谁有冻土的资料??

作者&投稿:骆启 (若有异议请与网页底部的电邮联系)
青藏铁路的冻土是怎么解决的~

1、适当提高 路基填土高度,用天然土保温,这种方法价廉,可普遍采用。
2、在路基埋设工业 保温层(PU、EPS等),埋设5~10厘米 保温板,在工程实践中均取得极佳工程效果。
3、埋设 通风管,就是在 路堤中埋设直径30厘米左右的金属或 混凝土横向通风管,可以有效降低路基温度。
4、采用抛 石路基,即用碎块石填筑路基,利用填石路基的通风 透气性,隔阻热空气下移,同时吸入冷量,起到保护 冻土的作用。
5、在少数极不稳定冻土地段修建低架旱桥,工程效果有保证,但造价高。 青藏高原温度对冻土的影响非常大,一般情况 地面温度比气温高3℃~4℃,没有太阳的直接照射,设置保温层地基或者通风地基可降低原地面温度2℃~3℃。

扩展资料:

主要性状:
诊断层和诊断特性,冻土具有永冻土壤温度状况,具有暗色或淡色表层,地表具有多边形土或石环状、条纹状等冻融蠕动形态特征。
形态特征,土体浅薄,厚度一般不超过50厘米,由于冻土中土壤水分状况差异,反映在具常潮湿土壤水分状况的湿冻土和具干旱土壤水分状况的干冻土两个亚纲的剖面构型上有着明显差异,湿冻土剖面构型为O—Oi—Cg或Oi—Cg型,干冻土为J—Ah—Bz—Ck型,
理化性质,冻土有机质含量不高,腐殖质含量为10—20克每千克,腐殖质结构简单,70%以上是富里酸,呈酸性或碱性反应,阳离子代换量低,一般为10厘摩尔(+)每千克土左右,土壤粘粒含量少,而且淋失非常微弱,营养元素贫乏。
参考资料:冻土 百度百科

