帮我讲讲明白 燃烧电池(高二) 讲得好另有给分!

作者&投稿:中瑞 (若有异议请与网页底部的电邮联系)
电池史话(谁讲得好给谁分)~

不管制造这个粘土瓶的祖先是否知道有关静电的事情,但可以确定的是古希腊人绝对知道。他们晓得如果磨擦一块琥珀,就能吸引轻的物体。亚里斯多德(Aristotle)也知道有磁石这种东西,它是一种具有犟大磁力能吸引铁和金属的矿石。

1780年的一天,意大利解剖学家伽伐尼在做青蛙解剖时,两手分别拿着不同的金属器械,无意中同时碰在青蛙的大腿上,青蛙腿部的肌肉立刻抽搐了一下,仿佛受到电流的刺激,而只用一种金属器械去触动青蛙,却并无此种反就。伽伐尼认为,出现这种现象是因为动物躯体内部产生的一种电,他称之为 “生物电”。伽伐尼于1791年将此实验结果写成论文,公布于学术界。

伽伐尼的发现引起了物理学家们极大兴趣,他们竞相重复枷伐尼的实验,企图找到一种产生电流的方法,意大利物理学家伏特在多次实验后认为:伽伐尼的 “生物电”之说并不正确,青蛙的肌肉之所以能产生电流,大概是肌肉中某种液体在起作用。为了论证自己的观点,伏特把两种不同的金属片浸在各种溶液中进行试验。结果发现,这两种金属片中,只要有一种与溶液发生了化学反应,金属片之间就能够产生电流。

1799年,伏特把一块锌板和一块银板浸在盐水里,发现连接两块金属的导线中有电流通过。于是,他就把许多锌片与银片之间垫上浸透盐水的绒布或纸片,平叠起来。用手触摸两端时,会感到强烈的电流刺激。伏特用这种方法成功的制成了世界上第一个电池—— “伏特电堆”。这个“伏特电堆”实际上就是串联的电池组。它成为早期电学实验,电报机的电力来源。

意大利物理学家伏打就多次重复了伽伐尼的实验。作为物理学家,他的注意点主要集中在那两根金属上,而不在青蛙的神经上。对于伽伐尼发现的蛙腿抽搐的现象,他想这可能与电有关,但是他认为青蛙的肌肉和神经中是不存在电的,他推想电的流动可能是由两种不同的金属相互接触产生的,与金属是否接触活动的或死的动物无关。实验证明,只要在两种金属片中间隔以用盐水或碱水浸过的(甚至只要是湿和)硬纸、麻布、皮革或其它海绵状的东西(他认为这是使实验成功所必须的),并用金属线把两个金属片连接起来,不管有没有青蛙的肌肉,都会有电流通过。这就说明电并不是从蛙的组织中产生的,蛙腿的作用只不过相当于一个非常灵敏的验电器而已。

1836年,英国的丹尼尔对 “伏打电堆”进行了改良。他使用稀硫酸作电解液,解决了电池极化问题,制造出第一个不极化,能保持平衡电流的锌—铜电池,又称“丹尼尔电池”。此后,又陆续有去极化效果更好的 “本生电池”和 “格罗夫电池”等问世。但是,这些电池都存在电压随使用时间延长而下降的问题。

1860年,法国的普朗泰发明出用铅做电极的电池。这种电池的独特之处是,当电池使用一段使电压下降时,可以给它通以反向电流,使电池电压回升。因为这种电池能充电,可以反复使用,所以称它为“ 蓄电池”。

然而,无论哪种电池都需在两个金属板之间灌装液体,因此搬运很不方便,特别是蓄电池所用液体是硫酸,在挪动时很危险。

1887年,英国人赫勒森发明了最早的干电池。干电池的电解液为糊状,不会溢漏,便于携带,因此获得了广泛应用。

将化学能、光能、热能、核能等直接转换为电能的装置。有化学电池、太阳电池、温差电池、核电池等。通常所说的电池指化学电池。

电池的性能参数主要有电动势 、容量、比能量和电阻。电动势等于单位正电荷由负极通过电池内部移到正极时,电池非静电力(化学力)所做的功。电动势取决于电极材料的化学性质,与电池的大小无关。电池所能输出的总电荷量为电池的容量 ,通常用安培小时作单位。在电池反应中,1千克反应物质所产生的电能称为电池的理论比能量。电池的实际比能量要比理论比能量小。因为电池中的反应物并不全按电池反应进行,同时电池内阻也要引起电动势降,因此常把比能量高的电池称做高能电池。电池的面积越大,其内阻越小 。

电池的种类很多,常用电池主要是干电池、蓄电池,以及体积小的微型电池 。此外,还有金属-空气电池、燃料电池以及其他能量转换电池如太阳电池、温差电池、核电池等。

干电池 一种使用最广泛的化学电池。1865年法国人勒克朗谢在伏打电池的基础上研制了一种碳/二氧化锰/氯化铵溶液/锌体系的湿电池。经发展,干电池有 100余种。除了锌 - 锰干电池外,还有镁 -锰干电池、锌 - 氧化汞干电池、锌-氧化银干电池等 。由于干电池的氧化和还原反应的可逆性很差,用完后一般不能用充电方法使正、负极活性物质恢复到原来状态,因此干电池又称为一次电池。最常用的干电池是锌-锰干电池,有糊式、纸板式、碱式和叠层式几种。

