能量最低的四个量子数是?

作者&投稿:自魏 (若有异议请与网页底部的电邮联系)
电子的4个量子数分别是什么意思~

电子的4个量子数所代表的意思分别是:决定轨道或电子能量(主量子数);决定电子空间运动的角动量(角量子数);决定原子轨道的伸展方向(磁量子数);描述轨道电子特征(自旋量子数)。
1、主量子数:描述电子在原子核外运动状态的4个量子数之一,习惯用符号n表示。它的取值是正整数,主量子数是决定轨道(或电子)能量的主要量子数。
2、角量子数:角量子数l决定电子空间运动的角动量,以及原子轨道或电子云的形状,在多电子原子中与主量子数n共同决定电子能量高低。
3、磁量子数:磁量子数m决定原子轨道(或电子云)在空间的伸展方向。
4、自旋量子数:自旋量子数用ms表示,是描述轨道电子特征的量子数。

扩展资料:
量子数包括主量子数n、角量子数l、磁量子数m和自旋量子数s四种,前三种是在数学解析薛定谔方程过程中引出的,而最后一种则是为了表述电子的自旋运动提出的。
量子数通常取整数或半整数分立值。
在原子物理学中,对于单电子原子(包括碱金属原子)处于一定的状态,有一定的能量、轨道角动量、自旋角动量和总角动量。表征其性质的量子数是主量子数n、角量子数l、自旋量子数ms=1/2,和总角动量量子数j。
在光谱学上常用大写拉丁字母K,L,M,N,O,P,Q代表电子层数,主量子数n是决定电子能量高低的主要因素。
对单电子原子来说:n值愈大,电子的能量愈高。例如氢原子中电子的能量完全由主量子数n决定。
对多电子原子来说:核外电子的能量除了同主量子数n有关以外还同原子轨道或电子云的形状有关。
因此,n值愈大,电子的能量愈高这句话,只有在原子轨道或电子云的形状相同的条件下,才是正确的。
参考资料:百度百科 - 量子数
百度百科 - 主量子数

核外电子的运动状态

电子在原子中的运动状态,可n,l,m,ms四个量子数来描述。

(一)主量子数n

主量子数n是用来描述原子中电子出现几率最大区域离核的远近,或者说它是决定电子层数的。主量子数的n的取值为1,2,3…等正整数。例如,n=1代表电子离核的平均距离最近的一层,即第一电子层;n=2代表电子离核的平均距离比第一层稍远的一层,即第二电子层。余此类推。可见n愈大电子离核的平均距离愈远。

在光谱学上常用大写拉丁字母K,L,M,N,O,P,Q代表电子层数。

主量子数(n)
1
2
3
4
5
6
7

电子层符号
K
L
M
N
O
P
Q


主量子数n是决定电子能量高低的主要因素。对单电子原子来说,n值愈大,电子的能量愈高。但是对多电子原子来说,核外电子的能量除了同主量子数n有关以外还同原子轨道(或电子云)的形状有关。因此,n值愈大,电子的能量愈高这名话,只有在原子轨道(或电子云)的形状相同的条件下,才是正确的。

(二)副量子数l

副量子数又称角量子数。当n给定时,l可取值为0,1,2,3…(n-1)。在每一个主量子数n中,有n个副量子数,其最大值为n-1。例如n=1时,只有一个副量子数,l=0,n=2时,有两个副量子数,l=0,l=1。余此类推。按光谱学上的习惯l还可以用s,p,d,f等符号表示。

l 0 1 2 3
光谱符号 s p d F

副量子数l的一个重要物理意义是表示原子轨道(或电子云)的形状。L=0时(称s轨道),其原子轨道(或电子云)呈球形分布(图4-5);l=1时(称p轨道),其原子轨道(或电子云)呈哑铃形分布(图4-6);…



图4-5 s电子云图 4-6 p电子

副量子数l的另一个物理意义是表示同一电子层中具有不同状态的亚层。例如,n=3时,l可取值为0,1,2。即在第三层电子层上有三个亚层,分别为s,p,d亚层。为了区别不同电子层上的亚层,在亚层符号前面冠以电子层数。例如,2s是第二电子层上的亚层,3p是第三电子层上的p亚层。表4-1列出了主量子数n,副量子数l及相应电子层、亚层之间的关系。

