电脑电源问题~!

作者&投稿:真秦 (若有异议请与网页底部的电邮联系)
关于电脑电源问题。~

这个电源可以理解为290W的电源。
在此功率下使用是完全没问题的。
这个电源装gtx750ti,gtx1050ti都是完全么问题的。

不能光看看配置就乱想电脑需要多大的电源,要用数据说话!
我帮你算算电脑功率吧:
5200-90W
主板-20W
9600-95W
内存+硬盘-10W
光驱-20W
总共加起来235W,这个还是整机满载功耗啊,一般是达不到这么多的,况且光驱一般都是不用的吧,这个机器待机功耗估计在150左右
所以额定350W的电源是肯定没有问题的,如果是峰值功率,对于航嘉长城等电源来说那额定也在250以上,所以也绝对够得,即使是杂牌,功率一般来说也在额定180以上,所以不管怎么说带的动你的机器了,当然杂牌不稳定,最好换了

在给楼主一个计算电脑功率的网站http://www.belson.com.cn/pwcount/pwcount.asp

弄点资料给你看看你就明白了

二、PC电源的鼻祖—AT电源规范
AT电源属于PC电源的元老级人物,功率一般为150W~250W,共有四路输出(5V、12V)另向主板提供一个P.G(Power Good)信号。输出线为两个6芯插头和几个4芯的插头,两个6芯插座给主板供电。AT电源采用切断的方式关机,也就是“硬关机”。
在ATX电源未出现之前,从286到586计算机由AT电源一统江湖。目前AT电源已经退出了市场,即便是在旧电脑市场也已经很难看到其身影。
三、AT电源规格的进化—ATX电源规范
ATX规范是1995年Intel公司制定的新的主机板结构标准,是英文(AT Extend)的缩写,可以翻译为AT扩展标准,而ATX电源就是根据这一规格设计的电源。与AT电源相比,ATX电源外形尺寸并没有多大变化,其与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。ATX类电源总共有六路输出,分别是+5V、-5V、+12V、-12V、+3.3V及+5Vsb。
+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头9脚引出。PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4.6V各不相同。
ATX电源最主要的特点就是,它不采用传统的市电开关来控制电源是否工作,而是采用“+5VSB、PS-ON”的组合来实现电源的开启和关闭,只要控制“PS-ON”信号电平的变化,就能控制电源的开启和关闭。电源中的S-ON控制电路接受PS-ON 信号的控制,当“PS-ON”小于1V伏时开启电源,大于4.5伏时关闭电源。
主机箱面上的触发按钮开关(非锁定开关)控制主板的“电源监控部件”的输出状态,同时也可用程序来控制“电源监控件”的输出:比如在WIN XP平台下,发出关机指令,使“PS-ON”变为+5V,ATX电源就自动关闭。关机时PW-OK输出信号比ATX开关电源+5V输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘磁头来不及移至着陆区而划伤硬盘。
目前市场上的ATX电源,不管是品牌电源还是杂牌电源,从电路原理上来看,一般都是在AT电源的基础上做了适当的改动发展而来的,因此,我们买到的ATX电源,在电路原理上一般都大同小异。此发布以来,ATX电源规范经历了ATX1.0、ATX 1.1、ATX 2.0、ATX 2.01、ATX 2.02、ATX 2.03和ATX 12V等阶段,目前市面上的电源多遵循ATX 2.03或更新的ATX 12V标准。
1、ATX1.1与ATX2.0标准的区别
对ATX电源内部的风路进行了调整,将原来面向机箱内送气的风扇改为向机箱外排气。对PS_ON#、PWR_OK信号和+5VSB电源规格进行了补充,对+3.3VDC端电压变动的范围和软电源控制信号进行了重新定义。加入可选择的风扇辅助电源、风扇监控、IEEE1394电压和3.3V遥控电压等标准。对电源内部配线颜色的定义进行了补充。
2、ATX2.00与ATX 2.01标准的区别
对机箱和主板的I/O接口的定义进行了修正和补充。将+5VSB输出电流由原来的10mA增加到720mA,改善了主板唤醒设备的能力,提高了兼容性。
3、ATX2.01与ATX 2.02标准的区别
针对250—300W以上的电源加入了新的辅助电源连接器(一种6芯连接器,采用类似AT主板上使用的电源连接器)。
并对技术白皮书的内容进行了修改和补充,说明了电源启动时PS_ON、PWR_OK与相关电压的变化关系,并明确了IEEE1394R通道的电源定义。根据Intel关于ATX电压供应设计手册(0.9版)的规定对原来技术白皮书中的两处错误进行了修正,将原来-5VDC和-12VDC的电压波动范围由原来的±5%修改为±10%。
4、ATX2.02与ATX2.03标准的区别
其中ATX 2.03标准采用+5V和+3.3V电压,分别为功耗较大的处理器及显卡直接提供所需的电压。而单独的+12V输出则主要应用在硬盘和光驱设备上,因为当时处理器和显卡的功耗都相对较低,所以各部件相安无事。 但P4处理器的推出改变了这一切。由于它的功耗较高,使用符合ATX 2.03规范的产品时,+5V的电压根本不能提供足够的电流。基于此,Intel对ATX标准进行了修订,推出了ATX 12V 1.0规范。
5、ATX 12V标准
它与ATX 2.03的主要差别是改用+12V电压为CPU供电,而不再使用之前的+5V电压。这样加强了+12V输出电压,将获得比+5V电压大许多的高负载性,以此解决P4处理器的高功耗问题。其中最显眼的变化是首次为CPU增加了单独的4Pin电源接口,利用+12V的输出电压单独向P4处理器供电。此外,ATX 12V 1.0规范还对涌浪电流峰值、滤波电容的容量、保护电路等做出了相应规定,确保了电源的稳定性。
不过,随着吞电怪兽Prescott CPU的出现,系统对12V的输出电流有了更高的要求,而且线材的承受能力有限,这就对为CPU供电的+12V输出电流提出了更高的要求,因此电源也从ATX12V 1.0、ATX12V 1.1、ATX12V 1.2版升、ATX12V1.3版本、ATX12V2.0版本及最新的ATX12V 2.2版本。其中改动比较大的是ATX12V 1.3版本、ATX12V 2.0版本及ATX12V 2.2版本。
ATX12V 1.3版本
ATX12V 1.3版本主要是增强了12V供电,同时增加了对SATA硬盘的供电接口,提高了电源的转换效率。虽然以目前的电源技术,+12V单路输出完全可以做到更高,但会导致其输出线材存在较大的安全隐患,同时也会有较大的线路损耗,为此Intel专门限制了单路+12V输出不得大于240VA。此外,ATX12V 1.3还取消了-5V这个电压的供给。
本来-5V的电压是给ISA插槽使用的,但是随着ISA插槽的淘汰,-5V电压已经早就用不上了,因此ATX12V规范中已经正式取消了这个-5V电压的供给,所以一些较为新型的电源就根本没有这个电压的输出。同时,在ATX12V 1.3规格中,满载时电源效率从68%提高到了70%。不过,随着PCI-E设备的出现,系统功耗再次攀升,对+12VDC的需求继续增大。
虽然ATX12V 1.3的+12V单路输出完全可以做到更高,但会导致其输出线材存在较大的安全隐患,同时也会有较大的线路损耗,为此Intel专门限制了单路+12V输出不得大于240VA。在不改动ATX电源输出规范的情况下,传统的ATX12V 1.3电源已经不能通过改动内部设计来满足所有硬件对+12V的需求,因此规格更高的ATX12V 2.0规范应运而生。
ATX12V 2.0版本
与ATX12V 1.3版本相比,ATX12V 2.0版本最是明显的改进就是+12V增加了一路单独的输出,即采用了双路输出,其中一路+12V(称为+12V1)专门为CPU供电,而另一路+12V2则为其它设备供电。