糊式锌-锰干电池 由锌筒 、电糊层、二氧化锰正极 、炭棒、铜帽等组成。最外面的一层是锌筒,它既是电池的负

极又兼作容器,在放电过程中它要被逐渐溶解;中央是一根起集流作用的碳棒;紧紧环绕着这根碳棒的是一种由深褐色的或黑色的二氧化锰粉与一种导电材料(石墨或乙炔黑)所构成的混合物,它与碳棒一起构成了电池的正极体,也叫炭包。为避免水分的蒸发,干电池的上部用石蜡或沥青密封 。锌-锰干电池工作时的电极反应为锌极:Zn→Zn2++2e

碳极:

纸板式锌-锰干电池 在糊式锌-锰干电池的基础上改进而成。它以厚度为 70~100微米的不含金属杂质的优质牛皮纸为基,用调好的糊状物涂敷其表面,再经过烘干制成纸板,以代替糊式锌-锰干电池中的糊状电解质层。纸板式锌-锰干电池的实际放电容量比普通的糊式锌 -锰干电池要高出2~3倍。标有“高性能”字样的干电池绝大部分为纸板式。

碱性锌 -锰干电池 其电解质由汞齐化的锌粉、35%的氢氧化钾溶液再加上一些钠羧甲基纤维素经糊化而成 。由于氢氧化钾溶液的凝固点较低、内阻小 ,因此碱性锌 -锰干电池能在-20℃温度下工作,并能大电流放电。碱性锌 - 锰干电池可充放电循环40多次,但充电前不能进行深度放电(保留60%~70%的容量),并需严格控制充电电流和充电期终的电压。

叠层式锌-锰干电池 由几个结构紧凑的扁平形单体电池叠在一起构成。每一个单体电池均由塑料外壳、锌皮、导电膜以及隔膜纸、炭饼(正极)组成。隔膜纸是一种吸有电解液的表面有淀粉层的浆层纸,它贴在锌皮的上面;隔膜纸上面是炭饼。隔膜纸如同糊式干电池的电糊层,起隔离锌皮负极和炭饼正极的作用。叠层式锌 - 锰干电池减去了圆筒形糊式干电池串联组合的麻烦,其结构紧凑、体积小、体积比容量大,但贮存寿命短且内阻较大,因而放电电流不宜过大。

蓄电池 通过充电将电能转变为化学能贮存起来,使用时再将化学能转变为电能释放出来的一种化学电池。其转变的过程是可逆的。当蓄电池已完全放电或部分放电后,两电极板表面形成新的化合物,这时若用适当的反向电流通入蓄电池,就可以使在放电过程中形成的化合物还原为原先的活性物质,供下次放电再用,此过程叫充电,即将电能以化学能的形式贮存在蓄电池中。电池接通负载供给外电路电流的过程叫放电 。 蓄电池的充电和放电过程可以重复循环多次,故蓄电池又称为二次电池 。 按所使用的电解质溶液的不同,蓄电池分为酸性和碱性两大类。按正负极板所使用的活性物质材料又有铅蓄电池、镉镍、铁镍、银锌、镉银蓄电池等几种。铅蓄电池为酸性电池,后四种为碱性电池。

铅蓄电池 由正极板群、负极板群、电解液和容器等组成。充电后的正极板是棕褐色的二氧化铅(PbO2),负极板

是灰色的绒状铅(Pb),当两极板放置在浓度为27%~37%的硫酸( H2SO4 )水溶液中时 ,极板的铅和硫酸发生化学反应,二价的铅正离子( Pb2+)转移到电解液中,在负极板上留下两个电子( 2e- )。由于正负电荷的引力,铅正离子聚集在负

极板的周围,而正极板在电解液中水分子作用下有少量的二氧化铅( PbO2 )渗入电解液,其中两价的氧离子和水化合,使二氧化铅分子变成可离解的一种不稳定的物质——氢氧化铅〔Pb(OH4〕。氢氧化铅由4价的铅正离子(Pb4+)和4个氢氧根〔4(OH)-〕组成。4价的铅正离子(Pb4+)留在正极板上,使正极板带正电。由于负极板带负电,因而两极板间就产生了一定的电位差,这就是电池的电动势。当接通外电路,电流即由正极流向负极。在放电过程中,负极板上的电子不断经外电路流向正极板,这时在电解液内部因硫酸分子电离成氢正离子(H+)和硫酸根负离子(SO42-),在离子电场力作用下,两种离子分别向正负极移动,硫酸根负离子到达负极板后与铅正离子结合成硫酸铅( PbSO2 )。在正极板上,由于电子自外电路流入,而与4价的铅正离子(Pb4+)化合成 2价的铅正离子( Pb2+),并立即与正极板附近的硫酸根负离子结合成硫酸铅附着在正极上。铅蓄电池正、负极板在放电过程中的化学反应为

