(凸起端)与公螺纹接头(凹陷端)实行螺纹连接,使连接的两端紧密结合,这种连接密封性好,连接的两根管相互又可转动。平口管连接时,由于管端弯曲90°,膨胀时连接的两根管节呈剪刀式移动,一组这样的管连接就形成了平口管连接(蚱蜢腿连接),管膨胀时,管支架部分一起弯曲。很明显,无论采用哪种膨胀连接形式,膨胀时,管线的管体都要能前后移动。专门设计的管线还采取了隔热措施,降低热损失。所有这些设计都增加了管线成本,目的都是为了降低传输过程中不可避免的能量损失,因此,蒸汽的传输距离都不是太远。

利用地热的目标是尽可能在近井地带将热量转换成电能,然后像利用其他非可燃资源一样,以电的形式传送给消费者。

核动力

就像可燃资源一样,裂变物质也可以通过简单的机械方法集输。储存过程中,自然放射性衰变会引起损失,同样不稳定的核子使物质发生裂变,造成放射性衰变趋于变成稳定的核质量和核配置。衰变本身呈指数特点,用半衰期计量,半衰期就是一种同位素的一半衰变成其下一等级所需的时间。铀235这种天然放射性元素,其裂变同位素的半衰期超过70万年,所以存储过程中的损失可忽略不计,只占年存储量的十万分之一。

要想提高效率,就需要在铀矿现场或附近处理矿石,因为只有少部分的纯铀含有裂变同位素,如果运送含有杂质的铀矿石,会耗费大量的能量。因此,就像前一章所描述的那样,一般都是在铀矿现场对矿石提纯并富化,富化的热产品被装入铅衬容器,每个容器都要小心地固定好,以防发生自发连锁反应。

大型兆瓦核裂变反应堆年耗燃料量仅为5000吨,故总的运输成本远低于其他常规的化学可燃燃料。比如,当量兆瓦发电站年燃煤量超过200万吨,足可装满200辆运煤专列,每周要有4趟运煤专列到达该电厂(假设该电厂以其发电能力70%的平均水平运行)(注17)。

利用核动力的每一步都涉及环保和健康问题。普遍的观点认为放射性极其致命,因此要采取超常的预防措施防止存储及运输的放射性物质发生泄漏。放射性物质必须装在辐射无法穿透的密封容器中,就像腐蚀性化学物质所用的容器一样,确实,高强度辐射非常危险,需要像搬运剧毒化学品那样小心。

核动力必须用于和平的发电用途。




苯乙醇胺的生成过程是
毒性分级:高毒。急性毒性:腹腔小鼠LD50:600 毫克\/公斤;静脉小鼠LD50:75 毫克\/公斤。可燃性危险特性:可燃;燃烧产生有毒氮氧化物烟雾。类别:有毒物品。灭火剂:干粉、泡沫、砂土、二氧化碳, 雾状水。储运特性:库房通风低温干燥。性质:常温常压下稳定。在室温下为无色透明的粘稠液体,有吸湿性和氨...

可燃性气体和粉尘爆炸原理
可燃气体和粉尘爆炸的基本原理为:热能向粒子表面供给高温,受热分解和干馏作用的影响,粒子表面分子转化为气体,分布于粒子周围。当粒子周围气体与空气混合之后,一旦遇到明火或高温,便会燃烧,进而加快粉尘分解速度,向空气扩散更多的可燃性气体,积攒更多的燃烧热量,当热量达到一定程度就会导致爆炸。粉尘爆炸...

CH3OH是什么物质,详细一点
合成的化学反应式为: 2H2 + CO → CH3OH 合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)或气体(如天然气及其他可燃性气体)为原料,经造气净化(脱硫)变换,除去二氧化碳,配制成一定的合成气(一氧化碳和氢)。在不同的催化剂存在下,选用不同的工艺条件。单产甲醇(分高压法低压和中压法),或与合成氨联...