一个计算机的开关电源,+12VDC的输出如果是22A的话,这在安全方面是不允许的,FCC(美国联邦通讯委员会)在这方面作出了非常明确的规定,计算机电源的任何一路直流电压输出不允许超过240VA,举例说明为如果某一路输出电压为40V,那么这一路电流最多为240VA除以40V等于6A,在电流达到6A之前,电源应该进入到过流保护状态或者关机。
而Intel希望的+12VDC输出要求达到22A,这已经超出了FCC对安全的要求,已经可以达到+12V×22A=264VA,已经远远大于了240VA的要求。这在安全方面是不允许的。在这种技术背景下,Intel将ATX12V2.0版的+12VDC分成了+12V1DC和+12V2DC。

+12V1DC通过电源的主接口(12×2)给主板及PCI-E显卡供电,以满足PCI Express X16和DDR2内存的需要;而+12V2DC通过(2×2)的接口专门为Prescott CPU供电。
这样设计,就可以将240VA安全的问题科学解决。在实际上,主板上的+12V1DC和+12V2DC在布线上也是完全分开的。ATX12V 2.0规范还有一些不太明显的改变,例如输出负载已经可以满足最新硬件上的需求,追加第二个+12伏特接头给处理器使用,让其余的12伏特供给不会因处理器突然加载而产生不稳定。由于采用双路12V输出,因此主电源接口也从原来的20Pin改为24Pin输出。
虽然很多厂商提供旧版本电源加上24pin的主板转接头,以替代研发ATX12V 2.0版本的电源,虽然在使用上还没发生大问题,但仅是一时的替代方案,无法完全取代正版的ATX12V V2.0电源,因为这样的作法存在下列缺点:一是无法改善+12V不足的现象,不能满足新系统对+12V输出增加的强烈需求,尤其是ATX12V V1.3以前旧版低瓦特数的电源规格,+12V严重不足,在旧版本电源加上24pin的主板转接头,只是自欺欺人的手法。二是转接头会造成的压降问题。 因为+12V输出需求大,若再加上转接线材设计不良,将形成严重的压降问题,影响供电质量。