随着蓄电池的放电,正负极板都受到硫化,同时电解液中的硫酸逐渐减少,而水分增多,从而导致电解液的比重下降在实际使用中,可以通过测定电解液的比重来确定蓄电池的放电程度。在正常使用情况下,铅蓄电池不宜放电过度,否则将使和活性物质混在一起的细小硫酸铅晶体结成较大的体,这不仅增加了极板的电阻,而且在充电时很难使它再还原,直接影响蓄池的容量和寿命。铅蓄电池充电是放电的逆过程。充电时总的化学反应为

铅蓄电池的工作电压平稳、使用温度及使用电流范围宽、能充放电数百个循环 、贮存性能好 ( 尤其适于干式荷电贮

存)、造价较低,因而应用广泛。采用新型铅合金,可改进铅蓄电池的性能。如用铅钙合金作板栅,能保证铅蓄电池最

小的浮充电流、减少添水量和延长其使用寿命;采用铅锂合金铸造正板栅 ,则可减少自放电和满足密封的需要 。此外,

开口式铅蓄电池要逐步改为密封式,并发展防酸、防爆式和消氢式铅蓄电池。

碱性蓄电池 与同容量的铅蓄电池相比,其体积小,寿命长,能大电流放电,但成本较高。碱性蓄电池按极板活性

材料分为铁镍、镉镍、锌银蓄电池等系列。以镉镍蓄电池为例,碱性蓄电池的工作原理是:蓄电池极板的活性物质在充

电后,正极板为氢氧化镍〔 Ni(OH)3 〕,负极板为金属镉( Cd );而 放 电 终 止时,正极 板转 变为 氢 氧化 亚镍〔 Ni(OH2)〕, 负极板转 变 为氢 氧 化镉〔Cd (OH) 2〕,电解液多选用氢氧化钾( KOH)溶液。在充放电过程中总的化

由充放电过程中的化学反应可知,电解液仅作为电流的载体而浓度并不发生变化,因而只能根据电压的变化来判断

充放电的程度。镉镍密封蓄电池在充电过程中,正极析出氧气,负极析出氢气。由于镉镍密封蓄电池在制造时负极物质是过的,这就避免了氢气的发生;而在正极上产生的氧气,由于电化学作用被负极吸收,因此防止了气体在蓄电池内部集聚,从而保证了蓄电池在密封条件下正常工作。镉镍蓄电池已有了几十年的历史,最初用作牵引、起动、照明及信号电源,现代用作内燃机车、飞机的起动及点火电源。60年代制成的密封式电池则用作人造卫星、携带式电动工具、应急装备的电源。镉镍蓄电池改进的方向之一是采用双极性结构,这种结构的内阻很小,适用于脉冲大电流放电,能满足大功率设备的供电需要;此外,电极采用压成式、烧结式和箔式。

金属-空气电池 以空气中的氧气作为正极活性物质,金属作为负极活性物质的一种高能电池。使用的金属一般是镁、

铝、锌、镉、铁等;电解质为水溶液。其中锌�空气电池已成为成熟的产品。

金属 -空气电池具有较高的比能量,这是因为空气不计算在电池的重量之内。锌�空气电池的比能量是现生产的电

池中最高的,已达 400瓦·小时/千克(Wh/kg),是一种高性能中功率电池,并正向高功率电池的方向发展。目前生产的金属-空气电池主要是一次电池;研制中的二次金属-空气 电 池 为 采 用 更 换 金 属 电 极的 机 械 再 充 电电池 。 由于金属 - 空 气电池工作时要不断地供应空气,因此它不能在密封状态或缺少空气的环境中工作。此外,电池中的电解质溶液

易受空气湿度的影响而使电池性能下降;空气中的氧会透过空气电极并扩散到金属电极上,形成腐蚀电池引起自放电 。

燃料电池 只要连续供应化学原料就能发生化学反应 ,而将化学能转变为电能的电解质电池。这些化学原料在电池内部(一种原料在正极而另一种在负极)发生反应时,必须防止它们直接反应,否则将产生化学短路,不能从反应中获得电能。适用于燃料电池的化学反应主要是燃烧反应,进入实用阶段的只有氢氧燃料电池。由于氢氧燃料电池要使用贵重金属铂作电极材料,成本过高,因此这种电池现在仅用作宇宙飞船的电源。燃料电池的转换效率高、比能高,工作时无噪声无污染,结构简单。

其他能量转换电池 主要有:①太阳电池。将太阳光的能量转换为光能的装置,由半导体制成。当太阳光照射电池表面时,半导体PN结的两侧形成电位差。其效率在10%以上。②温差电池。将两种金属接成闭合回路,并在两接头处保持不同温度时,回路中就会产生温差电动势,这种装置称作温差电偶 。将温差电偶串联成温差电堆时 ,即 构成 温 差电池。也可用半导体材料制成温差电池,其温差效应较强。③核电池。将核能直接转换成电能的装置称做核电池。通常由辐射β射线(高速电子流)的放射性源、收集这些电子的集电器以及绝缘体 3 部分组成。放射性源一端因失去负电而成为正极,集电器一端得到负电成为负极,两电极间形成电位差。这种核电池电压高,但电流小。

