宇宙的起源

作者&投稿:巩琬 (若有异议请与网页底部的电邮联系)
宇宙的起源是什么?~

目前,大多数科学家接受的是“大爆炸宇宙学”。这一学说认为,宇宙起源于一个温度极高、体积极小的原始火球。在距今150亿~200亿年前,由于我们还不知道的物理原因,这个火球发生了大爆炸。随着空间膨胀、温度降低,物质的密度也逐渐减小,原先存在的质子、中子等基本粒子结合成氘、氦、锂等元素,以后又逐渐形成星系、星系团,并逐渐形成恒星、行星,而且在一些天体上还出现了生命现象,最后诞生了人类,宇宙初步形成。
大爆炸学说不断得到证实。1991年4月23日,美国加利福尼亚大学天文物理学家乔治?斯穆特在美国物理学会会议上宣布,他领导的科学小组发现了宇宙诞生初期的物质云团,有力地支持了大爆炸学说。他们的这一发现引起世界科学界的极大关注,被认为是继爱因斯坦之后最杰出的理论物理学家斯蒂芬?霍金4月24日发表声明说:“这是本世纪最重要的发现。”
大爆炸学说可以解释较多的观测现象。例如,天文学家观测到远处的天体总是远离地球而去,这证明宇宙仍在膨胀;各种天体的年龄都小于200亿年,这也符合该学说有关大爆炸后才形成各种天体的推论。另外,大爆炸理论还成功地预言了宇宙背景辐射的存在。大爆炸学说预言在大爆炸之后,星系形成之前宇宙的结构应当是云团。这一巨大云团的发现证实了大爆炸学说的预言,通过对这一云团的观测,科学家可以进一步推测宇宙初期的情景。
而且,这一巨大云团的发现还证实了科学家的另一个预言,即宇宙质量的90%存在于“暗物质”中。以往天文学家观测到的宇宙总质量远比理论上计算出的宇宙总质量要小得多。这些“消失”了的物质被称为“暗物质”。“暗物质”的多少直接影响着宇宙的未来,如果宇宙总质量小于某一数值,那么它将像现在这样一直膨胀下去;如果它的总质量大于这一数值,那么天体之间的引力将使宇宙停止膨胀,并在这一巨大引力作用下开始收缩,形成宇宙“大坍塌”,直至大爆炸前的状态。

内容简介

大爆炸模型认为,最初的宇宙是超高温、高密度的“一点。”大约180亿年前,这“一点”突然爆炸了,仅用10-36秒,伴随着真空相转移的过冷却现象,“一点”了瞬间几十个数量级的膨胀,成为一厘米规模的宇宙。其后宇宙继续膨胀,温度从几十亿摄氏度开始下降,大约在5500万摄氏度时,由降温过程的能量,生成中子、质子,它们又合成原子核,这些过程仅有3分钟。约30万年后当宇宙的温度下降到3000摄氏度时,自由电子被原子核捕捉形成原子。在随后的大约3000万年中那些原子继续向外膨胀。宇宙也继续冷却,到宇宙温度降至绝对零度之上167度时,原子开始化合形成稀薄气体。此后因密度波动、引力作用等开始向新的天体进化。再经过100多亿年,显示出多种多样的物质形态, 成了今天的宇宙。自从150亿年前的宇宙大爆炸之后,星体和各星系一直各自向外飞散。理论上讲,相互维系的重力应该减慢这个膨胀的速度,但是事实并非如此,实际上膨胀还在加速进行。美国普林斯顿大学的斯坦哈特说,宇宙无始、无终,一次次宇宙大爆炸将会永不止息,不断发生。

全文

上一讲我们介绍了宇宙是怎样通过大爆炸以后来诞生的,上一次我们只讲了宇宙从大爆炸,然后呢,仅仅的持续了多长时间呢?仅仅持续了三分多钟,也就说我们的宇宙基本框架就形成了。下面我们看,三分钟以后宇宙怎样演化,怎样一步一步的演化到我们现在的星球,现在的宇宙状态。那么我就要问一个最简单的问题,也是最通俗的来问,是先有的鸡还是先有的蛋?我要回答什么问题呢?我要回答的是星系是怎样形成的这个问题。

的的确确现在有两种理论,那么哪两种理论呢?我们来看一下,这个图就是一个典型的宇宙从一开始大爆炸以后,逐步演化的一个示意图。那么一开始呢,那一点就是大爆炸,大爆炸以后呢,宇宙不断的膨胀,同时温度也在不断地降低。那么中间的那一部分,就是我们现在看到的宇宙的背景辐射,或者叫做微波背景辐射,那么再往外边看到,宇宙在一点一点降低以后,物质慢慢就温度就越来越降低,越降低以后呢,物质的分子结构就越来越大。换句话说呢,这个物质就开始大家往一块靠,就开始形成一些小的团块,这些团块在再慢慢聚合,一步一步地就形成后边大家看到的,这个星系。也就说由一点一点聚合,就聚合成星系了。

如果按照这个顺序的话,不管怎么说,后边这一段是由小的团块一点一点形成大的团块,那就相当于我们说的先有的蛋后有的鸡,就变大了。但是还有一种可能,突然之间就先形成一些大的团块,然后一点一点大的团块再把它分裂,那就是说的先有的鸡后有的蛋。那么从什么时间开始形成星系呢?就是这个宇宙的温度我们说最初非常非常高,有一千亿度,如果说再往回追溯的话呢,甚至比一千亿度还要大。那么在这么高的温度下,我们说它不可能形成物质团块。那么温度降低到四千度的时候,这个时候这些物质的温度就凉下来了,冷下来了。然后呢,大家有可能坐在一起来谈了,就可以靠拢了,所以到了四千度的时候,宇宙中就开始形成物质团块,换句话说,引力就开始起作用,这就是我们星系开始形成的时间,这个时间呢,大约是在宇宙爆炸之后的十亿年,宇宙从爆炸以后,到了十亿年,就开始形成物质团块了。就按照这个图,叫做top-down,就先形成非常大的团块,宇宙一冷下来以后,突然之间这冷下来之后,大家就是非常的高兴,非常的欢呼,原来都在激发状态,谁也不得安宁,突然一冷下来以后所有物质成团了,只有成团了才能沉淀下来,先成团了一个很大很大的团块,多大呢,就像一个大饼一样,这个大饼成了以后,再慢慢慢慢分裂,就形成了下边的一个一个的星系。这是一种可能,这就是说,先有的什么?先有的鸡后有的蛋,先形成大的团块,然后再形成现在的星系。

还有一种可能,叫bottom-up,就是先形成小的一些物质,就是团块。然后这些小的物质一点一点来凝聚,最后凝聚成什么?一个一个的星系,总之不管是由大块变成小块的,还由小块的变成大块的,总之要形成什么?形成我们现在的星系,也就是说,宇宙大爆炸之后,大约十亿年,就开始出现形成了星系。

这个图是一个模拟图,就模拟一下这个星系是怎么形成的,现在就是做一个它的模拟过程。你看这些个团块在相互之间互相吸引,并合在一起,最后呢,形成了几个星系,好,就形成这个星系,那么我们这个动画呢,最初看到几个团块是由哈勃空间望远镜拍摄下来了,我们然后模拟,那些团块根据我们这个模拟过程最后就形成这个星系。

那么现在宇宙中有多少星系呢?数也数不清,我们再看几个,那么这就是真实拍下来的宇宙空间的一部分。你会看到什么,弥漫着很多的物质,这些个物质呢就在不断地形成新的星球,不断地形成新的星球,那么宇宙中和我们银河系一样的星系多不多,太多了,就宇宙中有很多很多和我们银河系一样的类似的星系,你要说我们银河系漂亮不漂亮,跟这个星系比的话,可能还没有这个星系漂亮,这个星系叫做漩涡星系,中间有一个核,是非常漂亮的,所以这个星系在那儿不停的旋转,这就是一个和我们银河系类似的一个河外信息。我们再看一个,这也是一个星系,这个星系呢不那么旋转,我们把它叫做椭圆星系。它是一个椭圆形的,但是这个星系个非常大,这个椭圆星系往往比漩涡星系个头还要大。那么椭圆星系在宇宙中也非常多,我们再看一个,你看这个星系有什么特点呢?一边有旋转,另外它中间那个核不是一个圆的,有点像一个棒槌一样,所以我们管这个星系叫做棒旋星系。

这是另外一个星系,这个星系还有一个小兄弟。你看星系左边它还带着一个小的星系跟它连在一起,好像是一个大星系牵着一个小弟弟,两个星系连在一起,样子非常好看。就像一个大的手臂一样,把那个小的星系牵在一起,这也是一个巨大的椭圆星系,这个就比星系的规模要大的多。你看上边那些个点,每一个点就是一个星系,星系和星系组合在一起,是什么呢?叫做星系团,就是星系和星系也可以组合在一起,成为一个更大的家庭,我们叫做星系团。这个就是一个星系团,这个星系团是目前离我们银河系最近的一个星系团,叫做仙女座星系团,离我们最近。

我们说了半天,我们银河系是不是一个星系,当然我们银河系是一个星系,有人就问了,那你告诉我银河系星系是什么样子的。这非常困难,因为我们在这个星系里边,是无法看到我们星系全部的面目,我们只能看一部分,看看太阳这边的是什么状态,再看看太阳那边是什么状态,然后我们大体上就把我们的银河系描绘出来了。那么描绘的结果,有一个星系和我们的银河系应该是非常相像的,就是这个星系,这个星系叫做仙女座大星云,这个大星云也是离我们最近的星云之一,这个星云不但是我们的姊妹星云,而且这个星云在历史上立了很大的功劳。

我在上一讲提到了,哈勃证明了我们的银河系之外还有银河系,和我们银河系一样的,怎么证明的呢?就是通过这个星系来证明的,具体说它在这个星系里边找到了单个的星,不但找到了这个星,而且通过这个星测出了仙女座大星云的距离,发现这个仙女座大星云,绝对不会是处在我们银河系里边,那么在哈勃之前大家有一种看法,这个就是我们银河系里边的一些星云,所以当初把它叫混了,我们管它叫仙女座大星云。而这个仙女座就不然了,它是我们银河系一样的一个星系。首先有星系,然后星系里边再诞生了各种的恒星,那么恒星周围再有星星的家族。那这样的话,我们这个宇宙就慢慢诞生了,包括人类也就通过宇宙的演化,各种的高等生命,也就诞生了。