左边为20针 右边为24针

左边为20转24针 右边为可拆卸24针
虽然新增一些不同接头,不过,使用转接线或特殊的20或24针ATX接头,其仍然和旧规格可以兼容,重要的是当你的旧有电源供给器损坏后,你可以安全的用2.01规格的电源供给器来取代,保证可以正常使用。在输出接口方面,ATX12V 2.0另一个新的改变就是SATA硬盘机的电源接头,这原本包含在ATX1.3标准上,现在已经不复需要了,这意味着转换接头的时代已经结束了,他们已经验证大多数的应用,尤其在主要的硬盘机上,毕竟ATX标准并不会去限定有多少的接头需要放上去。
除此以外,Intel ATX12V2.0版本还有一个重要就改进之处,那就是转换效率增加了。由于电源在工作中,有部分电能转换成热量损耗掉了,因此,电源必须尽量减少热量的损耗。转换效率就是输出功率除以输入功率的百分比。1.3版电源要求满载下最小转换效率为68%。2.0版更是将推荐转换效率提高到了80%。尽管功率因数和转换效率都是指电源的利用率,但区别却很大。
简单地说,功率因数产生的损耗是电力部门负担,而转换效率的损耗是用户自己负担。功率因数、EMI电路等都是对国家电网的保护。也就是说电源转换供电,效率并没有100%应用,而是一部分转换为热量。如V1.3版电源效率只达到68%,那也就是说有32%的电能转换成了热能。为了防止热量的聚集影响到电脑的正常运行我们就要把热量散开,就也是就我们为什么装风扇的原因。
ATX12V2.0标准在峰值及一般负载下可以到达70%,在低负载下也有60%的成绩,建议的效率数值可以分别在峰值、一般及低负载下到达75%、80%及68%(所谓一般负载是指满载输出值的一半,而低载是满载输出值的20%)。不过小看这些被转为热能的功耗,对400W功率模块而言,可就浪费掉一大笔的电能,而不是贡献给计算机而耗掉,如果你使用效率更差的电源,事实上也常见,你应该可以从你的电费上的账单看到惨痛的代价,你只要简单的去用好的电源,或许一开始花多一点钱,但是这对日后节省的钱一定会有很大的贡献,尤其对需要让电脑一整天都开机的人而言,更是如此。
根据自己系统平台的发展,在ATX12V2.0规范中Intel推荐了四种电源规格,分别为ATX12V2.0版250W,ATX12V2.0版300W,ATX12V2.0版350W和ATX12V2.0版400W,这四个级别的电源中对+12VDC的输出要求至少也要达到22A。值得注意的是,并不是所有主板都支持ATX12V2.0电源---这种电源须搭配符合ATX12V 2.0规范的主板比如LGA 775和Socket AM2主板才适用。

ATX 12v 2.0版规范功率对照表
+12V1 +12V2 +5V +3.3V 实际功率
8a 14a 18a 17a 250W
8a 14a 20a 20a 300W
10a 15a 21a 22a 350W
14a 15a 28a 30a 400W
不过,ATX规格并没有在ATX12V2.0规范就止步不前了。伴随65纳米双核心处理器的推出,制造工艺也已经成功进入了新的阶段,并将成为今年的主旋律。在处理器规格作出重大变革的时候,Intel为其双核心处理器制定的全新的ATX 12V 2.2 PC电源规范。
ATX12V 2.2版本
ATX12V 2.2属于最新的ATX电源标准,相对ATX12V2.0来说,改进并不大。它仍沿用了2.0规范中的双路12V输出设计,只是在2.0规范的基础上进行了修改以及强化。其中最突出的进行了以下两点改进。,
首先,为了给双核的高端平台提供强劲供电,Intel在ATX12V 2.2规范中加入450W的输出规范也是情非得以。这是因为目前双核心处理器功耗的增加、多显卡技术以及RAID等技术的普及,对于高端系统平台来说,一款大功率的电源已经成为必不可缺少的要素!

在上面的负载交叉图上,我们可以看到Intel规范中所提及的450W电源,双路12V的最大联合输出功率已高达到400W,完全能够应付当前的高端双核平台。
其次在新的ATX 12V 2.2规范中对,对电源的转换效率有了更高的标准。目前对ATX 12V 2.2 80%转换效率的推荐(非强制)要求。而我国却相对落后,目前CCC要求是65%。
准系统电源,ATX电源中的另类者!
准系统电源从原理上来说仍属于ATX电源的范畴,只不过因为受机箱空间的制约,准系统厂商不得不将动手术的对象转移到电源。显然,体积庞大的ATX电源无法继续使用,准系统厂商必须根据自身需求对电源进行定制,一般是采用直接缩小尺寸、降低空间占用来对电源进行瘦身处理器。但由于各类准系统外形并不相同,内部空间的布局也相差甚远,各准系统厂商必须根据自身情况独自设计,这样让它可以很好地利用周围的空间,这样准系统便可以实现薄小的体积。
因此,时至今日准系统电源仍没有一个标准的,当然这种特殊性所带来的问题也是显而易见的,那就是准系统电源的功率低,往往只在200—250W左右,而且用户升级电源的机会几乎是微乎其微。因此,准系统厂商往往针根据AMD或Intel平台来定制电源的功率,以期能最大满足用户升级或增加配件所带来的功率需求,最常见的手法是加强对某一线路的补偿输出。
虽然在ATX规范中都规定了每一线路输出的标准。不过,ATX电源的各路输出不可能同时达到标称的最大输出电量。由于目前处理器功耗较高,英特尔已经改+12V为CPU供电,因此+12V端的负载较重,会导致+12V的下跌。而AMD的CPU以前普遍+5V取电,电源的补偿电路自动对+5V进行补偿,结果会导致+12V的升高(现在AMD新一代CPU也从+12V取电了)。
相信有些朋友在升级系统后依然使用以前的电源就会发现电源与新系统并不兼容,主要原因就是早期的电源5V的带载能力强,而12V带载能力相对薄弱。相对来说,电压偏高比电压偏低更具有危险性,电压偏低至多引起电脑工作的不正常,而电压偏高则可能烧毁硬件。
针对系统对5V,12V负载能力要求增大时,如何才能实现这两路电压负载变化而电压又不相互影响调整呢?为了保证输出电压的稳定,ATX电源内部设计了一套补偿电路,能够根据输出电压下跌的幅度自动进行补偿来抵消输出电压的下降,但通常ATX电源并没有为每一路输出电压提供单独的稳压电路,而是同时补偿,比如+5V和+12V中的+5V因为负载太大而导致输出电压开始下降,电源会同时增加这两路的输出电压,并不会单独对+5V进行控制,其结果必然导致+12V的输出电压过渡补偿而超过额定的电压,当电源设计欠佳或输出功率不足时这种特有的现象就更加明显!

