利用CFD方法研究室内湿度和结露分布?

作者&投稿:奚侵 (若有异议请与网页底部的电邮联系)
~ 本文首先建立了在气流场,温度场之外,能够分析室内湿度分布,结露分布,计算结露量动态形成过程的CFD计算模型,并给出了自由水面热湿同时移动的计算新方法;通过与模型试验结果的比较,验证了计算模型的精确性;最后通过具体算例,发现通风方式对室内湿度分布和结露的形成影响很大,在室内湿度较大的场合,可以通过通风方式的优化设计更有效地解决除湿和结露问题。
关键词:CFD模拟 结露 湿度 通风
1.前言
湿度环境问题不同于其他室内污染问题,湿度过高或过低都将严重影响建筑物性能和居住者健康。湿度过低,人会产生干燥等不适感,引起墙体裂缝,木制板材变形,另外据北欧学者的研究,流感病菌在低湿度下生存率明显增加;而湿度过高,一方面造成墙体表面及内部结露,降低墙体断热和耐久性,影响建筑物寿命[1],另一方面,当湿度超过70%时,会带来霉菌(Fungi)的大量繁殖,引起过敏性皮炎,哮喘等疾病,影响居住者的身体健康[2-5]。我国地域辽阔,不同地区室内湿度环境呈现出不同的特点。因此,深入地研究室内湿度环境问题具有重要的意义。
随着计算机功能的飞速发展,CFD仿真技术在建筑环境领域,如室内温度场分布,换气效率,人体周边微环境等研究中日益得到应用。但是到目前为止,国内外利用CFD技术分析研究室内湿度分布规律的还很少[6,7],而以此研究室内结露的形成和发展的还没有。
2.考虑湿度和结露计算的CFD修正模型
本研究中采用标准k-ε紊流模型。但考虑到水蒸气含量较大时空气密度会出现变化,从而影响浮力的计算,依据近藤等提出的方法[8],对模型进行了修正,在浮力项中导入βx。修正的湿・结露CFD计算模型见表1。另外,本研究中还考虑了结露量的计算。由于结露的形成是一个动态的过程,提出了两个随时间变化的指标:至时间t,1)单位壁面积上的结露量CON(s,t);2)壁面总结露量SUMCON(t)。计算方法及其与CFD模型的结合见图1。
另外,建筑内的湿源,如浴室和厨房等,由于自由水面面积较大,水温一般高于周围空气温度较多,水蒸气分子在扩散过程中还同时伴随有热的交换。如果不考虑这种热湿的同时传递将会给室内温湿度分布和气流计算结果带来较大的误差。由于这方面的研究较少[9],我们通过试验发现自由水面的热湿传递量m和qm由以下公式确定,然后可以向上的热湿流束的形式作为内部边界条件代入CFD计算中:
图1 湿・结露CFD计算模型中的结露计算流程
模型的计算公式 表1 连续方程:
运动方程:
输送方程:
输送方程:
热输送方程:
水蒸气输送方程:
式中:
涡粘性系数等相关项:
(1)
(2)
式中 —室内换气次数,h-1;
—对应于水温的饱和蒸汽压力,kpa;
—周围空气的蒸汽分压力,kpa;
—水温,℃;
—周围空气温度,℃;
—水蒸气的蒸发潜热,kJ/kg;
—空气的定压比热,kJ/(kgK)。
—新提出的参数,它代表由水蒸气扩散引起的实际散热量与水蒸气全热交换时的最大散热量的比值。事实上,由于一部分水蒸气从水面蒸发的途中只进行了显热交换,没有发生相变,应是一个0-1之间的数值。利用简单的公式推导和试验拟合,它可以整理成下式。具体内容可参考文献[10]。
(3)
3.模型试验
为验证所建湿・结露CFD计算模型的正确性,在日本东京燃气公司技术研究所的人工气象室建立了模型小室,进行了模型试验,并比较了模拟结果与实验数据。
模型的概要见图2。模型小室由聚乙烯板制成,小室中通过地面上的加湿器和水的温控来调节和模拟各种加湿工况,加湿量由电子天平测量加湿器的重量变化求得。小室外壁上部和下部分别设开口,安装有小型轴流风机的通风短管可连接在开口上,可利用风机位置的变化来模拟不同的通风方式。小室内的风量由通风短管内安置的微风速仪测定。除了小室外部的温湿度外,在小室中心断面上布置了14个温湿度测定元件(THP-B4,日本神荣公司)进行温湿度分布的测定。
试验与模拟工况见表2。其中工况1为验证室内温湿度分布的稳态计算,工况2为验证结露形成与发展的动态计算。通风方式均为下送上排的机械排风方式。
试验工况 表2