我们谈到这个地方以后大家会想到,你谈了这么多,谈到了现在了,你能不能谈谈未来,我们的宇宙将来怎么办?所以问题就变成我们的宇宙会终结吗?虽然我们说宇宙的终结离我们是非常非常遥远的事情,但是你不得不考虑。特别是作为科学家来讲,作为天文学家来讲一定要回答这个问题,我们的宇宙会不会有终结?我们再回过来看一下宇宙的演化,你看宇宙从最初一点,一步一步往下演化。我刚才说了,那么到了图的右边你就看到,通过星云以后,最后形成了很多星系,星系里边有恒星,那么恒星周围可能有行星,有可能诞生高等生命。那么宇宙还要往下膨胀,这个宇宙会不会无休止的膨胀下去呢?这是摆在天文学家面前一个非常严肃的问题,你必须回答,不然的话,你这个天文学研究可以说研究得不够彻底,对宇宙的了解还非常有限。天文学家正在努力去回答这个问题,那么通过反复地研究,我们发现我们的宇宙的走向大概是这个样子:我们先说一下这个图,这个图的横坐标就是时间,这个纵坐标就是宇宙的大小,那么靠近坐标轴的这个地方的绿线就是我们目前的状态,就是我们目前宇宙的位置。我们宇宙有三种可能,第一种可能就是最上边那个红线,这个可能就是我们的宇宙一直膨胀下去,一直膨胀下去,而且膨胀的速度是越来越快,往外膨胀,这是的宇宙一种可能。那么中间呢,第二种可能宇宙也是在膨胀,但是它膨胀的速度比较慢一点,比较平坦,也在膨胀,也会是不断地膨胀下去。那么第三种状态,就是最下边那条蓝线,它说呀我们目前的宇宙的确是在膨胀,但是我们宇宙膨胀以后呢,还会收缩,就是说从最初出发以后,膨胀一段时间以后,经过若干若干年以后,还会要收缩回来。

这个理论告诉我们,宇宙有这么三种可能性,天文学家就回答了,哪一种是正确的?怎么来回答呢?那么现在要回答这个问题,从理论上讲很简单,从实测上来讲很困难,为什么说从理论上很简单呢?这个宇宙究竟是继续膨胀下去,或者是膨胀的速度很快,或者是膨胀的速度很慢,还是膨胀膨胀以后就收缩回来,主要取决于我们宇宙中的平均物质密度,也就是说我们宇宙中到底有多少物质。如果我们宇宙中平均的物质密度比较高,那么它的引力的作用就会越来越大,那就有可能膨胀一段以后呢,就收缩回来。那么宇宙中如果物质密度比较低,没法拉住,咱们宇宙就一直膨胀下去,就是这样,从理论上讲就这么简单,但是还有一个问题需要天文学家注意,就是宇宙中的暗物质。大家知道我们国家著名的物理学家李政道教授在他的演讲就提到,他说21世纪物理学的一个重要的任务之一就是研究宇宙中的暗物质。

因此这些暗物质非常重要,那么事情是不是到此为止呢?没有。事情到此还没有截止,怎么没有截止呢?最后我们观测发现还有更严重的矛盾,就是把宇宙中的这些暗物质加进来,我们算出来宇宙的年龄也不对,还不正确,还必须有其他的物质,才能造成我们目前的宇宙的状态,年龄才能符合。那还有什么物质?一种是看得见的,一种是看不见的,那么看不见的总之它还在那儿存在。我们现在不但看不见,而且现在我们认为还没有存在的物质就是真的不存在,这个问题就很严重了。有没有呢?现在的回答说可能有,而且有的可能性是越来越大。这个物质说来很有意思,这最早是谁提出来的呢?最早是爱因斯坦提出来的,爱因斯坦在他的广义相对论方程里边随便加了一下,再加上一项我这个方程才能平衡,加的是个什么东西呢?爱因斯坦也说不清,大家就在他加的那一项里边在那儿做游戏。做了半天,爱因斯坦表示很歉意,说我这个宇宙中加的这一项,宇宙常数加错了,他说我这一生中犯的一个最大的错误,就是在我的方程里边加了个宇宙常数。可是没想到我们爱因斯坦过世半个世纪了,我们现在没办法了,又把他这个救命的稻草又拿来了。应该加进去,说爱因斯坦老先生没错,还是应该加进去,不但应该加进去而且十分重要,有可能在真空里边就有物质,真空里面可以取出物质来,那你们想一想如果天文学家把这个事情真正证实了,那我们这个物质的来源呢,那就比过去想象的要丰富的多。我们的真空里边就可以取出物质来,而且这个物质的含量甚至比我们看到的物质的含量还要多,还要丰富,那可真是取之不尽,用之不竭。你就随便取吧,探囊取物,想取多少就取多少。当然这个问题还是比较复杂,需要天文学家包括物理学家共同来解决,天文学家从观测上找到他存在的证据。所以说,李政道教授预言的这个是非常正确的,宇宙中21世纪物理学的一个重要的课题,可能就是研究宇宙中的暗物质。

那么如果说真的宇宙中有足够的暗物质,物质非常多,那就会出现什么状态呢?就像这个图上所描述的,就是最下边的一个状态。什么状态呢?我们的宇宙目前是在膨胀,膨胀膨胀以后怎么样,就慢慢就收缩了,就又收缩到一点。

那么现在天文学家有一个很重要的任务之一,就是不断地来研究宇宙中总的质量究竟有多少,大家知道我们放了空间望远镜,还放宇宙飞船,不仅观测它的光学波段,还观测它的X射线波段,还不够,还观测它的γ射线波段。所有这些目的之一,就想真正了解一下我们宇宙中究竟有多少物质,最重要的是回答我们的宇宙究竟要到那里去,什么时间终结,会不会终结,会不会收缩到一起再重新开始。

我讲了这些以后我不用问你们,你们自然有很多问题。这个实在是太玄妙了,不可思议,肯定有很多不可思议的问题。比方说这个宇宙到底有多大呀?你说了半天,这个宇宙有没有边呀,宇宙是大爆炸,大爆炸开始是怎么回事?大爆炸之前是个什么东西呀?大爆炸的空间有多大呀?那么大爆炸的时候,这么大一个宇宙装在那么一个小的空间里边装得下吗?诸如此类的问题太多了,我先回答一个问题。什么问题呢?我们的宇宙有没有边,这个宇宙到底有多大,那么天文学家会告诉你,这个宇宙是无限大的,你走不到尽头,走多远都走不到。你就不相信,我到任何一个地方去,我从这个地方到另外一个地方去,那么走的时间长一点我总能走到,最远是绕着地球转一圈。我也可以转过去,怎么走不到头呢?我先给大家最简单的演示一下,你看这是一张纸,我把这个纸稍微弯一下,弯成这么一个环。大家知道这个环,你看这个面上如果有一个小蚂蚁在这个面上走,你会发现它怎么样?它走得到头走不到?走不到。它转着圈就回来了。你说这个面有几个面?你仔细看一下,这只有一个面。这就说明什么呢?这我就告诉你一件事情,只要我这个空间把它弯曲了,你就会出现这个现象,就不会再走到头了。就这么简单的事情,你放上一个蚂蚁它在上面走,永远也走不到头。所以说空间只要一弯曲你就走不到头了。这就是我刚才弯的曲面的一个卡通片,你看这个蚂蚁在这个面上走来走去,它会怎么感觉,它认为能不能走到尽头?永远走不到尽头,这个宇宙永远走不到尽头。

那么回过来说为什么永远走不到尽头?就因为在我们目前这个宇宙中,我们量宇宙的距离是通过什么来量呢?是通过光线,根据广义相对论这个光线在宇宙中是弯曲的,而这个弯曲已经被实验证实了。就说通过日全食的观测已经证明了光线的确是弯曲的,因此我们看这个宇宙是永远看不到尽头,所以我们的宇宙是无限的。

另外一点我们要说,你总是想找谁是宇宙的中心?谁是宇宙的边缘?这个不存在。我们说在这个宇宙中根据这个理论,我们宇宙中的任何一点都是平权的。我们说哥白尼把地球为中心搬到太阳为中心,我们就引用他这个名字,把这个原理叫做哥白尼原理。哥白尼原理用在宇宙上怎么说?就在宇宙中各点都是平权的,都是一样的。我们宇宙的话,你站在任何一点来观测宇宙,得到的效果都是一样的,大家都是平权的。这就是说我们的宇宙是一个不会有一个边界宇宙,不会有一个特殊的位置。

那么还要回答一个问题,你说宇宙从大爆炸起始的,那么大爆炸之前是什么?我刚才图里演示了,但是一种可能大爆炸之前也是一个宇宙,它收缩了以后开始大爆炸。那么也可能是有其他的可能性,这个可能性我们目前实事求是的说不是太了解。而且宇宙最初这个物理状态这么极端,我们研究透了没研究透,也实事求是的说也没有研究透,这个状态还是非常特殊。但是不管怎么说,这个大爆炸理论到目前为止无论从理论上还是从观测上已经被大部分人都接受了。所以有种说法,我们管目前的大爆炸理论叫做标准的宇宙。由于这个大爆炸它是一个热的大爆炸,而不是一个冷的,所以我们管这个模型叫做热大爆炸宇宙模型。这个热大爆炸宇宙模型,目前呢,已经被广泛地接受了。

虽然是说广泛地接受了,但是毕竟有好多不尽如人意的地方,想想起来非常困难。特别是我在介绍宇宙最初三分钟的时候你们都很难想像,说是0.01秒我们整个宇宙都装进去,你会想到不要说整个宇宙把地球装进去都很困难。所以不见得令人那么满意,那么就问了?有没有更理想、更令人满意的学说呢?这个回答应该说是有。尽管有的学说还没有被完全的普遍的接受,但是也不无道理。这样的学说很多,我来介绍其中的一个就是霍伊尔的学说。霍伊尔是英国的一位天文学家,他前年去世的,这个人的在天文学上面有很多重要的贡献。那么其中他就创立了一个学说,叫什么学说呢?叫稳恒态学说。他说我简直就不可思议,你这个宇宙起始的时候就那么一个大爆炸,这个不可思议是两方面:一方面你这个物理状态就不可思议。你说是夸克汤,哪来这么多夸克汤?谁来煮这个夸克汤能煮出这么一锅来?所以这个物理状态不可思议。另外一个他说你这个物理规律也不可思议,在那样极端的条件下,目前我们理解的物理规律在那个地方大概早就破坏了。所以他说你那个学说不对,我现在建立另外一个学说,叫什么学说呢?叫稳恒态学说。