针对以上问题,目前不少准系统电源都采用磁放大技术用可改善电源输出电压的稳定性,往往将3.3V与5V、12V的稳压电路独立开来-----将5V稳压电路同样使用磁放大器电路从5V和12V共同组成的稳压电路中分离开,这样意味着5V,12V也就可独立进行电压调整—这也就是所谓的三路独立输出电源。(注:即使不采用三路独立输出方式,比较好电源对+5V和+12V的输出都有采取了一定的保护,当电压上升到危险的程度,电源将关断输出。电源输出的正电压,合理的波动范围在-5%—+5%之内,而负电压的合理波动范围在-10%—+10%)
此外,准系统的电源大多数全把第一道EMI滤波电路省了,抑制输入端的高频干扰,以及PWM自身产生的高频干扰的能力也要逊色于标准的ATX电源。
当然,有部分苛求“小”的厂商(如艾葳(Iwill)、浩鑫)干脆效仿笔记本电脑,将电源改为外置设计,准系统主机内只提供一个输入接口和必要的连接线路。因此,对于此类系统,你几乎不要再抱升级的幻想!
四、BTX电源规范

BTX的英文全称是“Balanced Technology Extended”,中文意思是平衡技术延伸,这是一种新型主板架构规范,旨在借助用于构建创新台式电脑系统的标准来建立一个灵活的通用基础。系统需要拥有最新的性能技术才能满足用户不断提高的散热、能耗、结构、音响、以及电磁兼容性等方面的要求。BTX规范为开发者提供了新的工具和设计空间,以支持其设计台式电脑系统,不论是小巧紧凑的系统,还是大型的可扩充系统。相对结构变化,BTX的电源供给的变化就没有那么大了。
BTX电源兼容了ATX技术,其工作原理与内部结构基本相同,输出标准与目前的ATX12V 2.0规范一样,也是象ATX12V 2.0规范一样采用24pin接头。

BTX电源主要是在原ATX规范的基础之上衍生出ATX 12V、CFX 12V、LFX 12V几种电源规格。其中ATX 12V是既有规格,之所以这样是因为ATX12V 2.0版电源可以直接用于标准BTX机箱。

二、PC电源的鼻祖—AT电源规范
AT电源属于PC电源的元老级人物,功率一般为150W~250W,共有四路输出(5V、12V)另向主板提供一个P.G(Power Good)信号。输出线为两个6芯插头和几个4芯的插头,两个6芯插座给主板供电。AT电源采用切断的方式关机,也就是“硬关机”。
在ATX电源未出现之前,从286到586计算机由AT电源一统江湖。目前AT电源已经退出了市场,即便是在旧电脑市场也已经很难看到其身影。
三、AT电源规格的进化—ATX电源规范
ATX规范是1995年Intel公司制定的新的主机板结构标准,是英文(AT Extend)的缩写,可以翻译为AT扩展标准,而ATX电源就是根据这一规格设计的电源。与AT电源相比,ATX电源外形尺寸并没有多大变化,其与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。ATX类电源总共有六路输出,分别是+5V、-5V、+12V、-12V、+3.3V及+5Vsb。
+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头9脚引出。PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4.6V各不相同。
ATX电源最主要的特点就是,它不采用传统的市电开关来控制电源是否工作,而是采用“+5VSB、PS-ON”的组合来实现电源的开启和关闭,只要控制“PS-ON”信号电平的变化,就能控制电源的开启和关闭。电源中的S-ON控制电路接受PS-ON 信号的控制,当“PS-ON”小于1V伏时开启电源,大于4.5伏时关闭电源。
主机箱面上的触发按钮开关(非锁定开关)控制主板的“电源监控部件”的输出状态,同时也可用程序来控制“电源监控件”的输出:比如在WIN XP平台下,发出关机指令,使“PS-ON”变为+5V,ATX电源就自动关闭。关机时PW-OK输出信号比ATX开关电源+5V输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘磁头来不及移至着陆区而划伤硬盘。
目前市场上的ATX电源,不管是品牌电源还是杂牌电源,从电路原理上来看,一般都是在AT电源的基础上做了适当的改动发展而来的,因此,我们买到的ATX电源,在电路原理上一般都大同小异。此发布以来,ATX电源规范经历了ATX1.0、ATX 1.1、ATX 2.0、ATX 2.01、ATX 2.02、ATX 2.03和ATX 12V等阶段,目前市面上的电源多遵循ATX 2.03或更新的ATX 12V标准。
1、ATX1.1与ATX2.0标准的区别
对ATX电源内部的风路进行了调整,将原来面向机箱内送气的风扇改为向机箱外排气。对PS_ON#、PWR_OK信号和+5VSB电源规格进行了补充,对+3.3VDC端电压变动的范围和软电源控制信号进行了重新定义。加入可选择的风扇辅助电源、风扇监控、IEEE1394电压和3.3V遥控电压等标准。对电源内部配线颜色的定义进行了补充。
2、ATX2.00与ATX 2.01标准的区别
对机箱和主板的I/O接口的定义进行了修正和补充。将+5VSB输出电流由原来的10mA增加到720mA,改善了主板唤醒设备的能力,提高了兼容性。
3、ATX2.01与ATX 2.02标准的区别
针对250—300W以上的电源加入了新的辅助电源连接器(一种6芯连接器,采用类似AT主板上使用的电源连接器)。
并对技术白皮书的内容进行了修改和补充,说明了电源启动时PS_ON、PWR_OK与相关电压的变化关系,并明确了IEEE1394R通道的电源定义。根据Intel关于ATX电压供应设计手册(0.9版)的规定对原来技术白皮书中的两处错误进行了修正,将原来-5VDC和-12VDC的电压波动范围由原来的±5%修改为±10%。
4、ATX2.02与ATX2.03标准的区别
其中ATX 2.03标准采用+5V和+3.3V电压,分别为功耗较大的处理器及显卡直接提供所需的电压。而单独的+12V输出则主要应用在硬盘和光驱设备上,因为当时处理器和显卡的功耗都相对较低,所以各部件相安无事。 但P4处理器的推出改变了这一切。由于它的功耗较高,使用符合ATX 2.03规范的产品时,+5V的电压根本不能提供足够的电流。基于此,Intel对ATX标准进行了修订,推出了ATX 12V 1.0规范。
5、ATX 12V标准
它与ATX 2.03的主要差别是改用+12V电压为CPU供电,而不再使用之前的+5V电压。这样加强了+12V输出电压,将获得比+5V电压大许多的高负载性,以此解决P4处理器的高功耗问题。其中最显眼的变化是首次为CPU增加了单独的4Pin电源接口,利用+12V的输出电压单独向P4处理器供电。此外,ATX 12V 1.0规范还对涌浪电流峰值、滤波电容的容量、保护电路等做出了相应规定,确保了电源的稳定性。
不过,随着吞电怪兽Prescott CPU的出现,系统对12V的输出电流有了更高的要求,而且线材的承受能力有限,这就对为CPU供电的+12V输出电流提出了更高的要求,因此电源也从ATX12V 1.0、ATX12V 1.1、ATX12V 1.2版升、ATX12V1.3版本、ATX12V2.0版本及最新的ATX12V 2.2版本。其中改动比较大的是ATX12V 1.3版本、ATX12V 2.0版本及ATX12V 2.2版本。
ATX12V 1.3版本
ATX12V 1.3版本主要是增强了12V供电,同时增加了对SATA硬盘的供电接口,提高了电源的转换效率。虽然以目前的电源技术,+12V单路输出完全可以做到更高,但会导致其输出线材存在较大的安全隐患,同时也会有较大的线路损耗,为此Intel专门限制了单路+12V输出不得大于240VA。此外,ATX12V 1.3还取消了-5V这个电压的供给。
本来-5V的电压是给ISA插槽使用的,但是随着ISA插槽的淘汰,-5V电压已经早就用不上了,因此ATX12V规范中已经正式取消了这个-5V电压的供给,所以一些较为新型的电源就根本没有这个电压的输出。同时,在ATX12V 1.3规格中,满载时电源效率从68%提高到了70%。不过,随着PCI-E设备的出现,系统功耗再次攀升,对+12VDC的需求继续增大。
虽然ATX12V 1.3的+12V单路输出完全可以做到更高,但会导致其输出线材存在较大的安全隐患,同时也会有较大的线路损耗,为此Intel专门限制了单路+12V输出不得大于240VA。在不改动ATX电源输出规范的情况下,传统的ATX12V 1.3电源已经不能通过改动内部设计来满足所有硬件对+12V的需求,因此规格更高的ATX12V 2.0规范应运而生。
ATX12V 2.0版本
与ATX12V 1.3版本相比,ATX12V 2.0版本最是明显的改进就是+12V增加了一路单独的输出,即采用了双路输出,其中一路+12V(称为+12V1)专门为CPU供电,而另一路+12V2则为其它设备供电。