世界屋脊,人类“生命的禁区”。生物学家们这样断言青藏高原。
从内地到西藏,曾经难于上青天。当年文成公主进藏,走了两年多的时间。如今从西宁去拉萨,汽车两天就可跑到了。司机在青藏公路尽可以任随自己的“铁马”松缰驰骋。低速行驶的司机,往往会被同行嘲笑为“老牛慢马”。
文成应无恙,当惊世界殊——天地仿佛因路而缩短了时空距离!1954年,全长1948公里的青藏公路建成通车,这条路始于西宁,经格尔木至拉萨,是祖国内地通往西南边疆的国防、经济主干道。经过几次大规模的改造和整治,如今的青藏公路是一条能常年进出西藏的公路,承担着全区85%的客运和90%的货运任务,被誉为西藏的“生命线”。
可又有多少人知道青藏高原上的筑路条件是怎样的恶劣?又有多少人知道公路工程技术人员作出了怎样的努力和牺牲,才敲开“禁区”大门,修通这条“通天”之路的呢?
世界性难题
冰峰、雪山、风暴、强烈的紫外线和严重缺氧,是青藏公路的自然标记。特别是格尔木至拉萨段,海拔在4000米至5231米之间,要翻越昆仑山、风火山、唐古拉山、念青唐古拉山等大山脉,穿过630多公里生态环境恶劣、地质条件复杂的高原多年冻土区。大片连续、岛状多年冻土及季节冻土,加之高原多年冻土区特有的地下冰、冰堆、冰丘及热融湖塘等不良地质条件,形成了青藏高原独特的地质、地貌。
20世纪50年代初,新中国发展的强音敲响了西藏封闭的大门,毛泽东主席“一面进军,一面修路”的号令唤醒了沉寂的青藏高原。1954年11月25日,在人民解放军和广大工程技术人员的共同努力下,青藏公路建成通车。随着西藏自治区的经济发展和国防建设的需要,1972年,中央决定改建青藏公路并铺筑沥青路面,修建永久性桥涵。
这是极富挑战的决定,很多人不无怀疑:在高原多年冻土之上铺筑沥青路面,全世界都没有先例,中国人能成功吗?
冻土是一种对温度极为敏感的土体介质。冬季,冻土在负温状态下就像冰块,随温度的降低体积发生剧烈膨胀,顶推上层的路基、路面。而在夏季,冻土随着温度升高而融化,体积缩小后使路基发生沉降,这种周期性变化往往很容易导致路基和路面塌陷、下沉、变形、破裂。
而铺筑沥青路面公路,等于在冻土上既加了一个吸热器又盖了一层封水膜,使冻土在夏天吸热而融化程度加剧,路基内水分不能蒸发,这是一个在公路修筑技术史上始终没有解决的世界性技术难题,缺乏成功技术资料供借鉴。多年来,有着大面积冻土的俄罗斯、加拿大、美国等国,一直都在苦苦探索解决方法,然而奇迹总没有出现。辽阔的西伯利亚等地留下了一个个筑路专家的深深遗憾。
由于青藏公路极为重要的政治、经济、国防地位,保证其畅通,不仅牵动着西藏同胞的心,更牵动着党中央、国务院、交通部领导的心。1973年,交通部成立了青藏公路多年冻土科学研究组,拨专款专项研究青藏公路多年冻土问题。此后,交通部投入大量专项资金,中交第一公路勘察设计研究院(原交通部第一公路勘察设计研究院)等单位在交通部的直接领导下,系统组织青藏高原多年冻土地区公路修筑成套技术研究,期间集中开展了三次大规模、系统的科技攻关,取得了一系列有科学价值并受到国际同行广泛关注的研究论文、学术专著和成套应用技术成果,这些不断取得的阶段性成果用于青藏公路的历次改造整治中,为高原腹地青藏公路的整治和改建,提供了坚实的科学依据,保证了青藏公路的畅通。
禁区探索
对青藏公路多年冻土的研究,凝聚着新中国几代领导人的关怀与厚爱以及交通部等国家部委的大力支持和广大交通职工的牺牲奉献。
记者从查阅的大量资料中了解到,几十年来,多位党和国家许多领导人先后视察过青藏公路;潘琪、钱永昌、黄镇东、张春贤、王展意、李居昌、胡希捷、冯正霖等十几位部领导以及李劲、杨盛福等几十位司局长都对此项研究给予了极大的关注与支持。
在交通部的直接领导下,1973年,一个由交通部公路科研所、交通部第一公路勘察设计院等单位专家、学者组成的“青藏公路科研组”踏上了平均海拔4000米以上的青藏高原。1999年,青藏公路科研组由于经费缺乏等问题举步维艰。时任交通部副部长的张春贤了解情况后,斩钉截铁地说:“交通部机关的同志就是勒紧裤腰带,也得支持你们把科研进行下去。”一席话让科研人员看到了希望。中交第一公路勘察设计研究院冻土研究执行办公室主任李祝龙博士现在回想起来仍感动不已:“就因这句话,几年来我放弃了几次参与其他项目研究的机会,和同志们一起坚持冻土研究。”
那是怎样的工作环境啊!
三四月,内地春意盎然、鸟语花香,青藏高原却是寒风刺骨、白雪皑皑。气候更像孙悟空的脸,说变就变。一会儿骄阳似火,一会儿狂风大作,一会儿阴雨绵绵,一会儿飞雪漫天,有时一天变幻十几次。有两首民谣道出了这里的险恶环境:“天上无飞鸟,风吹石头跑,四季穿棉袄,氧气吃不饱”;“上了五道梁,难见爹和娘”。
上青藏高原别说搞科研,能够住下来,就是英雄好汉。刚登上高原,科研组近一半的成员都头痛欲裂、气喘吁吁、四肢瘫软、食欲减退。有的人勉强吃上几口饭,也带着黄水呕了出来。
剧烈的高原反应考验着研究人员的毅力,为了公路的畅通,为了几百万藏族同胞的出行,他们在里雪山脚下,搭好帐篷,砌好锅灶,安营扎寨。晚风掀得帐篷“呼啦、呼啦”作响,被窝里冰窟窿似的,加上高原反应,科研人员根本无法入睡。有时帐篷被大风刮倒了,也没有力气起来再支。
在冰天雪地里施工,十字镐刨一下只有一个白点,机械也因缺氧而经常罢工。科研人员只好捡来牛粪,烘烤冻土,用钢钎和铁锤开凿炮眼,进行科研数据收集。
有时风力达到十一二级,“呼呼”地刮个不停,且夹着雪和冰雹,20米以外看不见人,汽车停止了行驶,野驴和黄羊也躲进了深山。但是,为了取得第一手科研资料,观测人员仍要蹒跚于连绵起伏的青藏高原上,冒着被狂风卷走的危险,将仪器脚架放低,跪在地上读数据。他们一米一米地测量沥青路面的变化,凛冽的寒风透过皮大衣,穿过紧身棉袄,直吹到皮肤上。实在熬不住,他们就围着汽车跑几圈,出出汗取暖。冰凉的金属仪器,黏住手能揭掉一层皮,他们把手伸到怀里暖暖后又工作。渴了,没有水就化雪水、化冰水;饿了,就吃冷馍,像石头一样的冰馒头经常啃上半天还没吃上一口。
由于缺氧,科研人员一动脑筋思考问题,头就疼得厉害,但是每天又必须处理大量的数据,研究大量的新问题,头更是像被钢锯来回锯着般疼痛,这给许多人留下了后遗症。其他如心脏病、雪盲症、关节炎等高原病也时刻威胁着科研人员的身体健康。
在漫长荒凉的公路线上,科研人员不仅要经受环境的折磨和体力劳动的考验,还要忍受人迹罕至的痛苦和无聊寂寞的滋味。上世纪80年代中期,在内地,电视已较为普遍,但高原上没有电视信号,他们到附近兵站上看到的电视节目一般都是一两个星期前从西宁录制后送来的。一封信从高原走到内地亲人手中,至少要一个多月时间。许多夫妻长期分居,过着牛郎织女般的生活。
说起高原工作,总也离不开一个苦字。高原上的公路科研人员苦得悲壮,苦得心酸。多少人在筑路的进程中忘情拼搏,默默付出,这样的例子不胜枚举:
武憼民,中交第一公路勘察设计研究院国家级专家,23岁投身于青藏高原多年冻土研究,74岁高龄的他现在仍然对冻土情有独钟,几十年来到青藏高原近百次。
汪双杰,中交第一公路勘察设计研究院副院长,2002年起涉足青藏高原多年冻土研究,几年来奔波于西安与青藏高原之间,多年冻土研究的论文被评为优秀博士论文。
章金钊,中交第一公路勘察设计研究院寒区道路工程研究所所长,1984年大学毕业后研究青藏高原多年冻土,20年来绝大部分精力扑在冻土研究上。
李祝龙,中交第一公路勘察设计研究院冻土研究执行办公室主任,博士毕业后第一项工作就是研究青藏高原多年冻土。
……
为了公路的畅通,仅中交第一公路勘察设计研究院就先后投入20个勘测设计队,近千人次承担青藏公路工程勘察设计任务。以武憼民、汪双杰、章金钊、李祝龙等为代表的一代代科研人员“献了青春献终生”,武憼民教授患了肺病、章金钊所长患了心脏病、李祝龙博士患了支气管炎……但他们始终凭着一种青藏高原人特有的精神,几十年如一日坚持青藏公路多年冻土问题研究,默默地耕耘生命的土地,默默地奉献人生精华。
由于多年冻土变化相对较慢,一组数据的收集比较往往需要几年甚至十几年、几十年的时间,研究周期很长,是个“不容易出科研成果的地方”,科研人员在克服恶劣条件的同时,克服科研成就上的失落感、名誉感显得更为重要。
是什么精神让这些科研人员心甘情愿地在这人迹罕至的地方默默奉献呢?
章金钊,这位憨厚的汉子想了半天回答说:“当你在高原时,你会觉得天空离你很近很近,大山毫无保留地向你展示它的一切。在这里,连空气都‘吃’不饱,还有谁会去争夺享乐、待遇、名利呢?再说,我们这些专业的公路勘察设计人员不来研究,谁来研究?”
质朴无华,言情明志。
30余载耕耘成果丰硕
30多年来,几代科研人员一直坚持在高原地区进行现场冻土勘测、试验。为了取得第一手科研基础资料,有时一组人员一天要定时记录下几百个观测点的地温、冻胀、融沉数据。武憼民感叹:“在近两千公里的青藏路上取得的勘察、观测数据资料,足以装满几卡车!”
1973年到1978年,第一期青藏公路科研组经过艰苦努力,在总结工程实践经验的基础上,结合我国的实际情况,在路基研究中提出了“高原多年冻土地区路基,除少冰冻土、多冰冻土地段及融区外,一般均应遵守宁填不挖”的设计原则,并取得了根据不同地基条件和路基干湿类型,推荐9种路面结构组合类型等成果。这些成果为青藏公路第二次改建工程的设计与施工提供了初步依据。
1979年到1984年的第二期青藏公路科研组,提出地下冰的形成和融化是多年冻土区地表变形和工程建筑物破坏的主要原因,地下冰的分布受地质、水文和热物理因素的制约等理论;在路基稳定性研究中,将提高路基作为保护冻土的基本措施;提出了适用于高原多年冻土地区不同地带的9种较为经济合理的路面结构组合和部分计算参数;首次在我国使用无规聚丙烯砾石混合料面层;对多年冻土地区的桩基设计提出了建议等。这些成果基本解决了高原多年冻土地区沥青路面修筑与大中小桥基础设计、施工等技术难题,满足了青藏公路沥青路面改建工程的需要。
1985年至1999年的第三期青藏公路科研组,采用钻探、挖探和地质雷达探测等综合手段,进行多年冻土工程地质勘探,将青藏公路沿线多年冻土划分为高温冻土、低温冻土,并提出以零下1.5摄氏度为划分界限;首次提出将冻土温度与路基设计原则结合起来,并将其融入路基高度设计中;首次提出高原多年冻土路基在不降低道路服务水平的前提下,通过加强侧向保护,允许冻土上限适量下移的新理论;首次将无机结合料用于高原多年冻土地区的路面结构中;首次将热棒制冷、钢纤维水泥混凝土、EPS隔热层材料、SBR改性沥青、金属波纹管涵等新技术、新材料、新结构引入公路建设。这些研究成果为青藏公路1991年至1999年整治工程提供了必要的依据和资料。
2001年至今,结合西部交通科技成套项目“多年冻土地区公路修筑成套技术研究”,中交第一公路勘察设计研究院牵头继续对多年冻土进行研究,不仅要解决现阶段多年冻土地区公路建设和养护中存在的系列问题,其研究成果还将推动多年冻土地区公路建设、管理、养护技术的进一步提高。
出现新情况—技术攻关—解决问题,再出现新情况—再技术攻关—再解决问题……科研人员结合着新要求,运用新技术、新材料,一次次与大自然协商着最好的和谐相处方案。他们以锲而不舍的精神收获了丰硕的果实。
由中交第一公路勘察设计研究院主持并联合其他科研单位承担的第一期青藏公路科研成果获得交通部重大成果奖。第二期青藏公路科研成果分别获得1987年国家科技进步一等奖和交通部科技进步一等奖。第三期青藏公路科研成果达到了世界先进技术,获得2001—2002年度陕西省科学技术二等奖。日前,总结归纳了从1973年到1999年成果的《青藏高原多年冻土地区公路工程》一书正式出版,张春贤部长亲自为该书作序。
目前,一系列重大科研成果已经大规模应用于青藏公路的历次改建、整治工程,产生了显著的社会经济效益。
青藏公路格尔木到拉萨段,上世纪50年代初沿着“顺地爬”的大车路走,需要15天至20天;60年代末70年代初,沿着沙土公路走,需要走8天至10天;80年代末,沿着沥青公路走,还需要4天左右;而90年代末青藏公路整治工程的竣工,把原来的行车平均速度由每小时二三十公里,提高到每小时五六十公里,越野车15个小时左右就可完成1150多公里的行程。青藏公路在青藏铁路建设期间,不仅保证了进出西藏客货运输的正常需求,同时满足了青藏铁路建设期大量设备、材料、生活物资、人员运输需求。据青藏公路五道梁交通量观测站统计,青藏公路交通量比青藏铁路开工前增加了4.7倍。
为青藏铁路“奠基”
青藏铁路预计2006年7月试运行。但很少有人知道,建设青藏铁路的宏伟计划已提出几十年,之所以一直停留在纸上,冻土问题是“拦路虎”之一。为青藏铁路建设提供冻土方面科学实践依据和理论技术借鉴的,正是青藏公路多年冻土研究的大量基础资料和成功技术。
1999年至2001年,铁道部第一勘测设计院在进行青藏铁路预可、工可及初步设计期间多次到青藏公路科研组调研,聘请多年在青藏公路科研组工作的武憼民等专家为咨询专家,并于2001年5月以技术服务合同方式购买了中交第一公路勘察设计研究院的“高原多年冻土地区公路修筑技术研究”等技术资料。
大半辈子奉献给冻土研究事业并取得丰硕成果的武憼民至今还担任着铁路科学研究院铁路专家咨询组的咨询专家和铁道部大桥局青藏铁路建设高级技术顾问,并多次给青藏铁路工程技术人员授课,把自己在高原奋斗一辈子积累的高原多年冻土地区工程关键技术理论传授给兄弟单位,为青藏铁路建设工程方案的合理性、可行性作出了贡献。
任重道远
多年冻土有着非常顽皮的特性,受时空变化等因素的影响,它的“脾气”异常复杂和多变,很难让人一下子就摸透。
目前,青藏公路多年冻土区路段在长期恶劣的自然因素和重交通荷载作用下,已出现了裂缝、变形、松散等病害。而多年冻土在我国分布非常广阔,占我国国土面积的21.5%,约占世界多年冻土总面积的10%,主要分布在我国中西部地区的青藏高原、西部高山和东北大、小兴安岭以及松嫩平原北部,并零星分布在季节冻土内的一些高山上。随着国家经济建设重心向中西部倾斜,寒区的大规模开发已势在必行,多年冻土地区的公路交通基础设施建设是重中之重,任重而道远。
同时,全球性气候逐步变暖,多年冻土退化日趋严重。因此,更深入系统地开展多年冻土地区公路建设研究,对西部大开发和利用冻土地区国土资源、实现可持续发展有重要意义,尤其在政治、军事、经济和科学技术上都有着极其重大而深远的意义。
科研工作者正沿着实践、认识、再实践、再认识的规律,继续探索在多年冻土之上修路的奥秘