它有两层含义,我们以前介绍的时候,往往讲的不是很清楚。哪两层含义呢?就说我们这个物质,目前宇宙的物理状态是比较稳定的,不会有大的起伏,不会有破坏性的,是一个稳恒的状态。第二层含义,这个宇宙不管怎么演化,从最初到现在到将来,它的物理规律都是一致的,就是说宇宙的最初演化到现在,这个物理规律应该是保持不变的。他说我们现在的宇宙模型不错,是在膨胀的,原来的宇宙呢?也是这个样子,只不过比现在小了一点。那么小了一点的话,里边的物质怎么样呢?他就说也少了一点,那过去那个物理状态怎么样?就比现在的密集,所以过去要小的话,里边的物质也少,现在比较大了,物质就增加了。如果我这个宇宙在膨胀,那物质就增加。人家就问了你这个物质怎么来的?他说很简单,怎么个简单法呢?这个宇宙一边膨胀,物质就一边产生,随着宇宙的膨胀,我这物质就不断地在那儿产生。这个理论过去说起来呀,那是大逆不道,我们说我们有种看法认为物质是不生不灭等等,那你物质无中生有,那不是大逆不道是什么?现在看来也不无道理,既然真空中都可以产生物质,那就一边膨胀,就一边有物质产生。这就是霍伊尔的宇宙观的基本思想。那么他这个理论曾经遭到过一些非议,但是,支持的人也大有人在。有很多观测想支持他这个理论,他本人也很聪明,想了很多办法去解释。

我讲了这么多,现在我讲讲我们中国古代的天文观念。我们中国人很聪明,不光在现在,古代我们就想了很多模型。我们来看一下,这个图片就告诉我们,我们中国人古代想出的宇宙,那么这个你看这个模型很简单,但是我要告诉你,这是周朝时候就想出来的,你就觉得不简单了。它像一个锅盖一样,叫做什么学说?盖天说,像一个锅盖盖在那个地方,天上有好多星星,而且在这个基础上编了很多故事。我们这个锅盖可能有好多柱子在那儿支着,有八个柱子,一开始说有四个柱子,后来说四个柱子支的锅盖支不住,八个柱子还支不住,所以那个女娲氏,她怎么办?去补天,她补一补。所以我们想像力很丰富,这是我们的什么说?盖天说。后来发现盖天说有不足之处,到了春秋战国的时候我们又想了一个,叫什么说?不光有一个锅盖盖在上面,下边还有,叫做什么说?混天说,就是我们整个宇宙就混混沌沌这么一个大圆球,我们地球像蛋黄一样,在这个宇宙中间,就叫混天说。所以我们想像力很丰富,根据混天说就造了混仪,这就是通过混天说的观点造的混仪,我们古代这位天文学家叫做张衡。说到这个地方,我就想到这么一个事情,就是天文学有没有用?有多大的用处?

我讲了半天,似乎大家感觉呢,非常的深奥,有没有现实意义呢?我可以回答你这个天文学虽然是非常深奥,但是天文学正是我们人类接触自然科学里边的第一门学科。我说人类接触自然的第一门科学就是天文学,为什么那么说呢?古代人要耕作,耕作的话你要知道春夏秋冬,他怎么知道春夏秋冬?通过什么来知道?就是通过看天上的星象,那么日月我们看一般的每日每月,这个季节呢?它就通过看天上的星象,什么星星出来了,到了什么什么季节了,也就是季节的划分等等都是靠着天文学。所以从最早的话,人类依靠的自然科学就是天文学,所以说这个天还是非常美丽的。研究宇宙呢!还是很有意义的。你看这个小姑娘,在目视着天空,在想宇宙的各种可能的模型以及我们宇宙的发展未来。谢谢大家!

宇宙是如何起源的?空间和时间的本质是什么?这是从2000多年前的古代哲学家到现代天文学家一直都在苦苦思索的问题。经过了哥白尼、赫歇尔、哈勃的从太阳系、银河系、河外星系的探索宇宙三部曲,宇宙学已经不再是幽深玄奥的抽象哲学思辩,而是建立在天文观测和物理实验基础上的一门现代科学。
目前学术界影响较大的“大爆炸宇宙论”是1927年由比利时数学家勒梅特提出的,他认为最初宇宙的物质集中在一个超原子的“宇宙蛋”里,在一次无与伦比的大爆炸中分裂成无数碎片,形成了今天的宇宙。1948年,俄裔美籍物理学家伽莫夫等人,又详细勾画出宇宙由一个致密炽热的奇点于150亿年前一次大爆炸后,经一系列元素演化到最后形成星球、星系的整个膨胀演化过程的图像。但是该理论存在许多使人迷惑之处。
宏观宇宙是相对无限延伸的。“大爆炸宇宙论”关于宇宙当初仅仅是一个点,而它周围却是一片空白,即将人类至今还不能确定范围也无法计算质量的宇宙压缩在一个极小空间内的假设只是一种臆测。况且从能量与质量的正比关系考虑,一个小点无缘无故地突然爆炸成浩瀚宇宙的能量从何而来呢?
人类把地球绕太阳转一圈确定为衡量时间的标准——年。但宇宙中所有天体的运动速度都是不同的,在宇宙范围,时间没有衡量标准。譬如地球上东西南北的方向概念在宇宙范围就没有任何意义。既然年的概念对宇宙而言并不存在,大爆炸宇宙论又如何用年的概念去推算宇宙的确切年龄呢?
1929年,美国天文学家哈勃提出了星系的红移量与星系间的距离成正比的哈勃定律,并推导出星系都在互相远离的宇宙膨胀说。哈勃定律只是说明了距离地球越远的星系运动速度越快--星系红移量与星系距离呈正比关系。但他没能发现很重要的另一点--星系红移量与星系质量也呈正比关系。
宇宙中星系间距离非常非常遥远,光线传播因空间物质的吸收、阻挡会逐渐减弱,那些运动速度越快的星系就是质量越大的星系。质量大,能量辐射就强,因此我们观察到的红移量极大的星系,当然是质量极大的星系。这就是被称作“类星体”的遥远星系因质量巨大而红移量巨大的原因。另外那些质量小、能量辐射弱的星系(除极少数距银河系很近的星系,如大、小麦哲伦星系外)则很难观察到,于是我们现在看到的星系大多呈红移。而银河系内的恒星由于距地球近,大小恒星都能看到,所以恒星的红移紫移数量大致相等。
导致星系红移多紫移少的另一原因是:宇宙中的物质结构都是在一定范围内围绕一个中心按圆形轨迹运动的,不是像大爆炸宇宙论描述的从一个中心向四周作放射状的直线运动。因此,从地球看到的紫移星系范围很窄,数量极少,只能是与银河系同一方向运动的,前方比银河系小的星系;后方比银河系大的星系。只有将来研制出更高分辨程度的天文观测仪器才能看到更多的紫移星系。
宇宙中的物质分布出现不平衡时,局部物质结构会不断发生膨胀和收缩变化,但宇宙整体结构相对平衡的状态不会改变。仅凭从地球角度观测到的部分(不是全部)可见星系与地球之间距离的远近变化,不能说明宇宙整体是在膨胀或收缩。就像地球上的海洋受引力作用不断此涨彼消的潮汐现象并不说明海水总量是在增加或减少一样。
1994年,美国卡内基研究所的弗里德曼等人,用估计宇宙膨胀速率的办法计算宇宙年龄时,得出一个80~120亿年的年龄计算值。然而根据对恒星光谱的分析,宇宙中最古老的恒星年龄为140~160亿年。恒星的年龄倒比宇宙的年龄大。
1964年,美国工程师彭齐亚斯和威尔逊探测到的微波背景辐射,是因为布满宇宙空间的各种物质相互之间能量传递产生的效果。宇宙中的物质辐射是时刻存在的,3K或5K的温度值也只是人类根据自己判断设计的一种衡量标准。这种能量辐射现象只能说明宇宙中的物质由于引力作用,在大尺度空间整体分布的相对均匀性和星际空间里确实存在大量我们目前还观测不到的“暗物质”。
至于大爆炸宇宙论中的氦丰度问题,氦元素原本就是宇宙中存在的仅次于氢元素的数量极丰富的原子结构,它在空间的百分比含量和其它元素的百分比含量同样都属于物质结构分布规律中很平常的物理现象。在宇宙大尺度范围中,不仅氦元素的丰度相似,其余的氢、氧……元素的丰度也都是相似的。而且,各种元素是随不同的温度、环境而不断互相变换的,并不是始终保持一副面孔,所以微波背景辐射和氦丰度与宇宙的起源之间看不出有任何必然的联系。
大爆炸宇宙论面临的难题还有,如果宇宙无限膨胀下去,最后的结局如何呢?德国物理学家克劳修斯指出,能量从非均匀分布到均匀分布的那种变化过程,适用于宇宙间的一切能量形式和一切事件,在任何给定物体中有一个基于其总能量与温度之比的物理量,他把这个物理量取名为“熵”,孤立系统中的“熵”永远趋于增大。但在宇宙中总会有高“熵”和低“熵”的区域,不可能出现绝对均匀的状态。所以,那种认为由于“熵”水平的不断升高而达到最大值时,宇宙就会进入一片死寂的永恒状态,最终“热寂”而亡的结局,是把我们现在可观测到的一部分宇宙范围当作整个宇宙的误识。
根据天文观测资料和物理理论描述宇宙的具体形态,星系的形态特征对研究宇宙结构至关重要,从星系的运动规律可以推断整个宇宙的结构形态。而星系共有的圆形旋涡结构就是整个宇宙的缩影,那些椭圆、棒旋等不同的星系形态只是因为星系年龄和观测角度不同而产生的视觉效果。
奇妙的螺旋形是自然界中最普遍、最基本的物质运动形式。这种螺旋现象对于认识宇宙形态有着重要的启迪作用,大至旋涡星系,小至DNA分子,都是在这种螺旋线中产生。大自然并不认可笔直的形式,自然界所有物质的基本结构都是曲线运动方式的圆环形状。从原子、分子到星球、星系直到星系团、超星系团无一例外,毋庸置疑,浩瀚的宇宙就是一个大旋涡。因此,确立一个“螺旋运动形态宇宙模型”,比那种作为所有物质总和的“宇宙”却脱离曲线运动模式而独辟蹊径,以直线运动方式从一个中心向四面八方无限伸展的“大爆炸宇宙模型”,更能体现真实的宇宙结构形态。

问霍金

如果说宇宙有起源,那物质和能量就不守横蘅了,在宇宙起源之前什么都没,起源之后有了物质和能量

宇宙的起源

本世纪,有两种"宇宙模型"比较有影响。一是稳态理论,一是大爆炸理论。20年代后期,爱德温·哈勃(Edwin Hubble)发现了红移现象,说明宇宙正在膨胀。60年代中期,阿尔诺·彭齐亚斯(Arno Penzias)和罗伯特·威尔逊(Robert Wilson)发现了"宇宙微波背景辐射"。这两个发现给大爆炸理论以有力的支持。现在,大爆炸理论广泛地为人们所接受。

大爆炸理论认为,宇宙起源于一个单独的无维度的点,即一个在空间和时间上都无尺度但却包含了宇宙全部物质的奇点。至少是在120~150亿年以前,宇宙及空间本身由这个点爆炸形成。

宇宙是如何起源的?空间和时间的本质是什么?这是从2000多年前的古代哲学家到现代天文学家一直都在苦苦思索的问题。经过了哥白尼、赫歇尔、哈勃的从太阳系、银河系、河外星系的探索宇宙三部曲,宇宙学已经不再是幽深玄奥的抽象哲学思辨,而是建立在天文观测和物理实验基础上的一门现代科学。

目前学术界影响较大的“大爆炸宇宙论”是1927年由比利时数学家勒梅特提出的,他认为最初宇宙的物质集中在一个超原子的“宇宙蛋”里,在一次无与伦比的大爆炸中分裂成无数碎片,形成了今天的宇宙。1948年,俄裔美籍物理学家伽莫夫等人,又详细勾画出宇宙由一个致密炽热的奇点于150亿年前一次大爆炸后,经一系列元素演化到最后形成星球、星系的整个膨胀演化过程的图像。但是该理论存在许多使人迷惑之处。

宏观宇宙是相对无限延伸的。“大爆炸宇宙论”关于宇宙当初仅仅是一个点,而它周围却是一片空白,即将人类至今还不能确定范围也无法计算质量的宇宙压缩在一个极小空间内的假设只是一种臆测。况且从能量与质量的正比关系考虑,一个小点无缘无故地突然爆炸成浩瀚宇宙的能量从何而来呢?