●现今的各种电池

1.化学电池

化学电池,是指通过电化学反应,把正极、负极活性物质的化学能,转化为电能的一类装置。经过长期的研究、发展,化学电池迎来了品种繁多,应用广泛的局面。大到一座建筑方能容纳得下的巨大装置,小到以毫米计的品种。无时无刻不在为我们的美好生活服务。现代电子技术的发展,对化学电池提出了很高的要求。每一次化学电池技术的突破,都带来了电子设备革命性的发展。现代社会的人们,每天的日常生活中,越来越离不开化学电池了。现在世界上很多电化学科学家,把兴趣集中在做为电动汽车动力的化学电池领域。

2.干电池和液体电池

干电池和液体电池的区分仅限于早期电池发展的那段时期。最早的电池由装满电解液的玻璃容器和两个电极组成。后来推出了以糊状电解液为基础的电池,也称做干电池。

现在仍然有“液体”电池。一般是体积非常庞大的品种。如那些做为不间断电源的大型固定型铅酸蓄电池或与太阳能电池配套使用的铅酸蓄电池。对于移动设备,有些使用的是全密封,免维护的铅酸蓄电池,这类电池已经成功使用了许多年,其中的电解液硫酸是由硅凝胶固定或被玻璃纤维隔板吸付的。

3.一次性电池和可充电电池

一次性电池俗称“用完即弃”电池,因为它们的电量耗尽后,无法再充电使用,只能丢弃。常见的一次性电池包括碱锰电池、锌锰电池、锂电池、银锌电池、锌空电池、锌汞电池和镁锰电池。

可充电电池按制作材料和工艺上的不同,常见的有铅酸电池、镍镉电池、镍铁电池、镍氢电池、锂离子电池。其优点是循环寿命长,它们可全充放电200多次,有些可充电电池的负荷力要比大部分一次性电池高。普通镍镉、镍氢电池使用中,特有的记忆效应,造成使用上的不便,常常引起提前失效。

4.燃料电池

燃料电池是一种将燃料的化学能透过电化学反应直接转化成电能的装置

5.染料敏化太阳能电池电池

●电池的安全性测试项目有哪些?

内部短路测试

持续充电测试

过充电

大电流充电

强迫放电

坠落测试

从高处坠落测试

穿透实验

平面压碎实验

切割实验

低气压内搁置测试

热虐实验

浸水实验

灼烧实验

高压实验

烘烤实验

电子炉实

一般分为:1、2、3、5、7号,其中5号和7号尤为常用,所谓的AA电池就是5号电池,而AAA电池就是7号电池!AA、AAA都是说明电池型号的。

例如:

AA就是我们通常所说的5号电池,一般尺寸为:直径14mm,高度49mm;

AAA就是我们通常所说的7号电池,一般尺寸为:直径11mm,高度44mm。

以下是来自本站:镍氢电池论坛网友补充

另附电池知识若干:

说说常见的“AAAA,AAA,AA,A,SC,C,D,N,F”这些型号

AAAA型号少见,一次性的AAAA劲量碱性电池偶尔还能见到,一般是电脑笔里面用的。标准的AAAA(平头)电池高度41.5±0.5mm,直径8.1±0.2mm。

AAA型号电池就比较常见,一般的MP3用的都是AAA电池,标准的AAA(平头)电池高度43.6±0.5mm,直径10.1±0.2mm。

AA型号电池就更是人尽皆知,数码相机,电动玩具都少不了AA电池,标准的AA(平头)电池高度48.0±0.5mm,直径14.1±0.2mm。

只有一个A表示型号的电池不常见,这一系列通常作电池组里面的电池芯,我经常给别人换老摄像机的镍镉,镍氢电池,几乎都是4/5A,或者4/5SC的电池芯。标准的A(平头)电池高度49.0±0.5mm,直径16.8±0.2mm。

SC型号也不常见,一般是电池组里面的电池芯,多在电动工具和摄像机以及进口设备上能见到,标准的SC(平头)电池高度42.0±0.5mm,直径22.1±0.2mm。

C型号也就是二号电池,用途不少,标准的C(平头)电池高度49.5±0.5mm,直径25.3±0.2mm。

D型号就是一号电池,用途广泛,民用,军工,特异型直流电源都能找到D型电池,标准的D(平头)电池高度59.0±0.5mm,直径32.3±0.2mm。

N型号不常见,我还不知道啥东西里面用,标准的N(平头)电池高度28.5±0.5mm,直径11.7±0.2mm。

F型号电池,现在是电动助力车,动力电池的新一代产品,大有取代铅酸免维护蓄电池的趋势,一般都是作电池芯(个人见解:其实个太大,不好单独使用,呵呵)。标准的N(平头)电池高度89.0±0.5mm,直径32.3±0.2mm。