冻土 frozen soil

冻土定义

冻土是指0摄氏度以下,并含有冰的各种岩石和土壤。一般可分为短时冻土(数小时/数日以至半月)/季节冻土(半月至数月)以及多年冻土(数年至数万年以上)。地球上多年冻土/季节冻土和短时冻土区的面积约占陆地面积的50%,其中,多年冻土面积占陆地面积的25%。

冻土是一种对温度极为敏感的土体介质,含有丰富的地下冰。因此,冻土具有流变性,其长期强度远低于瞬时强度特征。正由于这些特征,在冻土区修筑工程构筑物就必须面临两大危险:冻胀和融沉。

地理分布

冻土分布于高纬地带和高山垂直带上部,其中冰沼土广泛分布于北极圈以北的北冰洋沿岸地区,包括欧亚大陆和北美大陆的极北部分和北冰洋的许多岛屿,在这些地区的冰沼土东西延展呈带状分布,在南美洲无冰盖处亦有一些分布。据估计,冰沼土的总面积约590万平方公里,占陆地总面积的5.5%。在前苏联境内,各种冰沼土的总面积为1688000平方公里,占前苏联国土面积的7.6%,占世界冰沼土面积的28.6%。冻漠土广泛分布在我国青藏高原和其他高山地区。此外,在世界各地的高山,如南美安第斯山,新西兰南阿尔卑斯山等亦有分布。

中国冻土分布

我国多年冻土分为高纬度和高海拔多年冻土。高纬度多年冻土主要集中分布在大小兴安岭,面积为38-39万平方公里。高纬度的多年冻土是欧亚大陆多年冻土南缘,平面分布服从纬度地带性规律,即往约往海拔高的地方冻土面积约达,厚度越厚。

高海拔多年冻土分布在青藏高原、阿尔泰山、天山、祁连山、横断山、喜马拉雅山,以及东部某些山地,如长白山、黄岗梁山、五台山、太白山等。高海拔多年冻土形成与存在,受当地海拔高度的控制。