企业消防安全常识试题
1. 控制可燃物、隔绝空气、消除着火源、阻止火势蔓延和爆炸波蔓延,以及缩小燃烧范围和限制单位储运量等方法是防止火灾的基本方法。加强通风,降低可燃气体、粉尘的浓度至爆炸下限以下,使用防火漆涂料浸涂可燃材料,及时消除洒漏在地面或染在车船体上的可燃物等也是有效的预防措施。2. 防止空气进入燃烧区域...

丁烷气可燃性气体宁波有买的吗
丁烷气 编辑 丁烷(CH3CH2CH2CH3)又名正丁烷,是两种有相同分子式(C4H10)的烷烃碳氢化合物的统称。包括: 正丁烷和异丁烷 ( 2-甲基丙烷). 丁烷是一种易燃,无色,容易被液化的气体。是发展石油化工、有机原料的重要原料,其用途日益受到重视。 性质:无色可燃性气体。熔点---"-135.35C",沸点--...

2,2,4-三甲基戊烷详细资料大全
易燃液体 毒性分级 低毒 急性毒性 参考值 吸入- 大鼠 LC: 20000 毫克\/ 立方米\/2小时 爆炸物危险特性 与空气混合可爆 可燃性危险特性 遇明火、高温、氧化剂易燃; 燃烧产生 *** 烟雾 储运特性 库房通风低温干燥; 与氧化剂、酸类分开存放 灭火剂 干粉、干砂、二氧化碳、泡沫 安全信息 危险品标志 F,Xn,N 危险...

液压油可燃吗
油品的危险等级是根据闪点划分的,闪点在45℃以下为易燃品,45℃以上为可燃品。那么润滑油的性能:首先、不具有易燃的特性,只能属于可燃品。其次、不具备强腐蚀性,第三、不具备易挥发性,第四、不具备不易包装性,第五、不具备不易储运性。所以润滑油不属于危险品,可以不用按照危险品运输、储存的...

氢氧化铷的化学性质?
分子式: RbOH 性质:白色脆性固体。稍带灰色。熔点300℃。密度3.2g\/cm3。强碱性,较氢氧化钾碱性强。有潮解性,在空气中吸收二氧化碳。易溶于水,放出热量。可挥发。溶于乙醇。加热不分解,可由硫酸铷与氢氧化钡作用生成硫酸钡沉淀,过滤即为含氢氧化铷的母液,经蒸发,浓缩、结晶干燥而得。可用于...

油田工作生产中产生有的有毒\/可燃气体都要那些?
对大气环境的影响主要来源于原油中挥发出来的烃类气体及燃烧原油伴生气所产生的烟气.石化企业在原油加工提炼、油品贮运和其他损耗中会产生一系列有毒有害气体, 主要含有SO2 、NOX、O3 、CO、H2S、烃类等污染物。炼油装置的工艺废气中, 大部分是烃类气体, 一部分来自炼油装置的不凝汽放空, 另一部分则产生...

水杨酸乙酯详细资料大全
水杨酸乙酯为无色油状液体,呈淡的冬青油香气。沸点234℃,熔点1.3℃。溶於乙醇、乙醚、醋酸和大多数非挥发性油,微溶于水和甘油。用于有机合成或配制香料,也用作溶剂。生产方法是由邻羟基苯甲酸(即水杨酸)与乙醇酯化而得。基本介绍 中文名 :水杨酸乙酯 英文名 :Ethyl Salicylate 别称 ...

平遥县15355187672: 甲苯二异氰酸酯如何运输和仓储 -
歧杨养阴: 储运条件:储存于阴凉、干燥、通风良好的不燃材料结构的库房中,防止容器受损和受潮.储存温度控制在20-35℃.远离热源和火源、与胺类、醇、碱类和含水物品隔离储运.