工况编号
气象室条件
加湿器水温
(℃)
加湿量
(g/h)
通风量
(m3/h)
进风温度
温度(℃)湿度(%)114.347.044.627.517.014.3219.445.068.1101.37.925.2
图2 模型试验的概要与测点布置
4. 试验与计算结果的比较
4.1 温湿度分布的验证
图3给出了工况1的试验与CFD计算比较,其中试验数据为所有测点的测量值均达到稳定状态时的结果。模拟值中,qm=486W/m2为利用式2)和3)计算的实际水蒸气扩散散热量,(此时Fm约为0.52)。为了对比,我们又假设了水蒸气蒸发时都保持气相,没有发生相变化,扩散散热全部由显热交换构成的情况(qm=184W/m2)以及水蒸气蒸发时为全热交换的情况(q’=1026W/m2)。由图可知,水蒸气扩散散热量对室内温度分布影响很大,如采用qm=1026W/m2顶棚附近的温度比测定值高2度左右。某些研究[11]在计算浴室热湿负荷时,主张以全热交换来概算水蒸气扩散散热量势必造成很大的计算误差。相比之下,因为小室内湿度主要由水蒸气质量平衡决定,扩散散热值对小室内湿度的平均水平影响不大,但由于热流束的浮力效果不同,水面附近的气流方式导致湿度分布发生微妙的变化。综合地看,采用q’=486W/m2的计算结果,无论温湿度,与实测都最为吻合。
图4为测定断面上的流场,温湿度场的CFD模拟结果.由图可见,在此断面上从水面处形成的热湿羽流几乎没有受到小室内通风的影响,温湿度成层现象非常明显。
图3 实测与模拟的温湿度分布比较(工况1)
图4 CFD计算结果(左:气流场;中:温度场;右:湿度场)
4.2 结露形成与发展过程的验证
图5给出了工况2的试验与CFD计算结果的比较。试验和模拟时间均为30分钟左右。为了更好地形成表面结露并防止出现小室内空气湿度达到100%的情况,本试验工况进行时,进口处通过预加热装置对进风加热至25.2度。由图可见,实测和模拟都显示经过20分钟左右顶棚处的测点(P1-7和P2-7)湿度达到饱和,表明出现了结露。这说明虽然到目前为止结露问题还没有好的直接测定方法,通过比较小室内的温湿度动态分布,计算与模拟值随时间的变化规律基本一致,可以认为利用此计算模型来分析结露问题是可行的。
我们针对工况2,利用湿・结露CFD计算模型对结露进行了动态模拟,模拟时间为1小时。图6给出了4个时间点的结露分布。试验开始20分钟左右,结露首先在小室后上部角落出现,然后以较快的速度沿顶棚和侧壁发展,在45分钟以后结露面积基本达到稳定,但结露量继续增加。从结露量上看,小室后部两个侧壁和顶棚的结露量较多。这是因为前部侧壁和地面离进风口较近,热风使这些壁面温度升高的缘故。
图5 实测与模拟的温湿度动态变化比较(工况2)
图6 CFD模拟的结露分布随时间变化图
5.通风对结露的影响
通风是解决结露问题的重要手段之一,但是到目前为止很少有这方面的量化分析。我们利用CFD湿・结露计算模型通过3个算例针对不同的通风量和通风方式对结露的影响进行了初步的探讨。
算例1:即工况2;
算例2:通风量由7.9增至9.4m3/h,其他条件不变;
算例3:通风方式改为上送下排的机械排风方式,其他条件不变。
图7为算例2和3的结露分布模拟结果(t=60min)。与图6相比较,由于通风量增加,算例2的结露面积相应地减少,特别是侧壁靠下部的区域结露基本消失。算例3的通风量与算例1完全相同,但结露分布形状完全不同。因为变成上送下排的方式,抑制了水面附近的浮力效果造成的水蒸气上升现象,顶棚与侧壁上部的结露减少。图8给出了三个算例的各壁面及总的结露量的计算结果(t=60min)。由图可知,算例2和算例3的总结露量分别只有算例1的26%和20%。
图7 不同通风量与通风方式对结露分布的影响(左:算例2;右:算例3)图8 不同通风量与通风方式下结露量的变化
6.结论
为利用CFD技术研究室内的湿度分布与结露问题,本研究开发了湿・结露CFD计算模型,通过对模型的验证和算例计算,可得以下结论:
1) 无论是不考虑结露,只考虑湿度分布的稳态计算,还是考虑结露量的非稳态计算,CFD模型的计算结果都与试验结果较为吻合。这说明可以利用此模型进行室内湿度场和结露的详细分析。特别是结露问题,在到目前为止还没有有效的测定方法的情况下,CFD的应用提供了非常重要的研究手段;
2) 本研究中还涉及到热湿同时传递问题,给出了新的计算方法并应用于CFD的计算。
3) 即使是同样的风量,不同的通风方式对室内湿度分布和整体的湿度水平影响很大,在室内湿度较大的场合,可以通过通风方式的优化设计更有效地解决除湿和结露问题;
7.参考文献
[1] Straube JF. Moisture in buildings. ASHRAE Journal 2002; (1):15-9.
[2] Sterling EM, Arundel A, Sterling TD. Criteria for human exposure to humidity in occupied buildings. ASHRAE Transactions 1985;(91):
[3] Murray AB, Ferguson AC, Morrison BJ. Ensitizaiton to house dust mites in a North American cit y. Journal of Allergy and Clinical Immunology 1985;76(1):108-12.
[4] Bates JM, Rorek DA, Ballantye MH. Dust mite counts and mite allergens in family homes before and after dry extraction carpet cleaning, Proceedings of the 6th International Conference on Air Quality and Climate, 1993, Vol.3, p.33-8.
[5] Harving H, Korsgaard J, Dahl J, Beck HI, Bjerring P. House dust mites and atopic dermatitis. Annals of Allergy 1990;65:25-31.
[6] Chao NT, Wang WA, Chiang CM. Study of control strategy using outdoor air to reduce winter indoor humidity in Taiwanese apartments – demonstrated by ventilation design for a bathroom. ASHRAE Transactions. 1996; 102(1): 182-91.
[7] Kolokotroni M, Saiz N, Littler J. Moisture movement: A study using tracer gas techniques and CFD modeling. Building Services Engineering and Technology. 1992;13(2): 113-17.
[8] 近藤靖史、长泽康弘、藤村淳一.湿度による浮力の影响を考虑した室内温热环境予测(その1)室内空気中の水蒸気が空间温度分布に与える影响.日本建筑学会计画系论文集. No.534, 57-62, 2000.
[9] ASHRAE. 1997. ASHRAE handbook - fundamentals, Chapter 5, Atlanta.
[10] 相泽芳弘、吉野博.居室内の湿気挙动の解明に関する研究(その3)热・湿気同时発生时の温度差、温度、换気回数が湿気発生に与える影响と算定式の导出. 日本建筑学会大会学术讲演梗概集.p.407-408.1996.
[11] 赤井仁志、鎌田元康、小川正晃.大型浴槽からの损失热量.空気调和卫生工学.Vol.78(1), 53-64,1999.
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd


流体仿真是什么意思?
流体仿真是一种计算流体力学(CFD)的方法,用于预测流体流动和相应的物理现象,比如流量、压力、速度、温度等。它基于计算机模型和数学模型,通过分析物理量与时间和空间的关系来模拟流体的运动和行为。通过流体仿真,我们能够更好地理解和预测流体的行为,从而为工业设计、工程和科学研究提供决策支持。流体...

cfd方法可以预测一次雾化吗
不能。CFD技术在喷雾微观特性研究的应用验证了拉格朗日法研究气相与离散相相互作用的有效性,但截止于2023年6月6日研究还不能提供一次雾化机理的相关信息,所以cfd方法不可以预测一次雾化。

CFD仿真模拟的优点
另一方面,CFD具有成本低、速度快、资料完备且可模拟各种不同的工况等独特的优点,故其逐渐受到人们的青睐。由表1给出的四种室内空气分布预测方法的对比可见,就目前的三种理论预测室内空气分布的方法而言,CFD方法确实具有不可比拟的优点,且由于当前计算机技术的发展,CFD方法的计算周期和成本完全可以为工程...

材料化学工程国家重点实验室(南京工业大学)的科研领域
实验室面向国家重大需求和国际学术前沿,以建设材料化学工程领域高水平的科学研究、人才培养和学术交流基地为目标,围绕“用化学工程的理论与方法指导材料制备与加工过程”、“发展以新材料为基础的化工单元技术与理论”的学术思路,开展创新性应用基础研究,致力于解决制约我国过程工业可持续发展的能源、资源和环境等瓶颈问题,...

CFD有哪些优势?
CFD指的是计算流体力学。简单来说,就是利用cfd软件,通过建模,迭代计算,分析问题,从而达到优化设计和研究分析嗯目的。cfd的优势,在于节约成本,缩短产品周期。比如你要盖一栋楼,你可以用cfd模拟的手段,分析他建成狗的风环境,采光,噪音等能否满足要求,从而进一步优化。相比于实验检测,需要话费额外...

试着列举计算流体力学cfd方法的优缺点?
认识CFD的优势要将其与纯理论的流体力学和实验的流体力学进行对比 CFD是虚拟的,节省了硬件开发时间,对一些大尺度模型(飞机、涵洞等)进行全尺度模拟相对便宜。纯理论的流体力学基于有限的认识无法求解方程组,很少的能够应用于工业上的解,而实验往往昂贵耗时,难以独立地考虑某个因素的影响,一般无法进行...

CFD仿真模拟的解决问题
中国清华大学等,以体育场馆为主的高大空间的气流组织设计及其与空调负荷计算的关系研究;(4)VOC散发的数值模拟:美国MIT等,借助CFD研究室内有机散发污染物在室内的分布,研究室内IAQ问题;(5)洁净室的数值模拟:中国清华大学等;对型式比较固定的洁净室空调气流组织形式进行数值模拟,指导工程设计;

CFD和数值仿真还有数值模拟的区别?
能源等多个领域提供了不可或缺的计算支持。总结起来,尽管CFD、数值仿真和数值模拟在表面上有着相似之处,但它们各自强调的侧重点不同。CFD更侧重于解决实际工程问题,而数值仿真和数值模拟则分别代表了理论研究和工程实践的两个层面。理解这些概念的区别,有助于我们在实际工作中更准确地选择和运用它们。

从建筑外环境中的采光,通风对建筑物的影响
用CFD 方法和实验方法研究了自然通风建筑中,屋顶形状和屋顶高度对自然通风情况下的室内气流分布和室内气流流速的影响。依靠通风机提供的动力来迫使空气流通来进行室内外空气交换的方式叫做机械通风。与自然通风相比,机械通风具有以下优点:送入车间或工作房间内的空气可以经过加热或冷却,加湿或减湿的处理;从车间排除的空气...