大家注意到,(平头)字样,指的是电池正极是平的,没有突起,使用做电池组点焊使用的电池芯,一般同等型号尖头的(可以用作单体电池供电的),在高度上就多了0.5mm。以此类推,我不逐一解释。还有,电池很多的时候并不是规规矩矩的“AAA,AA,A,SC,C,D,N,F”这些主型号,前面还时常有分数“1/3,2/3,1/2,2/3,4/5,5/4,7/5”,这些分数表示的是池体相应的高度,例如“2/3AA”就是表示高是一般AA电池的2/3的充电电池;再如“4/5A”就是表示高是一般A电池的4/5的充电电池。

还有一种型号表示方法,是五位数字,例如,14500,17490,26500,前两位数字是指池体直径,后三位数字是指池体高,例如14500就是指AA电池,即大约14mm直径,50mm高

电解是由电能转换至化学能源!电池是由化学能源转换至电能!
这是英语解释
电解=electrical
energy→chemical
energy
电池=chemical
energy→electrical
energy

氢氧燃料电池

hydrogen oxygen fuel cell

以氢气作燃料,氧气作氧化剂,通过燃料的燃烧反应,将化学能转变为电能的电池。

氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。当使用氢化钾溶液作电解质时,在氢电极上的反应为

在氧电极上的反应为

若不考虑中性水中存在的低浓度的离子,那么总的反应就可以用燃烧反应来表示:

氢氧燃料电池的关键是电极结构和排除反应过程中生成水的辅助设备。电极结构问题主要是选择一种合适的催化剂,以使氢成为水合质子和氧成为氢氧根离子的反应能在尽可能低的过电位下有效地进行。已采用的电极材料可分为以金属为基底和以碳为基底两类。不论选择何种材料和结构形式,电极中细孔的大小及其分布是很重要的。在这些细孔里,必须建立电极材料、气体、电解液三者之间的三相界面,既不允许这些细孔被气体“充斥”,也不允许被电解液“淹没”。

氢氧燃料电池将化学能连续地转变为电能的效率比普通火电站经由一般的燃烧反应产生热能,再将生成的热能转变为电能的效率高得多。这是由于热机的效率在理论上不能超过卡诺机的效率,式中T1为高温热源的温度,在普通火电厂,T1即为锅炉中蒸汽温度;T2为低温热源的温度,即为汽轮机排出的废汽的温度。由于摩擦和热损失,热机的效率实际上远小于这一极限效率。氢氧燃料电池几乎是在等温条件下工作的,不存在化学能转变为热能的中间过程,因而它的效率不受卡诺机热效率的限制,在理论上它可以达到100%的效率。

氢氧燃料电池结构简单、转换效率高、比能高、工作时无噪声、无污染、有很强的过载能力,特别是其重量功率比随时间的增加比一般二次电池慢得多,故很适于作宇宙飞船的电源。但由于它的电极材料必须使用对氢和氧气具有很高的电催化活性的金属铂、钯、镍、银,因此氢氧燃料电池的制造成本较高。

早在1839年,英国人W.Grove就提出了氢和氧反应可以发电的原理,这就是最早的氢-氧燃料电池(FC)。但直到20世纪60年代初,由于航天和国防的需要,才开发了液氢和液氧的小型燃料电池,应用于空间飞行和潜水艇。近二三十年来,由于一次能源的匮乏和环境保护的突出,要求开发利用新的清洁再生能源。燃料电池由于具有能量转换效率高、对环境污染小等优点而受到世界各国的普遍重视。美国矿物能源部长助理克.西格尔说:“燃料电池技术在21世纪上半叶在技术上的冲击影响,会类似于20世纪上半叶内燃机所起的作用。”福特汽车公司主管PNGV经理鲍伯.默尔称,燃料电池必会给汽车动力带来一场革命,燃料电池是唯一同时兼备无污染、高效率、适用广、无噪声和具有连续工作和积木化的动力装置。预期燃料电池会在国防和民用的电力、汽车、通信等多领域发挥重要作用。美国Arthur D.Little公司最新估计,2000年燃料电池在能源系统市场将提供1 500~2 000MW动力,价值超过30亿美元,车辆市场将超过20亿美元;2007年燃料电池在运输方面的商业价值将达到90亿美元。

燃料电池的原理
燃料电池是一个电化学系统。它将化学能直接转化为电能且废物排放量很低。燃料电池由3个主要部分组成:电能且废物排放量很低。燃料电池由3个主要部分组成:
燃料电极(正极)
电解液
空气/氧气电极(负极)
其工作原理是:从正极处的氢气中抽取电子(氢气被电化

学氧化掉,或称“燃烧掉了”)。这些负电子流到导电的正极,同时,余下的正原子(氢离子)通过电解液被送到负极。
在负极,离于与氧气发生反应并从负极吸收电子。这一反应的产品是电流、热量和水。图1给出了质子交换膜燃料电池(PEMFC)的功能图。图之给出的是典型的PEMFC的结构。
由于燃料电池不会燃烧出火焰,也没有旋转发电机,所以燃料的化学能直接转化为电能。这一过程具有许多重要的优点:
这一过程的电效率比任何其它形式的发电技术的电效率都高。
废气如SO2,NOx和CO的排放量极低。
由于燃料电池中无运动部件,燃料电池工作时很安静且无机械磨损。
电与热量可结合起来用(热电联产厂)。
燃料电池的工作特性可满足各种负荷水平要求。