平遥县15355187672: 如何安全地运输、贮存氢气
歧杨养阴: 储运 存于阴凉、通风仓间内.仓内温度不宜超过30度.远离火种热源.防止阳光直射.应与氧气、压缩空气、氧化剂卤素等分开存放.仓间内照明通风等设施应用防爆型,开关设在仓外.并配备相应的消防器材,禁止使用易产生火花的机械设...

平遥县15355187672: 如何储运水燃烧的物?如何储运水燃烧的物品
歧杨养阴: 易燃固体、自燃物品和遇湿易燃物品的火险及储运要求 ??? 一、易燃固体 ??? 凡是燃点较低,在遇明火、受热、撞击、磨擦或与某些物品(如氧化剂)接触后,会引...

平遥县15355187672: 环境影响的资源、能源的储运是怎样的?
歧杨养阴: 资源、能源的储运分析 通过对建设项目资源、能源、废物等的装卸、搬动、储藏、预处理等环节的分析,掌握与这些环节有关的环境影响来源的各种情况.

平遥县15355187672: 油气储运知识 -
歧杨养阴: 油气储运问题摘要:油气储运系统均存在诸多问题,如油气储运过程中的火灾隐患,储运过程中的油气蒸发损耗,油气管道的腐蚀等等.这些问题必须引起相当大的重视.关键词:储运;火灾;蒸发一、油气储运中...

平遥县15355187672: 可燃助燃的毒害品储运防火有什么要求?
歧杨养阴: 有以下要求: (1)毒害品应储存在仓库内,远离明火、热源,仓库通风应良好 (2... (3) 毒害品一般不得和其他种类的物品(包括非危险品)共同储运,特别是与酸类及...

平遥县15355187672: 氢能:优点有哪些?其制取途径有哪些?如何贮存和运输?阐述氢能没被大规模利用的原因? -
歧杨养阴: 氢的燃烧热值高,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍.燃烧的产物是水,是世界上最干净的能源.资源丰富,氢气可以由水制取,而水是地球上最为丰富的资源.是水电解制氢是目前应用较广且比较成熟的方...

平遥县15355187672: 氟气怎样制取和储运?
歧杨养阴: 氟气是一种毒性极高的强腐蚀性气体,在湿空气中易形成氟化氢或二氟化氢.氟的腐蚀性突出表 现为强烈的酸性刺激性,其性质同氟化氢相似.与水、水蒸气反应,产生有毒腐蚀性烟气,并放出热. 氟气对皮肤的灼伤速度比氢氟酸快许多,眼睛是氟中毒的敏感部位,它对眼睛的刺激程度也大大超过 氢氟酸.呼吸到低含量的氟气不会产生明显的生理病变,但经过呼吸系统进入人体的骨组织内,引起化学反应导致骨质松软.氟气属有毒压缩气体,宜储存于阴凉、通风仓内,仓内温度不宜超过"%A,并应远离火种、热源.氟气应与易燃或可燃物、金属粉末等分开存放.制法(1)电解溶融KF•2HF混合物. (2)从含氟矿石中制得.

平遥县15355187672: 根据px的性质,从防止环境污染和安全的角度,应该如何保存和储运px -
歧杨养阴: 环境标准 中国(TJ36-79) 车间空气中有害物质的最高容许浓度100mg/m3(二甲苯) 中国(TJ36-79) 居住区大气中有害物质的最高容许浓度0.30mg/m3(一次值、二甲苯) 中国(GB16297-1996) 大气污染物综合排放标准(二甲苯) ①...

平遥县15355187672: 浓硝酸的运输和储存注意什么 -
歧杨养阴: 包装与储运浓硝酸用铝槽车装运,也可装于铝制容器或陶瓷坛内,坛盖用耐酸材料涂封,放于坚固的透笼或半透笼木箱中.可用铁路、公路运输.在运输中,各类容器应防止烈日曝晒或猛烈撞击,确保容器严密不漏.本品有强氧化性、腐蚀性,...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网