世界冻土分布

全球冻土的分布,具有明显的纬度和垂直地带性规律。自高纬度向中纬度,多年冻土埋深逐渐增加,厚度不断减小,年平均地温相应升高,由连续多年冻土带过渡为不连续多年冻土带、季节冻土带。极地区域冻土出露地表,厚达千米以上,年平均地温-15℃;到北纬60°附近,冻土厚度百米左右,地温升至-3℃~-5℃;至北纬约48°(冻土分布南界),冻土厚仅数米,地温接近0℃(图6-18)。在我国东北和青藏高原地区,纬度相距一度,冻土厚度相差10~20米,年平均地温差0.5℃~1.5℃。

冻土是指地表至100厘米范围内有永冻土壤温度状况,地表具多边形土或石环等冻融蠕动形态特征的土壤。本土纲相当于美国土壤系统分类的新成土纲(Entisol)、始成土纲(Inceptisol)、有机土纲(Histosol),联合国土壤分类的始成土(Cambisols)、潜育土(Gleysols)、粗骨土(Regosols)、有机土。它包括的土类有冰沼土(冰潜育土)和冻漠土。

冰沼土相当于美国系统分类中新成土纲的永冻性的冷冻正常新成土(Pergelic Cryorthent)和始成土纲的冷冻潮湿始成土(Cryaquepts),有机土纲中部分冷冻有机土。联合国土壤分类中始成土的冰冻始成土(Gelic cambisols)、潜育土中的冰冻潜育土(Gelic gleysols)、粗骨土纲中的冰冻粗骨土(Gelic regosols)、有机土纲(Histosols)中的冰冻有机土(Gelic histosols),所不同的是联合国分类是指在2米深度内有永冻层。而冻漠土在美国、联合国分类中还没有相应的土类。而与美国分类的干旱土和联合国分类的钙质土或石膏土有某些近似。

成土条件

(一)气候

冻土分布区的环境条件存在差异。冰沼土分布区属苔原气候,大部分地面被雪原和冰川所覆盖,年平均温在0℃以下,一般都在-10℃至-17℃,冬季气温可低至-40℃,甚至-55℃,夏季温度也很低,7月份平均温度不超过10℃,全年结冰日长达240天以上。高山冻漠土年均温也很低,一般为-4℃至-12℃。冻土区降水很少,欧洲部分为200—300毫米,亚洲和北美洲北部在100毫米以下,西藏冻漠土区因地势高、远离海洋,降水更稀少,一般为60~80毫米,其北部更少,为20~50毫米,其中90%集中于5—9月。降水虽然少,但气温低,蒸发量小,长期冰冻,土壤湿度很大,经常处于水分饱和状态,夏季土壤—母质融化,砂土可达1~1.5米,壤土70~100厘米,泥炭土35~40厘米,以下即为永冻层,高山冻漠土在宽谷、湖盆永冻层深度80厘米,山坡上可达150厘米。

(二)植被

由于冻土区气候严寒,植被是以苔藓、地衣为主组成的苔原植被,草本植物和灌木很少,常见的植物有:石楠属、北极兰浆果、金凤花等开花植物,南缘有云杉、落叶松、桦、白杨、柳、山梣等,生长缓慢,矮小且畸形,各种植物的年生长量均不大,苔原地带每年有机质的增长量为400公斤/公顷,是世界各自然地带中最少的。高山冻漠土区植被为多年生和中旱生的草本植物、垫状植物和地衣,常见的有凤毛菊属、葶苈属、桂竹香属、虎耳草属、点地梅属、银莲花属、金莲花属、红景天属等,一簇簇地生长在石隙之间,或在冰雪融水灌润的地方局部呈小片分布。五颜六色的粗糙碟衣、地图黄绿衣、岩表黄绿衣等则着生于石块上面。

(三)地形、母质

冻土发育的地区,因刚脱离冰川覆盖不久,冰川地形保持得相当完整。冻漠土分布区的地形主要是陡峭的山坡,角锋、刃脊、第四纪和近代冰川所形成的冰斗和冰碛垅堤,宽谷,湖盆的湖积平原等。成土母质的差异较大,加拿大、西伯利亚地盾区是前寒武系基岩。其他地区有古生代各种灰岩、石英砂岩、板岩、中生代的灰岩、红色钙质砂泥岩及近代泥砾和冲积物,残积物,冰碛物,冰水沉积物等。

成土过程

冻土形成以物理风化为主,而且进行得很缓慢,只有冻融交替时稍为显著,生物、化学风化作用亦非常微弱,元素迁移不明显,粘粒含量少,普遍存在着粗骨性。高山冻漠土粘粒的K2O含量很高,可达50克每千克,说明脱钾不深,矿物处于初期风化阶段。

冻土区普遍存在不同深度的永冻层。在湿冻土分布区,夏季,永冻层以上解冻,由于永冻层阻隔,融水渗透不深,致使永冻层以上土层水分呈过饱和状态,而形成活动层,活动层厚度为0.6米至4米,若永冻层倾斜,则形成泥流;冬季地表先冻,对下面未冻泥流产生压力,使泥流在地表薄弱处喷出而成泥喷泉,泥流积于地表成为沼泽,因其下渗较弱,泥流、泥喷泉又混和上下层物质,使土壤剖面分化不明显,而在南缘永冻层处于较深部位,水分下渗较强处,剖面层次分化较好。

在干旱冻土分布区,白天由于太阳辐射强烈,地面迅速增温,表土融化,水分蒸发;夜间表土冻结,下层的水汽向表面移动并凝结,增加了表土含水量,反复进行着融冻和湿干交替作用,促进了表土海绵状多孔结皮层的形成。此外,暖季,白天表土融化,夜间冻结,都是由于由地表开始逐渐向下增温或减温总是大致平行于地表水平层次变化着的,所以,在干旱的表土上,强烈的冻结作用往往形成表土的龟裂。

在极地冰沼土区,由于低温,蒸发量小,地势低平处排水不畅,土壤水分经常处于饱和状态,致使土壤有机质和矿物质处于嫌气条件下,虽然有机质形成数量不多,但在低温嫌气条件下分解缓慢,表层常有泥炭化或半泥炭化的有机质积累。矿物质也处于还原状态,铁、锰多被还原为低价状态,形成一个黑蓝灰色的潜育层,在高山冻漠土分布区,降水较少,土壤淋溶弱,剖面中往往有石膏、易溶盐和碳酸钙累积,致使土体呈碱性,表土结皮和龟裂等。

总的来说,冻土成土年龄短,处处呈现出原始土壤形成阶段的特征。

冻融作用

冻土地区气温低,土层冻结,降水少,流水、风力和溶蚀等外力作用都不显著,冻融作用则成为冻土地貌发育的最活跃因素。随着冻土区温度周期性地发生正负变化,冻土层中水分相应地出现相变与迁移,导致岩石的破坏,沉积物受到分选和干扰,冻土层发生变形,产生冻胀、融陷和流变等一系列复杂过程,称为冻融作用。它包括融冻风化、融冻扰动和融冻泥流作用。