CFD工程仿真实战书籍涵盖哪些典型应用领域?
第6至第8章,集结了26个综合实战案例,展示了FLUENT在航空航天、船舶、能源等众多领域的实际应用,为读者提供了丰富而全面的软件操作实践。本书不仅适合航空航天、船舶等领域的研究生和本科生,作为学习CFD基本理论和软件应用的教材,也为企业研发人员和从事CFD计算的专业人士提供了宝贵的参考资源。其丰富的...

海南省15276373043: 从建筑外环境中的采光,通风对建筑物的影响 -
仲孙符丹红: 建筑标准中对通风的要求 建筑通风方式比较国家颁布的《住宅设计规范》(GB50096-2011)规定:6.9.1 住宅的卧室、起居室(厅)、厨房不应布置在地下室;当布置在半地下室时,必须对采光、通风、日照、防潮、排水及安全防护采取措施...

海南省15276373043: 建筑物围护结构最小传热阻有何意义?怎样检验内表面是否结露? -
仲孙符丹红: 确定建筑物围护结构最小热阻主要有二方面的意义:(1)除浴室外等相对温度很高的房间外,围护结构内表面温度应满足不结露的要求.因为内表面即结露可导致耗热量增大,使围护结构易于破坏.(2)室内空气温度与围护结构内表面温度的温...

海南省15276373043: 关于建筑物理
仲孙符丹红: 好的,知道了 1)室内空气温度:居住建筑冬季采暖设计温度为18℃,托幼建筑采暖设计温度为20℃,办公建筑夏季空调设计温度为24℃等.这些都是根据人体舒适度而定的要求. (2)空气湿度:根据卫生工作者的研究,对室内热环境而言,正常的湿度范围是30-60%.冬季,相对湿度较高的房间易出现结露现象. (3)气流速度:当室内温度相同,气流速度不同时,人们热感觉也不相同.如气流速度为0和3m/s时,3m/s的气流速度使人更感觉舒适. (4)环境辐射温度:人体与环境都有不断发生辐射换热的现象. 用这个回答吧

海南省15276373043: 如何解决冬季窗户结露 -
仲孙符丹红: 你好,这是自然现象,叫结露.与空气中的温度和含湿量密切相关.当空气中的含湿量过高,或温度低于露点温度时,就会产生结露现象.对于门窗而言,结露的主要原因是室内湿度过大.调查显示,房屋在建造过程中每平米需40KG水,如此...

海南省15276373043: 水管温度17,室内温度30,怎么控制结露 -
仲孙符丹红: 针对你的这种情况,目前有一种专利技术可以控制结露,就是通过环境的温度和相对湿度来计算露点,并控制水管温度,使水管的表面温度永远高于露点温度,就可以保证水管外壁不结露了.如果你一定要保证水管温度17,室内温度30,那就只能降低环境湿度了.通风排湿或者干燥剂吸潮.

海南省15276373043: 浅谈常见的几种CFD算法 -
仲孙符丹红: 1. FVM-有限体积法 这是目前CFD领域最成熟的算法.该算法是将流体的Euler控制方程在单元控制体内进行积分后离散求解.目前大家常用的CFD软件,例如Fluent,CFX,Starccm+和OpenFoam等都是主要基于这种方法.FVM的基本思路:1、...

海南省15276373043: 建筑节能的途径? -
仲孙符丹红: 建筑节能的途径大的方面来讲,可以从以下几个方面来考虑: 一、政府出台一系列建筑节能政策、法规、规章,对建筑节能提出明确的规定和要求; 二、制定一系列标准,形成建筑节能的标准体系,为建筑节能提供可靠的技术依据; 三、研发...

海南省15276373043: 冬季,墙面上出现了结露现象,下面哪一条能够准确地解释发生结露现象的原因 -
仲孙符丹红: 冬季室内空气温度16--20度,相对湿度超过100内墙面会结露. 结露就是指物体表面温度低于附近空气露点温度时表面出现冷凝水的现象. 结露点是物体表面开始结露形成液滴或冰的临界温度点,当物体表面的温度等于或低于结露点温度时,其...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网