人类把地球绕太阳转一圈确定为衡量时间的标准——年。但宇宙中所有天体的运动速度都是不同的,在宇宙范围,时间没有衡量标准。譬如地球上东西南北的方向概念在宇宙范围就没有任何意义。既然年的概念对宇宙而言并不存在,大爆炸宇宙论又如何用年的概念去推算宇宙的确切年龄呢?

1929年,美国天文学家哈勃提出了星系的红移量与星系间的距离成正比的哈勃定律,并推导出星系都在互相远离的宇宙膨胀说。哈勃定律只是说明了距离地球越远的星系运动速度越快--星系红移量与星系距离呈正比关系。但他没能发现很重要的另一点--星系红移量与星系质量也呈正比关系。

宇宙中星系间距离非常非常遥远,光线传播因空间物质的吸收、阻挡会逐渐减弱,那些运动速度越快的星系就是质量越大的星系。质量大,能量辐射就强,因此我们观察到的红移量极大的星系,当然是质量极大的星系。这就是被称作“类星体”的遥远星系因质量巨大而红移量巨大的原因。另外那些质量小、能量辐射弱的星系(除极少数距银河系很近的星系,如大、小麦哲伦星系外)则很难观察到,于是我们现在看到的星系大多呈红移。而银河系内的恒星由于距地球近,大小恒星都能看到,所以恒星的红移紫移数量大致相等。

导致星系红移多紫移少的另一原因是:宇宙中的物质结构都是在一定范围内围绕一个中心按圆形轨迹运动的,不是像大爆炸宇宙论描述的从一个中心向四周作放射状的直线运动。因此,从地球看到的紫移星系范围很窄,数量极少,只能是与银河系同一方向运动的,前方比银河系小的星系;后方比银河系大的星系。只有将来研制出更高分辨程度的天文观测仪器才能看到更多的紫移星系。

宇宙中的物质分布出现不平衡时,局部物质结构会不断发生膨胀和收缩变化,但宇宙整体结构相对平衡的状态不会改变。仅凭从地球角度观测到的部分(不是全部)可见星系与地球之间距离的远近变化,不能说明宇宙整体是在膨胀或收缩。就像地球上的海洋受引力作用不断此涨彼消的潮汐现象并不说明海水总量是在增加或减少一样。

1994年,美国卡内基研究所的弗里德曼等人,用估计宇宙膨胀速率的办法计算宇宙年龄时,得出一个80~120亿年的年龄计算值。然而根据对恒星光谱的分析,宇宙中最古老的恒星年龄为140~160亿年。恒星的年龄倒比宇宙的年龄大。

1964年,美国工程师彭齐亚斯和威尔逊探测到的微波背景辐射,是因为布满宇宙空间的各种物质相互之间能量传递产生的效果。宇宙中的物质辐射是时刻存在的,3K或5K的温度值也只是人类根据自己判断设计的一种衡量标准。这种能量辐射现象只能说明宇宙中的物质由于引力作用,在大尺度空间整体分布的相对均匀性和星际空间里确实存在大量我们目前还观测不到的“暗物质”。

至于大爆炸宇宙论中的氦丰度问题,氦元素原本就是宇宙中存在的仅次于氢元素的数量极丰富的原子结构,它在空间的百分比含量和其它元素的百分比含量同样都属于物质结构分布规律中很平常的物理现象。在宇宙大尺度范围中,不仅氦元素的丰度相似,其余的氢、氧……元素的丰度也都是相似的。而且,各种元素是随不同的温度、环境而不断互相变换的,并不是始终保持一副面孔,所以微波背景辐射和氦丰度与宇宙的起源之间看不出有任何必然的联系。

大爆炸宇宙论面临的难题还有,如果宇宙无限膨胀下去,最后的结局如何呢?德国物理学家克劳修斯指出,能量从非均匀分布到均匀分布的那种变化过程,适用于宇宙间的一切能量形式和一切事件,在任何给定物体中有一个基于其总能量与温度之比的物理量,他把这个物理量取名为“熵”,孤立系统中的“熵”永远趋于增大。但在宇宙中总会有高“熵”和低“熵”的区域,不可能出现绝对均匀的状态。所以,那种认为由于“熵”水平的不断升高而达到最大值时,宇宙就会进入一片死寂的永恒状态,最终“热寂”而亡的结局,是把我们现在可观测到的一部分宇宙范围当作整个宇宙的误识。

根据天文观测资料和物理理论描述宇宙的具体形态,星系的形态特征对研究宇宙结构至关重要,从星系的运动规律可以推断整个宇宙的结构形态。而星系共有的圆形旋涡结构就是整个宇宙的缩影,那些椭圆、棒旋等不同的星系形态只是因为星系年龄和观测角度不同而产生的视觉效果。

奇妙的螺旋形是自然界中最普遍、最基本的物质运动形式。这种螺旋现象对于认识宇宙形态有着重要的启迪作用,大至旋涡星系,小至DNA分子,都是在这种螺旋线中产生。大自然并不认可笔直的形式,自然界所有物质的基本结构都是曲线运动方式的圆环形状。从原子、分子到星球、星系直到星系团、超星系团无一例外,毋庸置疑,浩瀚的宇宙就是一个大旋涡。因此,确立一个“螺旋运动形态宇宙模型”,比那种作为所有物质总和的“宇宙”却脱离曲线运动模式而独辟蹊径,以直线运动方式从一个中心向四面八方无限伸展的“大爆炸宇宙模型”,更能体现真实的宇宙结构形
还有一点,大爆炸是循环的,有科学家声称:宇宙现在的膨胀达到极点时将又发生一场大爆炸。如同黑洞的形成过程一样,宇宙将变成一个高密度、小体积的球体。缩小到一定程度后,将再次发生大爆炸。根据能量守恒定律,宇宙的能量并没有消亡。但是,却没有人能解释,大爆炸每次循环时间、空间、分子结构等等,都是像上次一样(几百几千亿年以后,又有太阳系,又有地球,又有中国,又有你),还是重新排列(光凭空可以弯曲——|||)
宇宙起源的问题有点像这个古老的问题:是先有鸡呢,还是先有蛋。换句话说,就是何物创生宇宙,又是何物创生该物呢?也许宇宙,或者创生它的东西已经存在了无限久的时间,并不需要被创生。直到不久之前,科学家们还一直试图回避这样的问题,觉得它们与其说是属于科学,不如说是属于形而上学或宗教的问题,然而,人们在过去几年发现,科学定律甚至在宇宙的开端也是成立的。在那种情形下,宇宙可以是自足的,并由科学定律所完全确定。

关于宇宙是否并如何启始的争论贯穿了整个记载的历史。基本上存在两个思想学派。许多早期的传统,以及犹太教、基督教和伊斯兰教认为宇宙是相当近的过去创生的。(十七世纪时邬谢尔主教算出宇宙诞生的日期是公元前4004年,这个数目是由把在旧约圣经中人物的年龄加起来而得到的。)承认人类在文化和技术上的明显进化,是近代出现的支持上述思想的一个事实。我们记得那种业绩的首创者或者这种技术的发展者。可以如此这般地进行论证,即我们不可能存在了那许久;因为否则的话,我们应比目前更加先进才对。事实上,圣经的创世日期和上次冰河期结束相差不多,而这似乎正是现代人类首次出现的时候。

另一方面,还有诸如希腊哲学家亚里斯多德的一些人,他们不喜欢宇宙有个开端的思想。他们觉得这意味着神意的干涉。他们宁愿相信宇宙已经存在了并将继续存在无限久。某种不朽的东西比某种必须被创生的东西更加完美。他们对上述有关人类进步的诘难的回答是:周期性洪水或者其他自然灾难重复地使人类回到起始状态。

两种学派都认为,宇宙在根本上随时间不变。它要么以现在形式创生,要么以今天的样子维持了无限久。这是一种自然的信念,由于人类生命——整个有记载的历史是如此之短暂,宇宙在此期间从未显著地改变过。在一个稳定不变的宇宙的框架中,它是否已经存在了无限久或者是在有限久的过去诞生的问题,实在是一种形而上学或宗教的问题:任何一种理论都对此作解释。1781年哲学家伊曼努尔·康德写了一部里程碑式的,也是非常模糊的著作《纯粹理性批判》。他在这部著作中得出结论,存在同样有效的论证分别用以支持宇宙有一个开端或者宇宙没有开端的信仰。正如他的书名所提示的,他是简单地基于推理得出结论,换句话说,就是根本不管宇宙的观测。毕竟也是,在一个不变的宇宙中,有什么可供观测的呢?

然而在十九世纪,证据开始逐渐积累起来,它表明地球戏及宇宙拭其他部分事实上是随时间而变化的。地学家们意识到岩石以及其中的化石的形成需要花费几亿甚至几十亿年的时间。这比创生论者计算的地球年龄长得太多了。由德国物理学家路德维希·破尔兹曼提出的所谓热力学第二定律还提供了进一步的证据,宇宙中的无序度的总量(它是由称为熵的量所测量的)总是随时间而增加,正如有关人类进步的论证,它暗示只能运行了有限的时间,否则的话,它现在应已退化到一种完全无序的状态,在这种状态下万物都牌相同的温度下。

稳恒宇宙思想所遭遇到的另外困难是,根据牛顿的引力定律,宇宙中的每一颗恒星必须相互吸引。如果是这样的话,它们怎么能维持相互间恒定距离,并且静止地停在那里呢?