一个计算机的开关电源,+12VDC的输出如果是22A的话,这在安全方面是不允许的,FCC(美国联邦通讯委员会)在这方面作出了非常明确的规定,计算机电源的任何一路直流电压输出不允许超过240VA,举例说明为如果某一路输出电压为40V,那么这一路电流最多为240VA除以40V等于6A,在电流达到6A之前,电源应该进入到过流保护状态或者关机。
而Intel希望的+12VDC输出要求达到22A,这已经超出了FCC对安全的要求,已经可以达到+12V×22A=264VA,已经远远大于了240VA的要求。这在安全方面是不允许的。在这种技术背景下,Intel将ATX12V2.0版的+12VDC分成了+12V1DC和+12V2DC。

+12V1DC通过电源的主接口(12×2)给主板及PCI-E显卡供电,以满足PCI Express X16和DDR2内存的需要;而+12V2DC通过(2×2)的接口专门为Prescott CPU供电。
这样设计,就可以将240VA安全的问题科学解决。在实际上,主板上的+12V1DC和+12V2DC在布线上也是完全分开的。ATX12V 2.0规范还有一些不太明显的改变,例如输出负载已经可以满足最新硬件上的需求,追加第二个+12伏特接头给处理器使用,让其余的12伏特供给不会因处理器突然加载而产生不稳定。由于采用双路12V输出,因此主电源接口也从原来的20Pin改为24Pin输出。
虽然很多厂商提供旧版本电源加上24pin的主板转接头,以替代研发ATX12V 2.0版本的电源,虽然在使用上还没发生大问题,但仅是一时的替代方案,无法完全取代正版的ATX12V V2.0电源,因为这样的作法存在下列缺点:一是无法改善+12V不足的现象,不能满足新系统对+12V输出增加的强烈需求,尤其是ATX12V V1.3以前旧版低瓦特数的电源规格,+12V严重不足,在旧版本电源加上24pin的主板转接头,只是自欺欺人的手法。二是转接头会造成的压降问题。 因为+12V输出需求大,若再加上转接线材设计不良,将形成严重的压降问题,影响供电质量。