燃料电池的类型
目前,有5种已知的燃料电池类型。其名称与采用的相应的电解质有关。
(1)碱性燃料电池(AFC)——采用氢氧化钾溶液作为电解液。
这种电解液效率很高(可达60一90%),但对影响纯度的杂质,如二氧化碳很敏感。因而运行中需采用纯态氢气和氧气。这一点限制了将其应用于宇宙飞行及国际工程等领域。

(2)质子交换膜燃料电池(PEMFC)采用极薄的塑料薄膜作为其电解质。这种电解质具有高功率一重量比和低工作温度。是适用于固定和移动装置的理想材料。
(3)磷酸燃料电池(PAFC)采用200℃高温下的磷酸作为其电解质。很适合用于分散式的热电联产系统。
(4)熔融碳酸燃料电池(MCFC)的工作温度可达650℃。这种电池的效率很高,但材料需求的要求也高。
(5)固志氧燃料电池(SOFC)采用的是固态电解质(钻
石氧化物),性能很好。他们需要采用相应的材料和过程处
理技术,因为电池的工作温度约为1000℃。

燃料电池的应用
将来,在固定和移动式发电厂中采用燃料电池可以使对环境的污染减少到现有技术还不能达到的水平。这可用
于依赖常规能源的系统,这些常规能源包括石油、柴油甲醇或天然气等。汽车工业己选择了燃料电池作为未来的动
力来源以满足减少废气排放的要求。PEMFC采用了适当的技术规范,用在移动和固定式发电、动力系统都很合适。
热电联产系统(CHP)或热电联产电厂是为需要电力以及供热或制冷的用户而设计的。根据电厂和燃料的类型,
CHP的电效率约为35%。 CHP电厂的能源转换是一个四级过程,在此,燃料的化学能通过热能及机械能处理过程转
换为电能。燃料电池采用的是“冷燃烧”过程,直接式能量转换器将燃料电池的化学能转化为电与热。
市场研究表明对分散式发电的最大需求预计是在100到150kW的范围之间。在这个范围内,燃料电池提供了
最大的效率收益,电效率可高达40% ;通过对热量输出的利用,单机效率可超过80%。此外,燃料电池具有出色的部分负荷特性、可靠性和静音无振动运行的方式,从环境角度来说是可接受的。用于PEMFC的天然气的碳含量很低,从而使二氧化碳排放量大大地减少了。
展望燃料电池的未来
燃料电池可在一秒钟之内迅速提供满负荷动力,并可承受短时过负荷(几秒钟)。其特性很适合作为备用电源
或安全保证电源。为实现这些动态特性,在供电侧必须有独立的氢气来源。除了将PEMFC用于空间飞行,移动式
和固定式设备外,开发小型化的PEMFC系统的工作也正在开展,作为便携式电源系统用于笔记本电脑和摄象机等
装置。
许多美国厂家都有采用PEMFC(<10 kW)的国内示范项目。更广泛的应用只有当电池组成本大大下降之后才有
可能。因为在这一应用中, PEM技术直接与常规的锅炉在产生热量方面进行竞争。在不同领域进行的大量研究对
PEMFC的发展很有利,而且对其具有正面的、长期的影响,并可进一步加快PEMFC投入商业应用的进程。
开发可用于车辆的移动式PEMFC是发展这项技术的主要驱动力。通过在汽车工业大量使用PEMFC而带来预
期的成本下降,将使固定式发电受益非浅,反之亦然。这些专门的应用领域意味着PEMFC技术是今后几年中可获
得突破的几项未来技术中的一项,而且不需要耗费大量的政府投资。

燃料电池是一种化学电池,它利用物质发生化学反应时释出的能量,直接将其变换为电能。从这一点看,它和其他化学电池如锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给反应物质——燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。
具体地说,燃料电池是利用水的电解的逆反应的"发电机"。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,现在正发展为直接使用固体的电解质。
工作时向负极供给燃料(氢),向正极供给氧化剂(空气)。氢在负极分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。
利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种"发电机"。
一般来讲,书写燃料电池的化学反应方程式,需要高度注意电解质的酸碱性。 在正、负极上发生的电极反应不是孤立的,它往往与电解质溶液紧密联系。如氢—氧燃料电池有酸式和碱式两种,在酸溶液中负极反应式为:2H2-4e-==4H+ 正极反应式为:O2+4H++4e-==2H2O;如是在碱溶液中,则不可能有H+出现,在酸溶液中,也不可能出现OH-。