牛顿晓得这个问题。在一封致当时一位主要哲学家里查德·本特里的信中,他同意这样的观点,即有限的一群恒星不可能静止不动,它们全部会落某个中心点。然而,他论断道,一个无限的恒星集合不会落到一起,由于不存在任何可供它们落去的中心点。这种论证是人们在谈论无限系统时会遭遇到的陷阱的一个例子。用不同的方法将从宇宙的其余的无限数目的恒星作用到每颗恒星的力加起来,会对恒星是否维持恒常距离给出不同的答案。我们现在知道,其正确的步骤是考虑恒星的有限区域,然后加上在该区域之外大致均匀分布的更多恒星。恒星的有限区域会落到一起,而按照牛顿定律,在该区域外加上更多的恒星不能阻止其坍缩。这样,一个恒星的无限集合不能处于静止不动的状态。如果它们在某一时刻不在作相对运动,它们之间的吸引力会引起它们开始朝相互方向落去。另一种情形是,它们可能正在相互离开,而引力使这种退行速度降低。

本世纪,有两种"宇宙模型"比较有影响。一是稳态理论,一是大爆炸理论。20年代后期,爱德温·哈勃(Edwin Hubble)发现了红移现象,说明宇宙正在膨胀。60年代中期,阿尔诺·彭齐亚斯(Arno Penzias)和罗伯特·威尔逊(Robert Wilson)发现了"宇宙微波背景辐射"。这两个发现给大爆炸理论以有力的支持。现在,大爆炸理论广泛地为人们所接受。
大爆炸理论认为,宇宙起源于一个单独的无维度的点,即一个在空间和时间上都无尺度但却包含了宇宙全部物质的奇点。至少是在120~150亿年以前,宇宙及空间本身由这个点爆炸形成。

漫话宇宙起源
宇宙是如何起源的?空间和时间的本质是什么?这是从2000多年前的古代哲学家到现代天文学家一直都在苦苦思索的问题。经过了哥白尼、赫歇尔、哈勃的从太阳系、银河系、河外星系的探索宇宙三部曲,宇宙学已经不再是幽深玄奥的抽象哲学思辩,而是建立在天文观测和物理实验基础上的一门现代科学。
目前学术界影响较大的“大爆炸宇宙论”是1927年由比利时数学家勒梅特提出的,他认为最初宇宙的物质集中在一个超原子的“宇宙蛋”里,在一次无与伦比的大爆炸中分裂成无数碎片,形成了今天的宇宙。1948年,俄裔美籍物理学家伽莫夫等人,又详细勾画出宇宙由一个致密炽热的奇点于150亿年前一次大爆炸后,经一系列元素演化到最后形成星球、星系的整个膨胀演化过程的图像。但是该理论存在许多使人迷惑之处。
宏观宇宙是相对无限延伸的。“大爆炸宇宙论”关于宇宙当初仅仅是一个点,而它周围却是一片空白,即将人类至今还不能确定范围也无法计算质量的宇宙压缩在一个极小空间内的假设只是一种臆测。况且从能量与质量的正比关系考虑,一个小点无缘无故地突然爆炸成浩瀚宇宙的能量从何而来呢?
人类把地球绕太阳转一圈确定为衡量时间的标准——年。但宇宙中所有天体的运动速度都是不同的,在宇宙范围,时间没有衡量标准。譬如地球上东西南北的方向概念在宇宙范围就没有任何意义。既然年的概念对宇宙而言并不存在,大爆炸宇宙论又如何用年的概念去推算宇宙的确切年龄呢?
1929年,美国天文学家哈勃提出了星系的红移量与星系间的距离成正比的哈勃定律,并推导出星系都在互相远离的宇宙膨胀说。哈勃定律只是说明了距离地球越远的星系运动速度越快--星系红移量与星系距离呈正比关系。但他没能发现很重要的另一点--星系红移量与星系质量也呈正比关系。
宇宙中星系间距离非常非常遥远,光线传播因空间物质的吸收、阻挡会逐渐减弱,那些运动速度越快的星系就是质量越大的星系。质量大,能量辐射就强,因此我们观察到的红移量极大的星系,当然是质量极大的星系。这就是被称作“类星体”的遥远星系因质量巨大而红移量巨大的原因。另外那些质量小、能量辐射弱的星系(除极少数距银河系很近的星系,如大、小麦哲伦星系外)则很难观察到,于是我们现在看到的星系大多呈红移。而银河系内的恒星由于距地球近,大小恒星都能看到,所以恒星的红移紫移数量大致相等。
导致星系红移多紫移少的另一原因是:宇宙中的物质结构都是在一定范围内围绕一个中心按圆形轨迹运动的,不是像大爆炸宇宙论描述的从一个中心向四周作放射状的直线运动。因此,从地球看到的紫移星系范围很窄,数量极少,只能是与银河系同一方向运动的,前方比银河系小的星系;后方比银河系大的星系。只有将来研制出更高分辨程度的天文观测仪器才能看到更多的紫移星系。
宇宙中的物质分布出现不平衡时,局部物质结构会不断发生膨胀和收缩变化,但宇宙整体结构相对平衡的状态不会改变。仅凭从地球角度观测到的部分(不是全部)可见星系与地球之间距离的远近变化,不能说明宇宙整体是在膨胀或收缩。就像地球上的海洋受引力作用不断此涨彼消的潮汐现象并不说明海水总量是在增加或减少一样。
1994年,美国卡内基研究所的弗里德曼等人,用估计宇宙膨胀速率的办法计算宇宙年龄时,得出一个80~120亿年的年龄计算值。然而根据对恒星光谱的分析,宇宙中最古老的恒星年龄为140~160亿年。恒星的年龄倒比宇宙的年龄大。
1964年,美国工程师彭齐亚斯和威尔逊探测到的微波背景辐射,是因为布满宇宙空间的各种物质相互之间能量传递产生的效果。宇宙中的物质辐射是时刻存在的,3K或5K的温度值也只是人类根据自己判断设计的一种衡量标准。这种能量辐射现象只能说明宇宙中的物质由于引力作用,在大尺度空间整体分布的相对均匀性和星际空间里确实存在大量我们目前还观测不到的“暗物质”。
至于大爆炸宇宙论中的氦丰度问题,氦元素原本就是宇宙中存在的仅次于氢元素的数量极丰富的原子结构,它在空间的百分比含量和其它元素的百分比含量同样都属于物质结构分布规律中很平常的物理现象。在宇宙大尺度范围中,不仅氦元素的丰度相似,其余的氢、氧……元素的丰度也都是相似的。而且,各种元素是随不同的温度、环境而不断互相变换的,并不是始终保持一副面孔,所以微波背景辐射和氦丰度与宇宙的起源之间看不出有任何必然的联系。
大爆炸宇宙论面临的难题还有,如果宇宙无限膨胀下去,最后的结局如何呢?德国物理学家克劳修斯指出,能量从非均匀分布到均匀分布的那种变化过程,适用于宇宙间的一切能量形式和一切事件,在任何给定物体中有一个基于其总能量与温度之比的物理量,他把这个物理量取名为“熵”,孤立系统中的“熵”永远趋于增大。但在宇宙中总会有高“熵”和低“熵”的区域,不可能出现绝对均匀的状态。所以,那种认为由于“熵”水平的不断升高而达到最大值时,宇宙就会进入一片死寂的永恒状态,最终“热寂”而亡的结局,是把我们现在可观测到的一部分宇宙范围当作整个宇宙的误识。
根据天文观测资料和物理理论描述宇宙的具体形态,星系的形态特征对研究宇宙结构至关重要,从星系的运动规律可以推断整个宇宙的结构形态。而星系共有的圆形旋涡结构就是整个宇宙的缩影,那些椭圆、棒旋等不同的星系形态只是因为星系年龄和观测角度不同而产生的视觉效果。
奇妙的螺旋形是自然界中最普遍、最基本的物质运动形式。这种螺旋现象对于认识宇宙形态有着重要的启迪作用,大至旋涡星系,小至DNA分子,都是在这种螺旋线中产生。大自然并不认可笔直的形式,自然界所有物质的基本结构都是曲线运动方式的圆环形状。从原子、分子到星球、星系直到星系团、超星系团无一例外,毋庸置疑,浩瀚的宇宙就是一个大旋涡。因此,确立一个“螺旋运动形态宇宙模型”,比那种作为所有物质总和的“宇宙”却脱离曲线运动模式而独辟蹊径,以直线运动方式从一个中心向四面八方无限伸展的“大爆炸宇宙模型”,更能体现真实的宇宙结构形态。
回答者:xianyunyiyue - 见习魔法师 三级 6-18 00:00
本世纪,有两种"宇宙模型"比较有影响。一是稳态理论,一是大爆炸理论。20年代后期,爱德温·哈勃(Edwin Hubble)发现了红移现象,说明宇宙正在膨胀。60年代中期,阿尔诺·彭齐亚斯(Arno Penzias)和罗伯特·威尔逊(Robert Wilson)发现了"宇宙微波背景辐射"。这两个发现给大爆炸理论以有力的支持。现在,大爆炸理论广泛地为人们所接受。

大爆炸理论认为,宇宙起源于一个单独的无维度的点,即一个在空间和时间上都无尺度但却包含了宇宙全部物质的奇点。至少是在120~150亿年以前,宇宙及空间本身由这个点爆炸形成。

宇宙是如何起源的?空间和时间的本质是什么?这是从2000多年前的古代哲学家到现代天文学家一直都在苦苦思索的问题。经过了哥白尼、赫歇尔、哈勃的从太阳系、银河系、河外星系的探索宇宙三部曲,宇宙学已经不再是幽深玄奥的抽象哲学思辩,而是建立在天文观测和物理实验基础上的一门现代科学。

目前学术界影响较大的“大爆炸宇宙论”是1927年由比利时数学家勒梅特提出的,他认为最初宇宙的物质集中在一个超原子的“宇宙蛋”里,在一次无与伦比的大爆炸中分裂成无数碎片,形成了今天的宇宙。1948年,俄裔美籍物理学家伽莫夫等人,又详细勾画出宇宙由一个致密炽热的奇点于150亿年前一次大爆炸后,经一系列元素演化到最后形成星球、星系的整个膨胀演化过程的图像。但是该理论存在许多使人迷惑之处。

宏观宇宙是相对无限延伸的。“大爆炸宇宙论”关于宇宙当初仅仅是一个点,而它周围却是一片空白,即将人类至今还不能确定范围也无法计算质量的宇宙压缩在一个极小空间内的假设只是一种臆测。况且从能量与质量的正比关系考虑,一个小点无缘无故地突然爆炸成浩瀚宇宙的能量从何而来呢?

人类把地球绕太阳转一圈确定为衡量时间的标准——年。但宇宙中所有天体的运动速度都是不同的,在宇宙范围,时间没有衡量标准。譬如地球上东西南北的方向概念在宇宙范围就没有任何意义。既然年的概念对宇宙而言并不存在,大爆炸宇宙论又如何用年的概念去推算宇宙的确切年龄呢?