左边为20针 右边为24针

左边为20转24针 右边为可拆卸24针
虽然新增一些不同接头,不过,使用转接线或特殊的20或24针ATX接头,其仍然和旧规格可以兼容,重要的是当你的旧有电源供给器损坏后,你可以安全的用2.01规格的电源供给器来取代,保证可以正常使用。在输出接口方面,ATX12V 2.0另一个新的改变就是SATA硬盘机的电源接头,这原本包含在ATX1.3标准上,现在已经不复需要了,这意味着转换接头的时代已经结束了,他们已经验证大多数的应用,尤其在主要的硬盘机上,毕竟ATX标准并不会去限定有多少的接头需要放上去。
除此以外,Intel ATX12V2.0版本还有一个重要就改进之处,那就是转换效率增加了。由于电源在工作中,有部分电能转换成热量损耗掉了,因此,电源必须尽量减少热量的损耗。转换效率就是输出功率除以输入功率的百分比。1.3版电源要求满载下最小转换效率为68%。2.0版更是将推荐转换效率提高到了80%。尽管功率因数和转换效率都是指电源的利用率,但区别却很大。
简单地说,功率因数产生的损耗是电力部门负担,而转换效率的损耗是用户自己负担。功率因数、EMI电路等都是对国家电网的保护。也就是说电源转换供电,效率并没有100%应用,而是一部分转换为热量。如V1.3版电源效率只达到68%,那也就是说有32%的电能转换成了热能。为了防止热量的聚集影响到电脑的正常运行我们就要把热量散开,就也是就我们为什么装风扇的原因。
ATX12V2.0标准在峰值及一般负载下可以到达70%,在低负载下也有60%的成绩,建议的效率数值可以分别在峰值、一般及低负载下到达75%、80%及68%(所谓一般负载是指满载输出值的一半,而低载是满载输出值的20%)。不过小看这些被转为热能的功耗,对400W功率模块而言,可就浪费掉一大笔的电能,而不是贡献给计算机而耗掉,如果你使用效率更差的电源,事实上也常见,你应该可以从你的电费上的账单看到惨痛的代价,你只要简单的去用好的电源,或许一开始花多一点钱,但是这对日后节省的钱一定会有很大的贡献,尤其对需要让电脑一整天都开机的人而言,更是如此。
根据自己系统平台的发展,在ATX12V2.0规范中Intel推荐了四种电源规格,分别为ATX12V2.0版250W,ATX12V2.0版300W,ATX12V2.0版350W和ATX12V2.0版400W,这四个级别的电源中对+12VDC的输出要求至少也要达到22A。值得注意的是,并不是所有主板都支持ATX12V2.0电源---这种电源须搭配符合ATX12V 2.0规范的主板比如LGA 775和Socket AM2主板才适用。

ATX 12v 2.0版规范功率对照表
+12V1 +12V2 +5V +3.3V 实际功率
8a 14a 18a 17a 250W
8a 14a 20a 20a 300W
10a 15a 21a 22a 350W
14a 15a 28a 30a 400W
不过,ATX规格并没有在ATX12V2.0规范就止步不前了。伴随65纳米双核心处理器的推出,制造工艺也已经成功进入了新的阶段,并将成为今年的主旋律。在处理器规格作出重大变革的时候,Intel为其双核心处理器制定的全新的ATX 12V 2.2 PC电源规范。
ATX12V 2.2版本
ATX12V 2.2属于最新的ATX电源标准,相对ATX12V2.0来说,改进并不大。它仍沿用了2.0规范中的双路12V输出设计,只是在2.0规范的基础上进行了修改以及强化。其中最突出的进行了以下两点改进。,
首先,为了给双核的高端平台提供强劲供电,Intel在ATX12V 2.2规范中加入450W的输出规范也是情非得以。这是因为目前双核心处理器功耗的增加、多显卡技术以及RAID等技术的普及,对于高端系统平台来说,一款大功率的电源已经成为必不可缺少的要素!

在上面的负载交叉图上,我们可以看到Intel规范中所提及的450W电源,双路12V的最大联合输出功率已高达到400W,完全能够应付当前的高端双核平台。
其次在新的ATX 12V 2.2规范中对,对电源的转换效率有了更高的标准。目前对ATX 12V 2.2 80%转换效率的推荐(非强制)要求。而我国却相对落后,目前CCC要求是65%。
准系统电源,ATX电源中的另类者!
准系统电源从原理上来说仍属于ATX电源的范畴,只不过因为受机箱空间的制约,准系统厂商不得不将动手术的对象转移到电源。显然,体积庞大的ATX电源无法继续使用,准系统厂商必须根据自身需求对电源进行定制,一般是采用直接缩小尺寸、降低空间占用来对电源进行瘦身处理器。但由于各类准系统外形并不相同,内部空间的布局也相差甚远,各准系统厂商必须根据自身情况独自设计,这样让它可以很好地利用周围的空间,这样准系统便可以实现薄小的体积。
因此,时至今日准系统电源仍没有一个标准的,当然这种特殊性所带来的问题也是显而易见的,那就是准系统电源的功率低,往往只在200—250W左右,而且用户升级电源的机会几乎是微乎其微。因此,准系统厂商往往针根据AMD或Intel平台来定制电源的功率,以期能最大满足用户升级或增加配件所带来的功率需求,最常见的手法是加强对某一线路的补偿输出。
虽然在ATX规范中都规定了每一线路输出的标准。不过,ATX电源的各路输出不可能同时达到标称的最大输出电量。由于目前处理器功耗较高,英特尔已经改+12V为CPU供电,因此+12V端的负载较重,会导致+12V的下跌。而AMD的CPU以前普遍+5V取电,电源的补偿电路自动对+5V进行补偿,结果会导致+12V的升高(现在AMD新一代CPU也从+12V取电了)。
相信有些朋友在升级系统后依然使用以前的电源就会发现电源与新系统并不兼容,主要原因就是早期的电源5V的带载能力强,而12V带载能力相对薄弱。相对来说,电压偏高比电压偏低更具有危险性,电压偏低至多引起电脑工作的不正常,而电压偏高则可能烧毁硬件。
针对系统对5V,12V负载能力要求增大时,如何才能实现这两路电压负载变化而电压又不相互影响调整呢?为了保证输出电压的稳定,ATX电源内部设计了一套补偿电路,能够根据输出电压下跌的幅度自动进行补偿来抵消输出电压的下降,但通常ATX电源并没有为每一路输出电压提供单独的稳压电路,而是同时补偿,比如+5V和+12V中的+5V因为负载太大而导致输出电压开始下降,电源会同时增加这两路的输出电压,并不会单独对+5V进行控制,其结果必然导致+12V的输出电压过渡补偿而超过额定的电压,当电源设计欠佳或输出功率不足时这种特有的现象就更加明显!