融冻扰动一般发生在多年冻土的活动层内。当活动层于每年冬季自地表向下冻结时,由于底部永冻层起阻挡作用,结果使其中间尚未冻结的融土层(含水土层),在上下方冻结层的挤压作用下,发生塑性变形,形成各种大小不一,形状各异的融冻褶皱,又称冰卷泥。

融冻泥流是冻土地区最重要的物质运移和地貌作用过程之一。一般发生在数度至十余度的斜坡上。当冻土层上部解冻时,融水使主要由细粒土组成的表层物质,达到饱和或过饱和状态,从而使上层土层具有一定的可塑性,在重力的作用下,沿着融冻界面向下缓慢移动,形成融冻泥流,年平均流速一般不足1米。由于泥流顺坡蠕动时,各层流速不一,表层流速大于下层,所以有时可把泥炭、草皮等卷进活动层剖面中,产生褶皱和圆柱体等构造形态。

冻土地貌

地表层在不同状况下,具有不同的小气候、地形、地质和水分条件,在反复交替的冻融过程中,表现出不同的冰缘作用营力。

(1)与寒冻风化、重力作用有关的冰缘地貌形态

由于节理裂隙中的水分冻结膨胀,致使岩石破裂成岩块,或者因温度变化,使组成岩石的矿物不均一地热胀冷缩,并在内部产生不均匀应力,从而造成岩石破裂和岩块崩落。这一过程被称为寒冻风化作用。经寒冻风化作用破碎崩落的岩块、岩屑,有的停留原处,有的经重力作用再搬运而形成不同地貌形态。

石海:寒冻风化作用产生的大量大小不等的棱角状岩块及岩屑,在地形平缓条件下,大多在原地残留下来,形成碎石覆盖地面,这就是石海。石海是我国青藏高原、高原西部高山及大兴安岭北部冻土区均有分布。发育石海不仅要岩石坚脆、节理发育,如花岗岩、石英岩、玄武岩、石灰岩、硬砂岩、板岩等,而且还要有一定的水热条件,既要有一定的水分,同时温度为0℃上下持续波动的时间要长。显然,年平均气温为0℃的等温线附近具备上述温度条件。我们知道,年平均气温为0℃的等温线出现的海拔高度,随纬度降低而增高。因此,石海出现的海拔高度随纬度降低而增高。如青藏高原北部的昆仑山,现代石海发育在海拔4900~5000米以上的花岗片麻岩山地;而南部喜马拉雅山地区,现代石海出现在5300~5400米的山顶上。

石流坡(也称岩屑坡):石流坡的物质来源及产生与石海大体相似,但二者出现的地貌部位不同。石海多见于平缓的山顶;石流坡出现在山坡。石流坡的岩状、碎屑,除斜坡上经寒冻风化在原地产生外,还有在策略作用下来自山顶的。这样就决定了石流坡的组成物质是上细下粗,坡上方多是岩屑;坡下方主要是粗大岩块。其岩性取决于山顶母岩。石流坡的休止角一般在25~35度,坡面比较平直。石流坡是多年冻土地区常见的一种冰缘地貌形态,在大兴安岭和我国西部高山、高原冻土区有广泛分布,几乎到处可见。

石河:由寒冻风化产生的岩块、岩屑,在重力作用下汇集到斜坡沟槽内,碎石沿沟槽徐徐向下移动,故取名石河。

(2)与冻融分选作用有关的冰缘地貌形态

天然条件下,地表物质常常是粗细混杂的。由于石块和土的导热性能不同,因此冻结速度也各不一样。碎石导热率大,则先冻结,水分就先向碎石附近迁移,并于碎石周围形成冰。水变成冰后体积膨胀,则使碎石产生位移,这样就产生了粗细物质的分异。久而久之,粗细物质相对集中,呈现出各种形态。这一过程被称为冻融分选作用,它可以形成下述冰缘地貌形态。

石环:平缓而又粗细混杂的地表层,经冻融分选作用,使泥土岩屑集中在中间,岩块被排挤到周边,呈多边形或近圆形,形成所谓的石环。形成石环地段地松散层一定是岩块和泥土粗细混杂;要有充足的水分条件,含水量一般要在30%以上;气温在0℃上下波动的持续时间要比较长。石环常见于河漫滩、洪积扇前缘及山前缓坡地带,因为这些地貌部位常常具备石环形成的条件。但也有例外,在中天山海拔3850~3950米的古冰斗底部,曾发现直径1~4米的石环群。为什么石环会在这里出现呢?据考察,这是因为陡峻的冰斗壁,经长期寒冻风化和雪融作用,在冰斗底部堆积了比较丰富的粗细粒物质。同时冰斗内存在积雪,就是夏天也有断续积雪。积雪融化,给石环发育提供了水分条件。

斑土:形成机制和过程与石环十分近似,地表呈现出岩块、岩屑遍布,泥土呈斑装嵌在碎石之间,格外引人注目。有人比喻石环与斑土,是一母双胎,同族姐妹;也人有认为,斑土是石环发育的初级阶段,因此岩块环形显示还不完全。

石条:常常与岩屑坡同时存在,碎石与细粒物质呈条形相间顺坡排列,登高俯视,宛如田野沟。它是由于岩屑坡上的碎石经反复冻融及冻融分选使碎石汇集于低处,又经策略作用碎屑顺坡向下延伸而形成的。

冻胀草环:在地表面构成草皮的多边形或近似圆形,其间裸露,布满岩屑碎石。中间赤黄,周边碧绿,异彩夺目,是冻土区少见的一种冰缘地貌形态。目前对它的形成机制和过程还不十分清楚。人们认为,在草皮破裂处或老鼠洞地点,草皮下部泥土碎石经反复冻融拥出地表形成斑土,斑土继续发展扩大,多个相邻斑土如此发展扩大,最后草皮呈环状排列成草环。

(3)与冻胀作用有关的冰缘地貌形态

土层冻结,其中水分向冻结锋面迁移,产生重分布并变成冰,使原土层体积增大,或使地面抬升的过程,称冻胀作用。

冻胀是造成各类建筑物冻害的主要原因。当地基土层冻结,体积膨胀,建筑物和外部荷载不能克服地基土层冻结的膨胀力时,基础便被抬起。由于各侧基础受力不同,建筑物就要产生裂缝、倾斜,严重者甚至倒塌。