种类很多,我想你的困难是不会立即判断电极反应的书写吧。
几条规律:
1、总反应一定是一个燃烧反应,如2CH3OH+3O2=2CO2+4H2O
2、可燃物一定是负极,失电子;助燃物一定是正极,得电子。直接用方程式的系数配平,可以先确定容易的一方,则电子守恒,另一方一定数目相等。如上述反应,甲醇的计算太烦,但3O2一定得到12e,就可以了。
正极:3O2+12e----
负极:2CH3OH-12e----
3、看溶液的酸碱性,若酸性,则配平时只能用H+平衡电荷,若碱性则只能用OH-平衡电荷,左右都要电荷守恒,还要质量守恒,用水来平衡。
所以
酸性电池
总反应:2CH3OH+3O2=2CO2+4H2O
正极:3O2+12H+ +12e=6H2O
负极:2CH3OH+2H2O -12e=8CO2+12H+
碱性电池
总反应:2CH3OH+3O2=2CO2+4H2O
正极:6H2O+3O2+12e=12OH-
负极:2CH3OH+12OH- -12e=2CO2+10H2O
4、如果仍有困难,还可以记住正极和负极的反应相加,约掉电子得失,就是总反应。利用这条规律,知道了其中两个反应,就可以得到第三个,也很方便,也可以作为检验的方法。
5、最后,要注意,若是碱性溶液,产物CO2还会与OH-反应生成CO3^2-,所以也可以写成
碱性电池
总反应:2CH3OH+3O2+4OH-=2CO3^2-+6H2O
正极:6H2O+3O2+12e=12OH-
负极:2CH3OH+16OH- -12e=2CO3^2-+12H2O
所以楼上写的就有问题了

1.氢氧燃烧电池工作方式简单介绍
氢氧燃料电池
这是一种高效、低污染的新型电池,主要用于航天领域。其电极材料一般为活化电极,具有很强的催化活性,如铂电极、活性碳电极等。电解质溶液一般为40%的KOH溶液。电极反应式如下:
负极:2H2 + 4OH- -4e-=== 4H2O
正极:O2 + 2H2O + 4e-=== 4OH-
总反应式:2H2 + O2 === 2H2O
2氢氧燃料电池

hydrogen oxygen fuel cell

以氢气作燃料,氧气作氧化剂,通过燃料的燃烧反应,将化学能转变为电能的电池。

氢氧燃料电池工作时,向氢电极供应氢气,同时向氧电极供应氧气。氢、氧气在电极上的催化剂作用下,通过电解质生成水。这时在氢电极上有多余的电子而带负电,在氧电极上由于缺少电子而带正电。接通电路后,这一类似于燃烧的反应过程就能连续进行。当使用氢化钾溶液作电解质时,在氢电极上的反应为

在氧电极上的反应为

若不考虑中性水中存在的低浓度的离子,那么总的反应就可以用燃烧反应来表示:

氢氧燃料电池的关键是电极结构和排除反应过程中生成水的辅助设备。电极结构问题主要是选择一种合适的催化剂,以使氢成为水合质子和氧成为氢氧根离子的反应能在尽可能低的过电位下有效地进行。已采用的电极材料可分为以金属为基底和以碳为基底两类。不论选择何种材料和结构形式,电极中细孔的大小及其分布是很重要的。在这些细孔里,必须建立电极材料、气体、电解液三者之间的三相界面,既不允许这些细孔被气体“充斥”,也不允许被电解液“淹没”。

氢氧燃料电池将化学能连续地转变为电能的效率比普通火电站经由一般的燃烧反应产生热能,再将生成的热能转变为电能的效率高得多。这是由于热机的效率在理论上不能超过卡诺机的效率,式中T1为高温热源的温度,在普通火电厂,T1即为锅炉中蒸汽温度;T2为低温热源的温度,即为汽轮机排出的废汽的温度。由于摩擦和热损失,热机的效率实际上远小于这一极限效率。氢氧燃料电池几乎是在等温条件下工作的,不存在化学能转变为热能的中间过程,因而它的效率不受卡诺机热效率的限制,在理论上它可以达到100%的效率。

氢氧燃料电池结构简单、转换效率高、比能高、工作时无噪声、无污染、有很强的过载能力,特别是其重量功率比随时间的增加比一般二次电池慢得多,故很适于作宇宙飞船的电源。但由于它的电极材料必须使用对氢和氧气具有很高的电催化活性的金属铂、钯、镍、银,因此氢氧燃料电池的制造成本较高。

3

燃烧电池??燃料电池?Fuel Cell?

燃料电池,就目前而言,主要有酸性和碱性两大类,当然还有其他很多种类的.

但燃料电池都有着同等的原理和特性,都是利用某物质同某物质产生电化学而产生电能的过程,通常的燃料为氢和氧,当然也有甲烷和氧作原料的.

通过燃料到电解质到氧化剂的过程中,产生的反映产生电势.

至于酸碱性电池的区别,通常我们只需要简单的理解反映的不同就可以,不必要深入研究.

设反映物为CH3OH时

酸性电池
总反应:2CH3OH+3O2=2CO2+4H2O
正极:3O2+12H+ +12e=6H2O
负极:2CH3OH+2H2O -12e=8CO2+12H+
碱性电池
总反应:2CH3OH+3O2=2CO2+4H2O
正极:6H2O+3O2+12e=12OH-
负极:2CH3OH+12OH- -12e=2(CO3)2-+10H2O

当然,如果为其他物质,则相应修改上式


仁和区19342112281: 高二化学之燃料电池
闭肃富尔: 燃料电池和燃烧都是氧化还原反应;不同的是: 燃烧是氧化剂和还原剂直接接触发生的反应! 而燃料电池是在一定条件下,氧化剂和还原剂分别在正极和负极发生反应,就不需要点燃了;它发生的条件是另外的!!