针对以上问题,目前不少准系统电源都采用磁放大技术用可改善电源输出电压的稳定性,往往将3.3V与5V、12V的稳压电路独立开来-----将5V稳压电路同样使用磁放大器电路从5V和12V共同组成的稳压电路中分离开,这样意味着5V,12V也就可独立进行电压调整—这也就是所谓的三路独立输出电源。(注:即使不采用三路独立输出方式,比较好电源对+5V和+12V的输出都有采取了一定的保护,当电压上升到危险的程度,电源将关断输出。电源输出的正电压,合理的波动范围在-5%—+5%之内,而负电压的合理波动范围在-10%—+10%)
此外,准系统的电源大多数全把第一道EMI滤波电路省了,抑制输入端的高频干扰,以及PWM自身产生的高频干扰的能力也要逊色于标准的ATX电源。
当然,有部分苛求“小”的厂商(如艾葳(Iwill)、浩鑫)干脆效仿笔记本电脑,将电源改为外置设计,准系统主机内只提供一个输入接口和必要的连接线路。因此,对于此类系统,你几乎不要再抱升级的幻想!
四、BTX电源规范

BTX的英文全称是“Balanced Technology Extended”,中文意思是平衡技术延伸,这是一种新型主板架构规范,旨在借助用于构建创新台式电脑系统的标准来建立一个灵活的通用基础。系统需要拥有最新的性能技术才能满足用户不断提高的散热、能耗、结构、音响、以及电磁兼容性等方面的要求。BTX规范为开发者提供了新的工具和设计空间,以支持其设计台式电脑系统,不论是小巧紧凑的系统,还是大型的可扩充系统。相对结构变化,BTX的电源供给的变化就没有那么大了。
BTX电源兼容了ATX技术,其工作原理与内部结构基本相同,输出标准与目前的ATX12V 2.0规范一样,也是象ATX12V 2.0规范一样采用24pin接头。

BTX电源主要是在原ATX规范的基础之上衍生出ATX 12V、CFX 12V、LFX 12V几种电源规格。其中ATX 12V是既有规格,之所以这样是因为ATX12V 2.0版电源可以直接用于标准BTX机箱。

+3.3V输出电流 27A
+5V输出电流 26A
+12V1输出电流 18A
这些数据指的是电源各项电压输出的功率,一般情况下不必管他,只要总功率够用就可以了。以上数据可以理解为:总功率=3.3V(3.3*27)89.1W+5V(5*26)130W+12V(12*18)216W=435W,也就是说你的电源峰值功率是435W的

300W电源用不完的劲儿
线都是通用的 一样 任何电源都能用


笔记本电脑电脑充不进去电怎么办?
2. 关闭电脑电源。3. 移除电源适配器。4. 移除笔记本电脑的电池(若您的电脑为可移动式电池模块)。5. 长按电源键40秒(按住不放),以进行EC重置。6. 重新接上电源适配器及电池,并开机确认问题是否解决。二,透过设备管理器重新安装电池\/电源适配器驱动程序 1. 在Windows搜寻栏输入[设备管理器]①,...

电脑 电源问题
第一,你的配置是05年左右的,板子上的SATA 接口还有多余的吗?如果还有多余的,而且你只是下载,所以说你的配置是够用的。第二,电源的输出并不是平均的,也不是固定的,也就是说有时候你的硬盘1可能会有足够的电源,而过一会可能会分不到,而硬盘2会分到也可能分不到,所以说 硬盘等于时而断电...

电脑 电源的问题
那是专门为cpu供电的插座,不差的话,主机不启动。

笔记本电脑充不进去电的原因
电池故障表现比较简单,多是充电进度一直显示100%,实际上一去掉电源适配器续航时间不到几分钟,或是直接检测不到电池。主要是由于电池本身的正常损耗,更换一个新的电池就可以了。主板故障如果更换电源适配器和更换电池都没有用的话,就要考虑是不是电脑主板出问题了,这时需要把电脑送到专业的维修店铺处理问题。 抢...

电脑中出现的问题真是千奇百怪
2、光驱读盘性能不良。这种情况一般发生在新购买的电脑或CD-ROM上,读盘时伴有较大的“嗡嗡”声,排除光驱故障之后,很可能是电源有问题,必要时应拆开检查。4、超频不稳定。CPU超频工作对于电源的稳定性要求很高,如果电源质量较差,在超频工作时会经常突然死机或重新启动。一般只要更换一只性能稳定的电源...

开机时候,电脑电源指示灯一直闪,开不了机!跪求高手指点!!!
c. 若确认CPU支持板载显示输出,但依旧开机无显示,请尝试重新安装CPU,并检查CPU pin脚或CPU插槽是否有如下所示的脏污。若有,请清除再尝试 d. 检查CPU pin脚是否有损坏。若是,请更换一个已知没有问题的CPU 三、确认内存 a. 重新安装内存,确认内存是否如下图所示完全插入 b. 如果同时安装...