1929年,美国天文学家哈勃提出了星系的红移量与星系间的距离成正比的哈勃定律,并推导出星系都在互相远离的宇宙膨胀说。哈勃定律只是说明了距离地球越远的星系运动速度越快--星系红移量与星系距离呈正比关系。但他没能发现很重要的另一点--星系红移量与星系质量也呈正比关系。

宇宙中星系间距离非常非常遥远,光线传播因空间物质的吸收、阻挡会逐渐减弱,那些运动速度越快的星系就是质量越大的星系。质量大,能量辐射就强,因此我们观察到的红移量极大的星系,当然是质量极大的星系。这就是被称作“类星体”的遥远星系因质量巨大而红移量巨大的原因。另外那些质量小、能量辐射弱的星系(除极少数距银河系很近的星系,如大、小麦哲伦星系外)则很难观察到,于是我们现在看到的星系大多呈红移。而银河系内的恒星由于距地球近,大小恒星都能看到,所以恒星的红移紫移数量大致相等。

导致星系红移多紫移少的另一原因是:宇宙中的物质结构都是在一定范围内围绕一个中心按圆形轨迹运动的,不是像大爆炸宇宙论描述的从一个中心向四周作放射状的直线运动。因此,从地球看到的紫移星系范围很窄,数量极少,只能是与银河系同一方向运动的,前方比银河系小的星系;后方比银河系大的星系。只有将来研制出更高分辨程度的天文观测仪器才能看到更多的紫移星系。

宇宙中的物质分布出现不平衡时,局部物质结构会不断发生膨胀和收缩变化,但宇宙整体结构相对平衡的状态不会改变。仅凭从地球角度观测到的部分(不是全部)可见星系与地球之间距离的远近变化,不能说明宇宙整体是在膨胀或收缩。就像地球上的海洋受引力作用不断此涨彼消的潮汐现象并不说明海水总量是在增加或减少一样。

1994年,美国卡内基研究所的弗里德曼等人,用估计宇宙膨胀速率的办法计算宇宙年龄时,得出一个80~120亿年的年龄计算值。然而根据对恒星光谱的分析,宇宙中最古老的恒星年龄为140~160亿年。恒星的年龄倒比宇宙的年龄大。

1964年,美国工程师彭齐亚斯和威尔逊探测到的微波背景辐射,是因为布满宇宙空间的各种物质相互之间能量传递产生的效果。宇宙中的物质辐射是时刻存在的,3K或5K的温度值也只是人类根据自己判断设计的一种衡量标准。这种能量辐射现象只能说明宇宙中的物质由于引力作用,在大尺度空间整体分布的相对均匀性和星际空间里确实存在大量我们目前还观测不到的“暗物质”。

至于大爆炸宇宙论中的氦丰度问题,氦元素原本就是宇宙中存在的仅次于氢元素的数量极丰富的原子结构,它在空间的百分比含量和其它元素的百分比含量同样都属于物质结构分布规律中很平常的物理现象。在宇宙大尺度范围中,不仅氦元素的丰度相似,其余的氢、氧……元素的丰度也都是相似的。而且,各种元素是随不同的温度、环境而不断互相变换的,并不是始终保持一副面孔,所以微波背景辐射和氦丰度与宇宙的起源之间看不出有任何必然的联系。

大爆炸宇宙论面临的难题还有,如果宇宙无限膨胀下去,最后的结局如何呢?德国物理学家克劳修斯指出,能量从非均匀分布到均匀分布的那种变化过程,适用于宇宙间的一切能量形式和一切事件,在任何给定物体中有一个基于其总能量与温度之比的物理量,他把这个物理量取名为“熵”,孤立系统中的“熵”永远趋于增大。但在宇宙中总会有高“熵”和低“熵”的区域,不可能出现绝对均匀的状态。所以,那种认为由于“熵”水平的不断升高而达到最大值时,宇宙就会进入一片死寂的永恒状态,最终“热寂”而亡的结局,是把我们现在可观测到的一部分宇宙范围当作整个宇宙的误识。

根据天文观测资料和物理理论描述宇宙的具体形态,星系的形态特征对研究宇宙结构至关重要,从星系的运动规律可以推断整个宇宙的结构形态。而星系共有的圆形旋涡结构就是整个宇宙的缩影,那些椭圆、棒旋等不同的星系形态只是因为星系年龄和观测角度不同而产生的视觉效果。

奇妙的螺旋形是自然界中最普遍、最基本的物质运动形式。这种螺旋现象对于认识宇宙形态有着重要的启迪作用,大至旋涡星系,小至DNA分子,都是在这种螺旋线中产生。大自然并不认可笔直的形式,自然界所有物质的基本结构都是曲线运动方式的圆环形状。从原子、分子到星球、星系直到星系团、超星系团无一例外,毋庸置疑,浩瀚的宇宙就是一个大旋涡。因此,确立一个“螺旋运动形态宇宙模型”,比那种作为所有物质总和的“宇宙”却脱离曲线运动模式而独辟蹊径,以直线运动方式从一个中心向四面八方无限伸展的“大爆炸宇宙模型”,更能体现真实的宇宙结构形
一切现在已知的物理定律在奇点都会失效,比如惯性等等,这也就是说不会有多大的能量的概念,换句话说,现在宇宙中的这么多物质都是当初一个点造成的

宇宙起源的问题有点像这个古老的问题:是先有鸡呢,还是先有蛋。换句话说,就是何物创生宇宙,又是何物创生该物呢?也许宇宙,或者创生它的东西已经存在了无限久的时间,并不需要被创生。直到不久之前,科学家们还一直试图回避这样的问题,觉得它们与其说是属于科学,不如说是属于形而上学或宗教的问题,然而,人们在过去几年发现,科学定律甚至在宇宙的开端也是成立的。在那种情形下,宇宙可以是自足的,并由科学定律所完全确定。

关于宇宙是否并如何启始的争论贯穿了整个记载的历史。基本上存在两个思想学派。许多早期的传统,以及犹太教、基督教和伊斯兰教认为宇宙是相当近的过去创生的。(十七世纪时邬谢尔主教算出宇宙诞生的日期是公元前4004年,这个数目是由把在旧约圣经中人物的年龄加起来而得到的。)承认人类在文化和技术上的明显进化,是近代出现的支持上述思想的一个事实。我们记得那种业绩的首创者或者这种技术的发展者。可以如此这般地进行论证,即我们不可能存在了那许久;因为否则的话,我们应比目前更加先进才对。事实上,圣经的创世日期和上次冰河期结束相差不多,而这似乎正是现代人类首次出现的时候。

另一方面,还有诸如希腊哲学家亚里斯多德的一些人,他们不喜欢宇宙有个开端的思想。他们觉得这意味着神意的干涉。他们宁愿相信宇宙已经存在了并将继续存在无限久。某种不朽的东西比某种必须被创生的东西更加完美。他们对上述有关人类进步的诘难的回答是:周期性洪水或者其他自然灾难重复地使人类回到起始状态。

两种学派都认为,宇宙在根本上随时间不变。它要么以现在形式创生,要么以今天的样子维持了无限久。这是一种自然的信念,由于人类生命——整个有记载的历史是如此之短暂,宇宙在此期间从未显著地改变过。在一个稳定不变的宇宙的框架中,它是否已经存在了无限久或者是在有限久的过去诞生的问题,实在是一种形而上学或宗教的问题:任何一种理论都对此作解释。1781年哲学家伊曼努尔·康德写了一部里程碑式的,也是非常模糊的著作《纯粹理性批判》。他在这部著作中得出结论,存在同样有效的论证分别用以支持宇宙有一个开端或者宇宙没有开端的信仰。正如他的书名所提示的,他是简单地基于推理得出结论,换句话说,就是根本不管宇宙的观测。毕竟也是,在一个不变的宇宙中,有什么可供观测的呢?

然而在十九世纪,证据开始逐渐积累起来,它表明地球戏及宇宙拭其他部分事实上是随时间而变化的。地学家们意识到岩石以及其中的化石的形成需要花费几亿甚至几十亿年的时间。这比创生论者计算的地球年龄长得太多了。由德国物理学家路德维希·破尔兹曼提出的所谓热力学第二定律还提供了进一步的证据,宇宙中的无序度的总量(它是由称为熵的量所测量的)总是随时间而增加,正如有关人类进步的论证,它暗示只能运行了有限的时间,否则的话,它现在应已退化到一种完全无序的状态,在这种状态下万物都牌相同的温度下。

稳恒宇宙思想所遭遇到的另外困难是,根据牛顿的引力定律,宇宙中的每一颗恒星必须相互吸引。如果是这样的话,它们怎么能维持相互间恒定距离,并且静止地停在那里呢?

牛顿晓得这个问题。在一封致当时一位主要哲学家里查德·本特里的信中,他同意这样的观点,即有限的一群恒星不可能静止不动,它们全部会落某个中心点。然而,他论断道,一个无限的恒星集合不会落到一起,由于不存在任何可供它们落去的中心点。这种论证是人们在谈论无限系统时会遭遇到的陷阱的一个例子。用不同的方法将从宇宙的其余的无限数目的恒星作用到每颗恒星的力加起来,会对恒星是否维持恒常距离给出不同的答案。我们现在知道,其正确的步骤是考虑恒星的有限区域,然后加上在该区域之外大致均匀分布的更多恒星。恒星的有限区域会落到一起,而按照牛顿定律,在该区域外加上更多的恒星不能阻止其坍缩。这样,一个恒星的无限集合不能处于静止不动的状态。如果它们在某一时刻不在作相对运动,它们之间的吸引力会引起它们开始朝相互方向落去。另一种情形是,它们可能正在相互离开,而引力使这种退行速度降低。

尽管恒定不变的宇宙的观念具有这些困难,十七、十八、十九甚至至二十世纪初斯都没有人提出过,宇宙也许是随时间演化的,不管是牛顿还是爱因期坦都失去了预言宇宙不是在收缩便是在膨胀的机会。因为牛顿生活在观测发现宇宙膨胀以前的二百五十年,所以人们实在不能责备他。但是爱因斯坦应该知道得更好。他在1915年提出的广义相对论预言正在膨胀。但是他对稳恒宇宙是如此之执迷不悟,以至于要在理论中加上一个使之和牛顿理论相调和并用于抗衡引力的因素。

1929年埃德温·哈勃的宇宙膨胀的发现完全改观了有关其起源的讨论。如果你把星系现在的运动往时间的过去方向例溯,它们在一百亿和二百亿年前之间的某一时刻似乎应该重叠在一起,在这个称为大爆炸奇点的时刻,宇宙的密度和时空的曲率应为无穷大。所有的已知的科学定律在这种条件下都失效了。这对科学是一桩灾难。科学所能告诉我们的一切是:宇宙现状之所以如此是因为它是过去是处于那种形态。但是科学不能解释为何它在大爆炸后的那一瞬间是那个样子的。