仁和区19342112281: 高中化学 必修二 燃料电池 -
闭肃富尔: 燃料电池的反应实际上是最好书写的.首先,燃料电池,一定是利用燃烧的放热,转化成电能,总反应一定是一个燃烧反应.2H2 + O2 = 2H2O 可燃物,一定是失去电子,如,H2、CO、CH3CH2OH、CH3OH、Al等等---那就是负极 支持燃烧的...

仁和区19342112281: 高中化学燃料电池原理 -
闭肃富尔: 先写出总反应式:CH4+2O2+2OHˉ=CO32ˉ+3H2O,(1)负极:CH4-8e+10OHˉ=CO32ˉ(碳酸根)+7H2O(2)(1)-(2)得:正极:2O2+4H2O+8e=8OHˉ CH4失8电子变成CO32ˉ

仁和区19342112281: 什么是燃料电池? -
闭肃富尔: 燃料电池是将所供燃料的化学能直接变换为电能的一种能量转换装置,是通过连续供给燃料从而能连续获得电力的发电装置.由于其具有发电效率高,适应多种燃料和环境特性好等优点,近年来已在积极地进行开发.由于燃料电池能将燃料的...

仁和区19342112281: 高二化学的燃料电池
闭肃富尔: 原电池的正极发生还原反应,负极发生氧化反应.这里的甲烷燃料电池电极反应为:负极CH4+10OH--8e-==CO32-+7H2O,正极O2+2H2O+4e-==4OH-.其实,实质是CH4失电子氧化为CO2,由于电解质体系是碱性的,所以CO2与OH-反应变为CO32-,而反应式两边的OH-与H2O是为了两边元素守恒配上去的.其他的反应式可以类推,原理一样,但是要注意的是,写燃料电池的反应式一定要考虑电解质体系,是酸性还碱性,情况不一样.差不多就这样,希望对你有所帮助...

仁和区19342112281: 什么是燃料电池
闭肃富尔: 它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池. 水这种物质是由氢和氧原子构成的.有电通过时,水就会分解成氢和氧. 水+电→氢+氧 将它反过来看一看. 氢+氧→水+电 和刚才的公式相同.也就是说氢和氧结合就会形成水,同时会产生电来.其实,英国的一位名叫格罗贝的法官在1839年左右就已经发现这一原理.在伏打电池诞生不久,就已经发现燃料电池的原理,这真是一件了不起的事啊. 不过,氢这种元素非常难以控制.一不小心就可能发生爆炸.虽然明白了它的原理,但是要加以实用化非常困难,于是就一直拖到了现在.

仁和区19342112281: 燃烧电池是化学电池吗,一次电池,二次电池,铅酸蓄电池和燃烧电池都是化学电池吗? -
闭肃富尔:[答案] 燃烧电池是化学电池吗 是 铅酸蓄电池和燃烧电池都是化学电池吗? 是 一次电池,二次电池,这个就不能这么讲了.简单的来,化学电池分为一次电池,二次电池. 不能说一次电池,二次电池属于化学电池

仁和区19342112281: 燃料电池的工作原理 -
闭肃富尔: 当今能以工业规模生产的电力有火电、水电、核电等三种.而被誉为第四种电力的燃料电池发电,也正在美、日等发达国家崛起,以急起直追的势头快步进入能以工业规模发电的行列. 燃料电池的工作原理 燃料电池是一种化学电池,它利用物...

仁和区19342112281: 燃料电池是什么原理?
闭肃富尔: 首先要理解所有的氧化还原反应都会发生电子转移,如果让这些电子通过导线进行转移那么导线内就会产生电流.将还原剂(燃料)和氧化剂(氧气)分开通过电解质进行反应用导线将还原剂(负极)放出的电子转移到氧化剂(正极)那端,则导线中就产生了电流,, 因此从理论上来讲,所有的氧化还原反应都能被制成原电池. 因此从理论上来讲,所有的氧化还原反应都能被制成原电池.比如氢氧硫酸电池就是典型的燃料电池 正极:O2+4 H'+4 e'=2 H2O 负极:2 H2-4 e'=4 H' 总反应:2 H2+O2=2 H2O

仁和区19342112281: 什么叫燃烧电池汽车?为什么说燃烧电池汽车是一种环保汽车? -
闭肃富尔: 不是燃烧电池啦,是燃料电池哦,这是一钟环保的电池,是利用氢气和氧气或者酒精和氧气直接在电池内部进行氧化反应而产生电能的装置,不会产生汽油柴油车产生的氮氧化物,二氧化硫等废气,特别是氢燃料电池,只会产生水,对环境零污染,不过这类汽车成本非常高,现在还在试验之中呢,有些燃料电池用的电极是铂金,想想都知道多么贵了,燃料电池一般都是宇宙飞船等不计成本的地方才会采用的呢.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网