与冻胀过程有联系的冰缘地貌形态有冰椎、冰丘(冻胀丘)、冻胀拔石、泥炭丘、冻胀草丘等。

冰丘(也称冻胀丘):冬天季节融化层,由上而下和由下而上冻结,因过水断面缩小,冻结层上水处于承压状态;同时,冻结过程中水向冻结面迁移而产生聚冰层。随冻结面向下发展,当冻结层上水的压力和冰层膨胀力大于上覆土层强度时,地表就发生隆起,便形成了冰丘。冻胀丘是我国多年冻土地区经常可以见到的一种冰缘地貌类型。它常出现于河漫滩、阶地后缘和山麓地带,以及地形转折地段,冻胀丘底部的直径由几米到几十米,高1~2米,有的可达3~5米。冻胀丘表面经常存在纵横交错的裂缝。开裂后往往有地下水溢出,这是地下水的压力得到释放,冻胀丘也就不再继续发展。冻胀丘按存在时间,可分为一年生和多年生。由冻结层上水补给水的,一般形成一年生冻胀丘;由深部冻结层下水补给的形成多年生冻胀丘。一年生冻胀丘,初冬开始隆起,待季节融化层回冻结束,冻胀丘发育成熟,隆起达到顶峰,春天以后逐渐消失,一年生冻胀丘在我国冻土区分布比较普遍,多年生冻胀丘也有出现。青藏公路62道班的冻胀丘,是多年生冻胀丘的典型代表,也是目前我国已知最大的冰丘。底部直径为40~50米,高达20米,似座小山。它高大罕见,在学术界享有盛名。

泥炭丘:形成机制与冻胀丘相似,不同的是,泥炭丘在形成过程中,水分对聚冰层补给不那么充分,因此泥炭丘冰层较薄而且分散,同时个体也没有冻胀丘那样高大宏伟。泥炭丘常出现在地表植被茂密的山间谷地、低洼地和扇间洼地等湖沼地带。

冰椎:在多年冻土地区,有时老远就可以看到银光闪闪的冰体,这就是冰椎。它的形状、大小变化很大,有的直径2~3米,有的呈现冰坡、冰幔延伸几十米乃至数百米,有时带有几个溢水口。冰椎在冰土地区分布非常普遍,它们常出现于河漫滩、阶地后缘、洪积扇前缘及山麓地带。原因是这些地段常有地下水出露。冬季融化层回冻,地下水压力增大,冲破上覆土层溢出地表,溢出口冰体逐渐增大升高,并呈锥形。溢水边流边冻,并沿原地下水流路延伸,这样就形成了冰椎。冰椎对各种建筑物危害很大。有时,由于路堑边坡截断地下水流,地下水从堑坡上流出,随流随冻,形成堑坡挂冰,甚至冰漫轨道,严重阻塞行车。有时,人们喜欢将房屋修在坡脚下。由于房屋基础切断地下水去路,冬天来临大地封冻,而房屋下因取暖而形成融化盘,致使斜坡地下水在此溢出,导致屋内地板冒水。人们说,这是“水上人家”。

(4)与热融作用有关的冰缘地貌形态

由于天然或人为的因素改变了地表状况,引起季节融化深度加深,导致层状地下冰或高含冰冻土融化,而使地面下陷或改变地表形态的过程被称热融作用。热融可以形成热融滑塌、热融洼地、热融湖、热融沟等。

热融地貌类型多出现在地下冰发育或含冰量较高的平缓坡地、山间谷地、高平原地带。

热融滑塌:这种现象最早发现于青藏高原风火山。养路工人取土修路,使路边斜坡的地下冰层暴露,夏天暴露的冰层融化,使上覆草皮和土层失去支承而塌落下来。冰层融水稀释塌落物质呈流塑状态,在重力作用下缓缓下滑。地下冰层继续融化,上边土层再次塌落,并使新的冰层继续露出。如此往复,经过几个夏天的滑塌,就滑塌到坡顶。

本世纪六十年代初,我国曾有人在风火山一带目睹过热融滑塌发育过程的片断。7~8月间的十来天,就有一块土层塌落下来,一个夏天塌落了6~7次。这一过程是由于冰层融化,上覆土层一块一块地塌落的,故取名热融滑塌。青藏公路其它地段、天山,以及大兴安岭冻土区也曾见过上述现象,但由于地下冰层厚度不大,其规模还不及风火山地区。

热融滑塌垮落的土体呈流塑状态,顺坡向下蠕动,土流常常覆盖路面,阻塞行车,严重地段需采取工程措施进行拦截片。

热融洼地、热融湖:由于天然或人为因素(铲除草皮、砍伐森林等)的影响,地下冰层融化,使地表沉陷成的负地形,被称为热融洼地;地下冰层融化,融水渗浸进入或地表水汇聚于洼地,便形成了热融湖。

热融洼地和热融湖在我国多年冻土区有广泛分布,特别是青藏公路沿线的楚马尔河高平原上更为多见。有人认为,高平原上热融湖的形成,可能与几千年前全球气候转暖,造成冻土上限下降,地下冰层融化有关。

(5)与融冻蠕流作用有关的冰缘地貌形态

由高含冰量细粒土构成的缓坡,在融化季节冻土融化使土层呈流塑状态,并在重力作用下,沿冻土层面顺坡向下缓缓蠕动下滑,这种过程称为冻融蠕作用。沿坡徐徐蠕动下滑的融土层,依坡度、坡形可形成融冻蠕流阶地、泥石舌、泥流扇等。

融冻蠕流阶地(融冻泥流阶地):它常出现在地下冰发育的缓坡上,地面坡度一般为15~20度。顺直坡面对融冻泥流阶地形成最为有利。青藏高原风火山地区,这里地表以下是厚2~4米的亚粘土,含冰量大,并且层状地下冰发育,为泥流阶地和泥流舌形成提供了有利的条件。风火山垭口盆地发育有12级大型融冻泥流阶地,阶面宽5~12米,总长达150多米。如此多级的大型泥流阶地,在其它冻土区还未见过。

泥流舌、泥流坡坎:形成过程和产生机制与融冻泥流阶地大致相同。不同的是泥流舌、泥流坡坎形成的坡度要更大一些,一般在25~30度。同时,泥流舌及泥流坡坎的发生,除本身在策略作用下徐徐蠕动以外,来自上方坡面的降水表流衡释融土层,也促使它向下流动。因此,泥流舌的发育过程比融冻蠕流阶地要快,具有一定的突发性,同时分布也比较广泛。不过,在大兴安岭冻土区,森林植被根系使融化层增强了正体性,对融冻蠕流起了相当的抑制作用。因此,这里泥流阶地和泥流舌比较少见。

融冻褶皱(冰卷泥):在融冻泥流阶地、泥流舌及泥流坡坎的形成过程中,当融化层向下滑动时,靠近冻土界面的融土受到冻土面的粘连,而滑动速度小;相反,融化层上部受阻力小向下滑动速度较大。这样,在下滑体速度出现了上快下慢现象,因此下滑融化层产生褶皱变形,故此取各融冻褶皱。融冻褶皱是融冻蠕流过程中,融化层滑动时结构变形的结果,因此地表面一般不易发现。只有在融冻泥流阶地、泥流舌及泥流坡坎的剖面上才能看到这种现象。

(6)与寒冻劈裂有关的冰缘地貌形态

冬天,在我国北方,人们经常会看到地面出现一些宽度不等的裂缝,有时纵横交叉,这些裂缝就是由寒冻劈裂作用形成的。

土层在负温条件下体积发生收缩,由于土层在不同深度处的温度不同,而体积变化也不同,因此便产生收缩应力。在这种应力作用下,土体便会开裂,这一开裂过程被称为寒冻劈裂,也有人称它为冻裂。寒冻劈裂所产生的裂缝宽度和延长深度和土层的温度梯度、水分状况和成岩程度等有着密切的关系。