这样,许多科学家对此结论感到不悦就毫不足怪了。为了避免存在大爆炸奇点以及由此引起的时间具有开端的结论,人们进行了若干尝试。其中一种称为稳恒态理论。它的思想是,随着星不互相分离而去,由连续产生的物质在星系之间的空间中形成新的星系。这样宇宙就多多少少以今日这样的状态不但已经存在了,而且还将继续存在无限长时间。

为了使宇宙继续膨胀并创生新物质,稳恒态模型需要修改广义相对论。但是所需要的产生率非常低:大约为每年每立方公里一个粒子,这不会和观测相冲突。该理论还预言了,星系和类似物体的平均密度不但在空间上而且在时间上必须是常数。然而,由马丁·赖尔和他的剑桥小组进行的银河系外射电源的普查显示,弱源的数目比强源的数目多得多。人们可以预料,弱的源在平均上讲应是较遥远的。这样就存在两种可能性:或许我们正位于宇宙中的一个强源不如平均源频繁的区域;或者过去的源的密度更高,光线在离开这些源向我们传播时更遥远的距离。这两种可能性没有一种和稳恒态理论相协调,因为该理论预言射电源密度不仅在空间上而且在时间上必须为常数。1964年阿诺·彭齐亚斯和罗伯特·威尔逊发现了从比我们的银河系遥远得多的地方起源的微波辐射背景,这是对该理论的致命打击。它具有从一个热体发射出的辐射的特征谱,尽管在这种情形下热这个字根本不适合,因为其温度只不过比绝对零度高2.7度而已。宇宙是一个既寒冷又黑暗的地方!稳恒态理论中没有一种产生具有这种谱的微波的合理机制,所以稳恒态理论难逃被抛弃的命运。

1963年两位俄国科学家欧格尼·利费席兹和伊萨克·哈拉尼科夫提出另一种思想,企图用来避免大爆炸奇性。他们说,只有当星系直接相互接近或离开时,它们才会在过去的一个单独的点上相重叠,才导致无限密度状态。可惜的是,星系还多少具有一些侧向速度,宇宙早斯就可能存在过这样的一种收缩相,这时,星系虽然曾经非常靠近过,却能设法避免互相撞击。然后宇宙会继续重新膨胀,而不必通过一种无限的密度的状态。

当利费席兹和哈拉尼科夫提出其设想时,我正是一名研究生,亟需一个问题以完成博士论文。因为是否有守大爆炸奇点的问题对于理解宇宙的起源关系重大,所以它引起了我的兴趣。我和罗杰·彭罗斯一道发展了一套数学工具,用以处理这个以及类似的问题。我们指出,如果广义相对论是正确的,任何合理的宇宙模型都必需起始于一个奇点。这就表明,科学能够预言,宇宙必须有一个开端,但是它不能够预言宇宙应如何启始的:正因为如此,人们必须求助于上帝。

审察人闪对奇性看法的变化是十分有趣的。当我还是一名研究生时,几乎没人认真地看待之。现在,作为奇性定理的一个结果,几乎无人不信宇宙是从一个奇眯起始的,物理定律在该处失效。然而,现在我认为,虽然存在奇点,物理定律仍能确定宇宙是如何起始的。

广义相对论是一种被称为经典的理论。也就是说,它没有顾及这个事实,即粒子不具备精确定义的位置和速度,由于量子力学的不确定性原理位置和速度的小范围内被“抹平”,不确定性原理不允许我们同时既测量又测量速度。因为正常情形下时空的曲率在和粒子位置的不确定性相比较时非常大,这些以我们没什么影响。然而奇性定理指出,在现在的宇宙膨胀相的开端,时空被高度地畸变,并且具有很小的曲率半径。不确定性原理在这种情形下变成非常重要。这样,广义相对论因预言奇性而导致自身的垮台。为了讨论宇宙的开端,我们需要一种结合广义相对论和量子力学的理论。

那种理论便是量子引力论。我们尚未知道正确的量子引力论应采取的准确形式。我们此刻所拥有的最佳候选者是超弦理论,但它仍有许多耒解决的困难。然而,人们可以期望,任何有前途的理论都应具有某些特征。其中之一便是爱因斯坦的思想,引力效应由被物质和能量所弯曲甚至卷曲的时空来体现。物体在弯曲空间中沿着最接近于直线的轨迹运行。然而,由于时空是弯曲的。所以它们的路径就显得是弯折的,正如同被引力场所弯折的似的。

另一种在这个终极理论中可以预料的要素是里查德·费因曼的设想,即量子理论可以表达成“对历史的求和”。该思想可以最简单的形式表达成,每颗粒子在时间中走过任何可能的路径或历史。每一路径或历史具有依其形状而定的概率。为了使这种思想可行,人们必须考虑在虚时间里发生的历史,而不是在我们感受生活于其中的实时间城发生的历史。虚时间听起来有点像是科学幻想的东西,其实它是定义得很好的数学概念。它在某种意义上可被认为是和实时间成直角的时间方向。人们把所有具有某种性质粒子历史,譬如讲在某些时刻通过某些点的历史的概率加起来。然后应把这结果延拓到我们在其中生活的实的时空中去。这不是量子力学的最熟知的手段,但它给出和其他方法得到的相同结果。

在量子引力的情形下,费因曼的对历史求和的思想牵涉到对宇宙的不同的可能性的历史,也就是对不同的弯曲时空的求和。这些代表了宇宙和它之中的任何东西的历史。人们必须指明,在对历史的求和中,应包括哪些种类的弯曲空间。这种空间种类包括具有奇性的的空间,则该理论就不能确定这类空间的概率。相反的,它们必须以某种任意的方法被赋予概率。这意味着科学不能预言时空这类奇性历史的概率。这样,它就不能预言宇宙应如何运行。然而,宇宙可能处于由只包括非奇性弯曲空间的求和所定义的状态。在这种情形下,科学定律就把宇宙完全确定,人们就不必吁求宇宙之外的某物来确定宇宙如何启始。由只对非奇性历史的求和确定宇宙的状态有点像一名醉汉在灯柱之下找他的钥匙:这儿也许不是他遗失之处,但是这儿是他可能找到的仅有的地方。类似的,宇宙也许不处于由对非奇性历史求和定义的状态,但这是科学能预言应当什么样子的仅有的状态。

1983年詹姆·哈特尔和我提出,宇宙的状态应由对一定种类历史的求和给出。这类历史由没有奇性的,而且具有有限尺度却没有边界或边缘的弯曲空间组成。它们像是地球的表面,只不过多了两维。地球的表面具有有限的面积,但是它不具有任何奇性、边界或边缘。我曾经用实验验证过这一点。我作过环球旅行,而没有落到外面去。

哈特尔和我所做的设想可以被重新表达成:宇宙的边界条件是它没有边界。只有当宇宙处于这个无边界状态时,科学定律自身才能确定每种可能历史的概率。因此,只有在这种情形下,已知的定律才会确定宇宙应如何运行。如果宇宙处于任何其他的状态,则历史求和中的弯曲空间的种类就要包括具有奇性的空间。人们必须求助于已知科学定律以外的某种原理,才能确定这种奇性历史的概率。这种原理就会是外在于我们宇宙的某种东西。我们不能从我们宇宙之中将其推导出来。而另一方面,如果宇宙是处于无边界状态,在原则上,我们就能在不确定性原理容忍的限制之仙完全确定宇宙应如何运行。

如果宇宙处于无边界状态,那对于科学而言就太好了,但是我们如何才能知道事情究竟是否如此呢?其答案是,无边界设想对宇宙应如何运行作出了明确的预言。如果这些预言不与观测相符合,则我们就能得出结论说,宇宙不处于无边界状态。这样,在哲学家卡尔·波普定义的意义上说,无边界设想是一种好的科学理论:它可被观测证伪。

如果观测不与预言相符合,我们就知道在可能历史的种类中必须有奇性。然而,这就大致上是我们知道的一切。我们不能计算出这种奇性历史的概率,因此我们不能预言宇宙应如何运行。有人也许会认为,如果不可预见性只发生在大爆炸处,那不会太碍事,那毕竟是一百亿或二百亿年以前的事。但是,如果可预言性在大爆炸的非常强引力场中失效,那么只要恒星坍缩它也会失效。这种事件仅在我们的银河系中每周就会发生几次。我们的预言能力甚至按照天气预报的标准来说也是非常差劲的。

当然,人们还会说,我们根本不必在乎发生在一颗遥远恒星处的可预言性的失效。然而,在量子理论中任何不被实际上禁止的东西都能够并将要发生。这样,如果可能历史的种类中包括奇性空间的话,这些奇性可在任何地方发生,而不仅在大爆炸处以及坍缩星之中。这意味着,我们不能预言任何东西。反过来说,我们能够预言事件的这一事实是反对奇性并赞同无边界设想的实验证据。

那么无边界设想为宇宙做出什么预言呢?第一个预言是,因为宇宙的怕有可能的历史在广延上都是有限的,所以人们用来作为时间测度的任何量都必须有一个最大值和一个最小值。这样宇宙就有一个开端和一个终结。在实时间中的开端即是大爆炸奇点。然而在虚时间中这个开端就不再是奇点。相反的,它有点像地球的北极。如果人们把地球表面的纬度当作时间的类似物,则可以说地球的表面从北极开始。然而,北极是地球上完全普通的一点。它没有任何特殊之处,同样的定律在北极正如同在地球上的其他地方同样地成立。类似的,我们用来标志作撛谛槭奔淠谟钪娴钠羰紨的事件是时空中的一个通常的点,正如其他的点那样。科学定律在开端处正如在其他地方一样成立。

人们从和地球表面的类比,也许会预料到,正如北极和南极相似一样,宇宙的终结会和开端相类似。然而,北南二极是对应于虚时间向实时间延拓,就会发现宇宙在实时间中的开端和它的终结可以非常不同。

约纳逊·哈里威尔和我对无边界条件的含义作过一个近似计算。我们把宇宙当作一个完全光滑和均匀的背景来处理,在这个背景上存在密度的小微扰。宇宙在之前时间中从非常小的半径开始膨胀。最初的这种膨胀称作暴涨,也就是说,宇宙尺度在比一秒还要短暂非常多的每一时间间隔中得到加倍,这正如在某些国家中每一年价格都要加倍一样。第一次世界大战后的德国也许创下了通货膨胀的世界纪录,一捆面包的价格在几个月的时间内从一个马克涨到一百万马克。但是没有任何东西可与似乎在极早期宇宙发生过的暴涨相比拟,宇宙尺度在一秒的极微小的部分时间内至少增加了一百万亿亿亿倍。这当然是发生在当局政府之前的事。