电脑开不开机了怎么办啊!
1. 电源检查:首先确保电脑电源插头插好,电源线没有问题。如果电源线有问题,可以尝试更换一条电源线。笔记本电脑的话请确认电池已经充满电或者电源适配器已经连接并正常工作。如果电池无法充电或者电源适配器无法为电脑供电,那么电脑可能无法启动。2.检查显示器和开关机按钮:检查显示器是否正常工作。如果...

各路大神,我笔记本电脑电源插起只有指示灯亮,完全不能启动,是怎么回事...
可以先尝试执行CMOS reset,部分无法开机的现象可经由此方式解决。1. 移除计算机的电池(部分型号无法移除电池)及电源适配器 2. 长按电源键40秒(按住不放)3. 接上电池(若电池可移除)及电源适配器,然后开机确认是否排除问题 若是问题仍然存在,请继续参考以下详细步骤。电源指示灯有亮,代表主板有过电...

开机时候,电脑电源指示灯一直闪,开不了机!跪求高手指点!!!
原因二:如果电脑主机或者显示器加电不正常,就请电脑的电源口接触良好,电源线是否断了,导致不通电。不是上述问题导致的不通电,这个时候可以请专业人员了。资料拓展在上述判断电脑主机和显示器加电都正常的情况下,还是开不了机,这个时候可以看看显示器和显卡的口是否接触良好,可以拔下头一下,D形口...

电脑总是无故关机?别担心,这可能是以下几个原因!
本文将为你分析电脑关机的原因,帮助你解决这一问题。️过热警告!如果CPU温度过高,主板的自动保护功能就会启动,让你的电脑自动关机。赶紧检查CPU是不是太热了,是不是风扇架子不稳,或是风扇散热能力不够?电压不稳?主板电容变形可能是因为电压不稳,赶紧更换一下,看看问题能不能解决。电源问题!主机电源...

防城区19228447769: 电脑电源故障怎么解决 -
妫佩苦参: 1 无法开机 电源烧2 频繁重启 电源供电不足3 烧硬盘 电源供电不足 磁头不能正常抬起4 烧处理器 电压不足 导致电流偏大 很快烧处理器 5 内存出错频繁 系统文件莫名丢失 6 显卡工作不稳定 甚至烧毁

防城区19228447769: 计算机电源问题 -
妫佩苦参: 就会发生关机时电压不稳造成电流过大而把主机电源烧坏.电脑关机和开机自检那一段时间 电流是最高的.这样就不会造成突然来电时 电流把主机电源再次烧(冲)坏不是主机电源问题.而是你们接进寝室里的电源线路有问题,有短路现像.建议你每次电脑正常关机后,把接电源的插头扒了,下次开机时再插上,或电压不稳,如果你寝室电压不稳

防城区19228447769: 电脑电源故障的具体表现? -
妫佩苦参: 拆开来看看.平时出现问题的表现是挺多的,死机,蓝屏,自动重启,都可能是电源的问题.你可以拆开电源那个铁盖看看里面的嘛.

防城区19228447769: 电脑电源常见的几种故障处理 -
妫佩苦参: 一、故障类型:电源无输出 此类为最常见故障,主要表现为电源不工作.在主机确认电源线已连接好(有些有交流开关的电源要打到开状态)的情况下,开机无反应,显示器无显示(显示器指示灯闪烁).无输出故障又分为以下几种:①+5...

防城区19228447769: 电脑电源故障有什么表现? -
妫佩苦参: 电脑电源故障可能会表现为以下几种症状:1. 无法启动:按下电源按钮后,电脑无任何反应或者仅闪烁一下灯光,然后立即停止.这通常表示电源故障严重,甚至可能无法工作.2. 蓝屏或死机:如果电源输出不稳定或供电过少,电脑可能会出现...

防城区19228447769: 电脑电源问题
妫佩苦参: 计算机电源供应器担负着提供计算机电力的重任,只要计算机一开机,电源供应器就不停地工作,因此,电源供应器也是“计算机诊所”中常见的“病号”.据估计,由电源造成的故障约占整机各类部件总故障数的20%~30%.所以,对主机各...

防城区19228447769: 电脑电源故障 -
妫佩苦参: 你确定是电源的故障吗 电源六年了也有可能坏 但是开机电路严重短路也会造成ATX电源自我保护 可以用镊子端接电源插座绿线和黑线要是电源工作就是 主板是有短路的地方 要是电源不转主板上有严重的元器件短路 主板 主板上的元器件老化生热 比如南桥芯片或北桥芯片散热不好也会造成这样 BIOS刷新不对了 COMS电池坐虚焊 主板上电容鼓包 漏液 CPU主供电路有毛病 要是电源的 故障的话 也没必要修了太老了 你可以换一个 至于电源的品牌和功率 没必要换个很好的 因为你是P4电源才4项供电 你可以买个杂牌的就行 这样最多花 75-90元 再说现在的电源都是3年质保的 你这个电脑还能用三年吗 随便买一个就行

防城区19228447769: 电脑电源的问题
妫佩苦参: 楼主,有影响.静电小的话影响小,静电大的话有可能影响到内存条,或者BIOS电池而导致开不了机,除非释放静电才能正常开机.所以一定要有所准备.拿一根铜线,一头接到主机金属处(例如:螺丝),一头线放到地上就行.

防城区19228447769: 电脑电源问题 -
妫佩苦参: 电脑的电源没有大小, 只会区分电流输出大小, 你打开机箱就能看到

防城区19228447769: 电脑电源问题
妫佩苦参: 电源应该是没有问题的,我的LENOVO机器开机是会有4~5S的风扇狂转现像用着也很正常.应该是和主板BIOS有关但没有设置项.至于断电问题有可能是主机电源开关短路造成的,建议更换一个新的.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网