以寒冻劈裂为基础,再经反复冻结与融化,便可形成土脉、砂楔、冰楔(脉冰)及冰楔假型。它们的共同特征是在地面形成多边形裂缝,因此统称多边形构造。多边形构造的直径大小不等,小者4~5米,大者20~30米,还有更大的。土脉和砂楔延续深度一般不超过季节融化层;冰楔和冰楔假型可穿过季节融化层延深到多年冻土层内。在苏联西伯利亚北部,可以见到长达20~30米的脉体。

土脉和砂楔:土脉和砂楔是在寒冻劈裂基础上,经反复冻融或者风的堆积作用而形成的,但二者形成的环境有较大的差别。土脉多在湿冷环境条件下形成。地表潮湿,季节融化层的含冰量较大;砂楔多产生在干冷环境条件下,风的作用比较强,季节融化后的含冰量很少。寒冻劈裂夏天若被水充填,冬天水冻结成冰,便形成了季节性冰楔。由于水变成冰后体积增大,因此使寒冻劈裂扩宽加深。春夏季裂缝内冰体融化,部分裂缝空腔被围岩充填,次年冬天,裂缝聚积水又冻结成冰楔,裂缝再次扩宽并往下延深。如此多年,便形成了土脉。如地表温度条件无大的波动,土脉延深到季节融化层底部停止了发展。到目前为止,在我国多年冻土地区正在发展的土脉还没有发现。不过,已经停止生长的土脉还是很多的。不仅在多年冻土地区有,而且在广大季节冻土地区也有分布。例如,近几年通过野外调查,在黄土高原的定边、神池,大同,以及东北的吉林、辽宁北部等地都曾发现过土脉和砂楔。砂楔的发育过程与土脉不同。由于它形成在干冷气候环境,风的作用强烈,裂缝内没有水而被砂子育填。冬天来了,裂缝在收缩应力的作用下,再次开裂,之后又被砂充填,如此反复,便形成了砂楔。青藏高原近几年发现许多砂楔,有的已停止发展;有的砂楔中间还存在着裂缝,说明它还在发育成长。据国外研究,不同的土质在寒冻劈裂时对温度条件要求各不相同。土质愈粗,含水愈少,则开裂所需的温度愈低。一般情况下,泥炭土、亚粘土及淤泥质亚砂土,开裂所需的年均地温为-1~-2℃;粉质亚砂土、粉砂及细砂,开裂所需的年均地温为-2~-4℃;中粗砂及砂砾,则要在-5~-8℃开裂。

脉冰(冰楔)及冰楔假型:脉冰是土脉的进一步发展。当地表温度很低,寒冻劈裂贯入季节融化层以下时,夏天上部季节融化层融水浸入冻土上限以下裂劈,继后冻结成冰。次年夏天,季节融化层融化,并有融水浸入,经如此反复冻结与融化,脉冰逐渐增宽和向下发展。在地表温度比较稳定的情况下,脉冰侵入到一定深度时就不再往下发展,此时脉冰发育进入成熟阶段。有地表松散层逐年堆积的条件下,随土层加积,冻土上限逐渐抬升,脉冰随之向上增长。在这种情况下,就是地表温度较稳定时,脉冰长度仍要逐年增大。苏联西伯利亚西部20~30米长的脉块,大多是在地表土层加积条件下形成的。近年来,曾先后在大兴安岭伊图里河及西昆仑山发现脉块。它们的个体不大,脉冰上宽0.1~0.3米,延续深度到冻土上限以下1.0米左右。

主要性状

(一)诊断层和诊断特性:

冻土具有永冻土壤温度状况,具有暗色或淡色表层,地表具有多边形土或石环状、条纹状等冻融蠕动形态特征。

(二)形态特征:

土体浅薄,厚度一般不超过50厘米,由于冻土中土壤水分状况差异,反映在具常潮湿土壤水分状况的湿冻土和具干旱土壤水分状况的干冻土两个亚纲的剖面构型上有着明显差异,湿冻土剖面构型为O—Oi—Cg或Oi—Cg型,干冻土为J—Ah—Bz—Ck型,

(三)理化性质:

冻土有机质含量不高,腐殖质含量为10—20克每千克,腐殖质结构简单,70%以上是富里酸,呈酸性或碱性反应,阳离子代换量低,一般为10厘摩尔(+)每千克土左右,土壤粘粒含量少,而且淋失非常微弱,营养元素贫乏。

冻土分类

根据冻土的地理分布,成土过程的差异和诊断特征,可分为冰沼土和冻漠土两个土类。

详见:

在0℃或0℃以下冻结,并含有冰的岩土(土壤、土、岩石)。在 0℃或 0℃以下冻结,但不含冰的岩土,称为寒土。致密的岩体和干土在 0℃或0℃以下时,既不含冰也不含水,称为干寒土。岩石裂隙和土孔隙含有咸水或盐水时仅在很低的负温时才冻结,这种具有高于其冻结温度的负温、不含冰但含有未冻咸水或盐水的岩土,称为湿寒土。冻土和寒土统称冷土。上述观点为中国和俄罗斯的多数学者所采用。在北美则将低于 0℃的土,不管是否含冰,均称为冻土。冬季冻结、夏季全部融化的岩土为季节冻土;冬季冻结、仅在继后的夏季不融化的岩土为隔年冻土;冻结时间达3年或3年以上的岩土为多年冻土 。 冻土是一个复杂的多相和多成分体系,至少由气相、固相、液相三相组成。

http://baike.baidu.com/view/2839.htm


谁有冻土的资料??
1. 冻土是指0摄氏度以下,并含有冰的各种岩石和土壤。冻土可分为短时冻土、季节冻土以及多年冻土。2. 冻土对温度极为敏感,含有丰富的地下冰,具有流变性,其长期强度远低于瞬时强度。在冻土区修筑工程构筑物时,必须面临冻胀和融沉两大危险。3. 冻土广泛分布于高纬地带和高山垂直带上部,如北极圈以...

什么是冻土?
冻土是指零摄氏度以下,并含有冰的各种岩石和土壤。一般可分为短时冻土(数小时\/数日以至半月)\/季节冻土(半月至数月)以及多年冻土(又称永久冻土,指的是持续二年或二年以上的冻结不融的土层)。冻土具有流变性,其长期强度远低于瞬时强度特征。正由于这些特征,在冻土区修筑工程构筑物就必须面临两...

我国最大的多年冻土区在
2. 高纬度多年冻土分布在东北地区,而高海拔多年冻土则分布在中国的西部高山高原以及东部一些较高山地,如大兴安岭南端的黄岗梁山地、长白山、五台山、太白山。3. 冻土的分布具有明显的垂直分带规律。例如,祁连山热水地区海拔3480米处出现岛状冻土带,而海拔3780米以上则出现连续冻土带。4. 在青藏公路上...