暴涨在如下意义上来说,是件好事,它产生了一个在大尺度上光滑而均匀的宇宙,而且这个宇宙以刚好避免坍缩的临界速度膨胀。它还能在相当严格的意义上把宇宙的怕有内容从无中创生出来,这是暴涨的又一好处。当宇宙像北极那样的一个单独点时,它不包含有任何东西。然而,在我们可观测到的宇宙部分至少有十的八十次方颗粒子。所有这些粒子从何而来呢?其答案是,相对论和量子力学允许物质从能量中以粒子反粒子对的形式创生出来。那么能量又是从何而来以创生物质呢?其答案是,它是从宇宙的引力能中借来的。宇宙亏欠了极大数量的负引力能的债务,它刚好和物质的正能量相平衡。其结果便是凯恩斯经济学的胜利:一个充满物质的、充满活力的正在膨胀的宇宙。引力能的债务只有在宇宙终结时才能偿付清。

早期宇宙不能是完全均匀一致的,因为否则的话就会违反量子力学的不确定性原理。相反的,必须存在对均匀密度的一些偏差。无边界设想意味着,这些密度差别是从它们的基态开始,也就是说,它们是和不确定性原理相一尽可能的小。然而,这些差别在暴涨时被放大了。在暴涨时期结束之后,留下的宇宙是一些地方比另一些地方膨胀得稍快一些。在膨胀稍慢的区域,物质的引力吸引使膨胀进一步减慢。该区域最终会停止膨胀,并且收缩形成星系和恒星。这样,无边界设想可以解释我们四周看到的所有复杂结构。然而,它没有给宇宙作出单独的预言。相反地,它预言整整一族可能的历史,每一个历史都具有自己的概率。也许可能有这样的历史,工党在上次英国竞选中取胜,虽然这种概率很小。

无边界设想对于上商在宇宙事务中的作用含义极其深远。人们现在广泛接受,宇宙按照定义很好的定律演化。这些定律可能是上帝钦定的,但是它似乎不去干涉宇宙去违反这些定律。然而,直到不久以前,人们都认为这些定律不能适用于宇宙的开初。那就要依赖上帝去旋紧发条,并让宇宙顺着它的意愿的方式去运行。这样,宇宙的现状是上帝对初始条件选择的结果。

然而,如果某种像无边界设想的东西是正确的话,则情况就会大大改观。在那种情形下,物理定律甚至也适用于宇宙的开端,这样上帝就没有选取初始条件的自由。当然它在选取宇宙要服从的定律上仍然具有自由。然而,这里并没有许多选择的余地。也许只存在很少数目的定律,这些定律是自洽的,并能导致像我们自己这么复杂的生物的存在,他能询问什么是上帝的性质。

甚至即使只存在唯一的一族可能的定律,它也只不过是一族方程。究竟是什么东西将生命之火赋予这些方程,使之产生一个受它们制约的宇宙呢?难道终结的统一理论是如此之咄咄逼人,以至于其自身的实现成为不可避免?虽然科学能解决宇宙如何启始的课题,它仍然无法回答这个问题:为何宇宙必须存在?我对此没有答案。

稿源: 科技之光 编辑: 李强


宇宙起源于多少年
现代物理宇宙学一般认为宇宙起源于大爆炸,即“宇宙大爆炸理论”。这个理论认为,宇宙是在约137.3亿(±1%)年前由一个密度极大,温度极高的状态膨胀而来。最新的观察数据显示宇宙起源于138.2亿年前。其实,宇宙是诞生于137亿年前,还是138亿年前,对于宇宙的现状和人类的产生都没有多大区别。

宇宙到底是怎么形成的
宙是怎样产生 对于宇宙的起源目前科学家比较认同宇宙大爆炸理论. 宇宙所有的物质,空间,时间都是大爆炸后形成的,随着爱因斯坦的著名质能方程式E=mc2最终得以确证,也就是说能量在一定的条件下也可以转化成物质。根据质量方程推断:用适当的方用法使物体释放能量,就会减小它的静质量。甚至可以用适当的方法将物体内部所含有...

宇宙的起源
宇宙和阴沌,一如阳极与阴极,对立而统一,均同生同亡;两者的合体,是为沌宙。 宇宙衍生后,所蕴含的道能将逐渐消减,最终尽数归于阴沌。 当所蕴含的道能全部归终时,宇宙便衍化为阴极;同时,来源于阳极的全部道能,皆被阴沌接纳,后者便衍化为阳极——此即阴阳互化,有无相生。 八 完成相互转化的同时,阴阳两极...

宇宙的起源?
假设宇宙在时间上没有起源,即过去一直存在,那么宇宙的年龄就是无穷大了。无穷大这个概念,一听就让人头昏脑胀:既然是已经过去了无穷久的时间,我们的“现在”又是什么呢?而如果说宇宙是有起始的,那么它就是从“无”中突然产生的了,这最初的一刹那,又是怎样呢? 凭着人类在短暂的生命中获得的常识,实在是很难想...

宙斯的来历
他的妻子瑞亚因为不忍心宙斯也被吞进肚子,于是拿了块石头假装宙斯给他吞下。宙斯长大后,联合兄弟姐妹一起对抗父亲,展开了激烈的斗争。经过十年战争,在祖母大地女神盖亚的帮助下战胜了父亲。宙斯和他的兄弟波塞冬和哈底斯分管天界、海界、冥界。从此宙斯成为掌管宇宙的统治者。木星的拉丁名起源于他。而...

宇宙起源于什么?
宇宙起源的问题有点像这个古老的问题:是先有鸡呢,还是先有蛋。换句话说,就是何物创生宇宙,又是何物创生该物呢?也许宇宙,或者创生它的东西已经存在了无限久的时间,并不需要被创生。直到不久之前,科学家们还一直试图回避这样的问题,觉得它们与其说是属于科学,不如说是属于形而上学或宗教的问题,然而,人们在过...

宇宙是什么时间诞生的?
宇宙在什么时候诞生的?

宇宙是怎样形成的?
当代关于太阳系起源学说认为,太阳系很可能是50亿年前银河系中的一团尘埃气体云(原始太阳星云)由于引力收缩而逐渐形成的(见太阳系起源)。恒星是由星云产生的,它的一生经历了引力收缩阶段、主序阶段、红巨星阶段、晚期阶段和临终阶段。星系的起源和宇宙起源密切相关,流行的看法是:在宇宙发生热大爆炸后40万年,温度降...

宇宙是怎么形成的?
宇宙是由大约137亿年前发生的一次大爆炸形成的。宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大,瞬间产生巨大压力,之后发生了大爆炸,这次大爆炸的反应原理被物理学家们称为量子物理。大爆炸使物质四散出去,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙...

宇宙诞生
当代关于太阳系起源学说认为,太阳系很可能是50亿年前银河系中的一团尘埃气体云(原始太阳星云)由于引力收缩而逐渐形成的(见太阳系起源)。恒星是由星云产生的,它的一生经历了引力收缩阶段、主序阶段、红巨星阶段、晚期阶段和临终阶段。星系的起源和宇宙起源密切相关,流行的看法是:在宇宙发生热大爆炸后40万年,温度降...

隆尧县19363738612: 宇宙的起源 - 搜狗百科
水向乳酸:[答案] 宇宙形成之前是引力奇点,奇点是一个密度无限大、时空曲率无限高、热量无限高、体积无限小的“点”,一切已知物理定律均在奇点失效.在奇点脱离极限扩张以前,所有的状态对于现存世界没有影响,我们不可能从现在状态推导...

隆尧县19363738612: 宇宙的起源 -
水向乳酸: 中国关于宇宙起源的传说宇宙是如何起源的,这是人类一直探索的奥妙.在很久以前,就有盘古开天辟地的神话传说.1、开天辟地的盘古相传,天地本来是黑暗混沌的一团,好象一个大鸡蛋.盘古就孕育在中间,过了一万八千年,突然山崩...

隆尧县19363738612: 宇宙是什么?宇宙的起源是怎样的 -
水向乳酸:[答案] 宇宙的始源,源自天体中一个小小的火星团,这是天体内自然产生的火星团,由于历史性地自我运动,不断地在太空中收集好的、坏的尘埃,也就是不分好坏全都接收进来;在这个滚雪球式的运动过程中,慢慢地自然形成了一个若大的独立天体,...

隆尧县19363738612: 请问宇宙的起源是什么? -
水向乳酸:[答案] 有很多假说,其中最权威的是宇宙大爆炸论

隆尧县19363738612: 宇宙是怎么诞生的? -
水向乳酸: 其实我们的宇宙并不是从来就有的,它也有着诞生和成长的过程.现代科学发现,我们的宇宙大约形成于150亿年之前.当时,宇宙中所有的东西全都集中在同一个高温、高密度的点上.突然,宇宙发生了一次大爆炸.几分钟内,宇宙开始由一个点不断地向四面八方膨胀,于是出现了宇宙的基本物质.这些物质逐渐聚集,在经历了亿万年的时间之后,形成了巨大的天体——星系、银河系、太阳系、行星等.它们和宇宙空间共同形成了我们今天所看到的星空世界.

隆尧县19363738612: 宇宙的起源是什么? -
水向乳酸: [b]宇宙起源之迷[/b] 英国科学家斯蒂芬.霍金提出的"宇宙大爆炸论"认为:宇宙起源于150-180亿年以前的一次大爆炸,起初,宇宙中的所有物质都密集在某一基点,大爆炸发生后,宇宙无限膨胀,温度高达150亿度,宇宙中只有中子,电子,...

隆尧县19363738612: 宇宙的起源?宇宙的起源是什么呢? -
水向乳酸:[答案] 宇宙大爆炸理论是现代宇宙学的一个主要流派,它能较满意地解释宇宙学的一些根本问题.宇宙大爆炸理论虽然在20世纪40... 并开始科学地探讨宇宙的起源,20世纪初期,科学家提出了“宇宙大爆炸理论”. 提出并完善这一理论的代表人物是伽莫夫...

隆尧县19363738612: 宇宙是怎样诞生的? -
水向乳酸: 宇宙的最初源头是一个奇点,即所谓的“宇宙蛋”,它凝聚了所有的时空质能,孕育着未来物质世界的一切,包括天体和生命.大约150亿年以前,宇宙蛋在一场无与伦比的大爆炸中猝然爆发.大爆炸震撼出时空,物质世界破壳面出,宇宙史的...

隆尧县19363738612: 宇宙是一个______的天体结构系统.关于宇宙的起源,宇宙科学家都认定:宇宙诞生于距今约137亿年的一次______. -
水向乳酸:[答案] 宇宙也是物质构成的,宇宙是一个有层次的天体系统,大多数科学家认为宇宙起源于距今约137亿年前的一次大爆炸. 故答案为:有层次;大爆炸.

你可能想看的相关专题

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网