冻土是什么?
我国多年冻土分为高纬度和高海拔多年冻土。高纬度多年冻土主要集中分布在大小兴安岭,面积为38-39万平方公里。高纬度的多年冻土是欧亚大陆多年冻土南缘,平面分布服从纬度地带性规律,即往约往海拔高的地方冻土面积约达,厚度越厚。高海拔多年冻土分布在青藏高原、阿尔泰山、天山、祁连山、横断山、喜马拉雅山...

持续多少年的冻土被称作为多年冻土也叫永冻土
持续3年或3年以上的冻土被称作为多年冻土,也叫永冻土。冻土是指零摄氏度以下,并含有冰的各种岩石和土壤。一般可分为短时冻土、季节冻土以及多年冻土(又称永久冻土,指的是持续二年或二年以上的冻结不融的土层)。冻土具有流变性,其长期强度远低于瞬时强度特征。正由于这些特征,在冻土区修筑工程构...

持续多少年的冻土被称作为多年冻土也叫永冻土
冬季冻结,称活动层,又称冰融层;下层常年处在冻结状态,称永冻层或多年冻层。永久冻土有机质含量不高,腐殖质含量为10~20克每千克,腐殖质结构简单,70%以上是富里酸,呈酸性或碱性反应,阳离子代换量低,一般为10厘摩尔\/每千克土左右,土壤粘粒含量少,而且淋失非常微弱,营养元素贫乏。

冻土层是什么意思?
冻土的存在主要受温度的影响,纬度越高的地方温度就越低,多年冻土主要分布在亚欧大陆和北美洲的北部,南半球陆地面积少,冻土的面积少。另外,从地面往高空,越往高处温度越低。有些高山上的温度常年也都低于零度,如美洲的安第斯山脉,非洲的乞立马扎罗山以及我国的青藏高原,那里的坡地、山峰终年积雪。...

永久冻土是指什么?
永冻层又称永久冻土或多年冻土,是指持续多年冻结的土石层。可分为上下两层:上层每年夏季融化,冬季冻结,称活动层,又称冰融层;下层常年处在冻结状态,称永冻层或多年冻层。冻土层的厚度从高纬到低纬逐渐减薄,以至完全消失。例如,北极的多年冻土厚达千米以上,年平均低温为-15℃。永冻层的顶面...

北京冻土层有多深?
北京冻土层是85cm。1、冻土层,亦作冻土、冻原或苔原,语出萨米语tūndra(tundar的属格),意思是“无树的平原”。在自然地理学指的是由于气温低、生长季节短,而无法长出树木的环境。2、在地质学是指0℃以下,并含有冰的各种岩石和土壤。一般可分为短时冻土(数小时、数日以至半月)、季节冻土(...

我国的冻土主要分布在什么位置?
2、在西部高山高原和东部一些山地,一定的海拔高度以上(即多年冻土分布下界)方有多年冻土出现。冻土分布具有垂直分带规律,如祁连山热水地区海拔3480 米出现岛状冻土带,3 780 米以上出现连续冻土带;前者在青藏公路上的昆仑山上分布于海拔4200 米左右,后者则分布于4350 米左右。

巴塘县13837159038: 冻土(零摄氏度以下并含有冰的各种岩石和土壤) - 搜狗百科
尉皆二甲: 冻土就是一种低于o°c并且含有冰的特殊 土壤,分布于高纬度地带和高山垂直带上部. 因为土壤里面或多或少的都含有水分,一旦温 度降到o°c或o°c以下,土壤里的水分就会凝结 成冰将土壤冻结,这样就形成了冻土.

巴塘县13837159038: 什么是冻土?
尉皆二甲: 冻土是指0摄氏度以下,并含有冰的各种岩石和土壤.一般可分为短时冻土(数小时/数日以至半月)/季节冻土(半月至数月)以及多年冻土(数年至数万年以上).地球上多年冻土/季节冻土和短时冻土区的面积约占陆地面积的50%,其中,多年冻土面积占陆地面积的25%. 冻土是一种对温度极为敏感的土体介质,含有丰富的地下冰.因此,冻土具有流变性,其长期强度远低于瞬时强度特征.正由于这些特征,在冻土区修筑工程构筑物就必须面临两大危险:冻胀和融沉.

巴塘县13837159038: 冻土层的形成 -
尉皆二甲: (一)气候 冻土分布区的环境条件存在差异.冰沼土分布区属苔原气候,大部分地面被雪原和冰川所覆盖,年平均温在0℃以下,一般都在-10℃至-17℃,冬季气温可低至-40℃,甚至-55℃,夏季温度也很低,7月份平均温度不超过10℃,全年...

巴塘县13837159038: 冻土有什么特点 -
尉皆二甲: 冻土的基本概念 凡含有水的松散岩石和土体,当温度降低到其冻结温度时,土中孔隙水便冻结变成冰,且伴随析冰(晶)体的产生,胶结了土的颗粒.把具有负温度及冰,且胶结着松散岩石固体颗粒的土(岩),称为冻土(岩).冻土温度状态...

巴塘县13837159038: 冻土是怎样形成的呢?
尉皆二甲: 冻土是在温度为O℃以下时,孔隙中的水冻结成固体颗粒的土.在多年的持续过程中没有季节性融化的土称为永冻土.由互相凝聚的物体组成的四相体系〔固相(土颗粒骨架)、塑相(冰)、液相(水)、气相(水气和其他气体)〕,随着温度的改变,冻结过程中的物理—力学作用,土体分解为矿物间层和冰间层,体积增大(冻胀),出现裂缝.种类名称仍按非冻土(在其融化后)命名.永冻土地区的建筑应专门设计.

巴塘县13837159038: 冻土具有什么工程特性?
尉皆二甲: 温度等于或低于零摄氏度且含有冰的土层称为冻土.冻结状态能保持3年以上者称为多年冻土,随季节融化或冻结的地表土称为季节性冻土.冻胀性和融沉性(冻土在融化后压缩性急剧增大,强度明显降低)是冻土的两个重要的变形特征.对于季节性冻土冻胀性的危害是主要的;对于多年冻土,融沉性的危害是主要的.

巴塘县13837159038: 冻土有什么作用?
尉皆二甲: (1)可增加路基总高度,使其满足最小填土高度要求. (2)选用不发生冻胀的路面结构层材料. (3)对于不满足防冻胀要求的结构,可采用调整结构层的厚度或采用隔温性能好的材料等措施来满足防冻胀要求.多孔矿渣是较好的隔温材料. (4)为防止不均匀冻胀,防冻层厚度(包括路面结构层)应不低于标准的规定.

巴塘县13837159038: 什么是冻土 ,干吗用的?/谢谢 -
尉皆二甲: 冻土定义 冻土是指0摄氏度以下,并含有冰的各种岩石和土壤.一般可分为短时冻土(数小时/数日以至半月)/季节冻土(半月至数月)以及多年冻土(数年至数万年以上).地球上多年冻土/季节冻土和短时冻土区的面积约占陆地面积的50%,...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网