表4-1 主量子数n,副量子数l及其相应电子层亚层之间的关系

n
电子层
l
亚层

1
1
0
1s

2
2
0
2s

1
2p

3
3
0
3s

1
3p

2
3d

4
4
0
4s

1
4p

2
4d

3
4f


对于单电子体系的氢原子来说,各种状态的电子能量只与n有关。但是对于多电子原子来说,由于原子中各电子之间的相互作用,因而当n相同,l不同时,各种状态的电子能量也不同,l愈大,能量愈高。即同一电子层上的不同亚层其能量不同,这些亚层又称为能级。因此副量子数l的第三个物理意义是:它同多电子原子中电子的能量有关,是决定多电子原子中电子能量的次要因素。

(三)磁量子数m

磁量子数m决定原子轨道(或电子云)在空间的伸展方向。当l给定时,m的取值为从-l到+l之间的一切整数(包括0在内),即0,±1,±2,±3,…±l,共有2l+1个取值。即原子轨道(或电子云)在空间有2l+1个伸展方向。原子轨道(或电子云)在空间的每一个伸展方向称做一个轨道。例如,l=0时,s电子云呈球形对称分布,没有方向性。m只能有一个值,即m=0,说明s亚层只有一个轨道为s轨道。当l=1时,m可有-1,0,+1三个取值,说明p电子云在空间有三种取向,即p亚层中有三个以x,y,z轴为对称轴的px,py,pz轨道。当l=2时,m可有五个取值,即d电子云在空间有五种取向,d亚层中有五个不同伸展方向的d轨道(图4-7)。




图4-7 s,p,d电子云在空间的分布

n,l相同,m 不同的各轨道具有相同的能量,把能量相同的轨道称为等价轨道。

(四)自旋量子数ms

原子中的电子除绕核作高速运动外,还绕自己的轴作自旋运动。电子的自旋运动用自旋量子数ms表示。ms 的取值有两个,+1/2和-1/2。说明电子的自旋只有两个方向,即顺时针方向和逆时针方向。通常用“↑”和“↓”表示。

综上所述,原子中每个电子的运动状态可以用n,l,m,ms四个量子数来描述。主量子数n决定电子出现几率最大的区域离核的远近(或电子层),并且是决定电子能量的主要因素;副量子数l决定原子轨道(或电子云)的形状,同时也影响电子的能量;磁量子数m决定原子轨道(或电子云)在空间的伸展方向;自旋量子数ms决定电子自旋的方向。因此四个量子数确定之后,电子在核外空间的运动状态也就确定了。





量子数,电子层,电子亚层之间的关系
每个电子层最多容纳的电子数 2 8 18 2n^2
主量子数n 1 2 3 4
电子层 K L M N
角量子数l 0 1 2 3
电子亚层 s p d f
每个亚层中轨道数目 1 3 5 7
每个亚层最多容纳电子数 2 6 10 14



核外电子的分布:
1. 原子中电子分布原理:
(两个原理一个规则):
(1)、泡利(Pauli)不相容原理
在同一原子中,不可能有四个量子数完全相同的电子存在。即每一个轨道内最多只能容纳两个自旋方向相反的电子。
(2)、能量最低原理
多电子原子处于基态时,核外电子的分布在不违反泡利原理前提下,总是尽先分布在能量较低的轨道,以使原子处于能量最低状态。
(3)、洪特(Hund)规则
原子在同一亚层的等价轨道上分布电子时,尽可能单独分布在不同的轨道,而且自旋方向相同(或称自旋平行)。

基态原子中电子的分布
1、核外电子填入轨道的顺序
应用近似能级图,根据“两个原理一条规则”,可以准确地写出91种元素原子的核外电子分布式来。
在110种元素中,只有19种元素原子层外电子的分布稍有例外:

它们是若再对它们进一步分析归纳还得到一条特殊规律——全充满,半充满规则:对同一电子亚层,当电子分布为全充满(P6、d10、f14)、半充满(P3、d5、f7)或全空(P0、d0、f0)时,电子云分布呈球状,原子结构较稳定,可挑出8种元素,剩余11种可作例外。


多电子原子结构
1、核外电子排布三原理
(1)泡利不相容原理:解决各电子层电子数目问题。
◆ 在任何一个原子中,决不可能有两个电子具有四个完全相同的量子数,即在同一个原子中,不可能有运动状态完全相同的电子。
◆ 当 n一定时,L可取(n-1)个值,而在L限定下,原子轨道可有(2L+1)个伸展方向,即(2L+1)个轨道,而每个轨道可容纳两个电子,所以每层最多容纳电子数为
电子层 1 2 3 4
电子数 2 8 18 32
(2)最低能量原理:解决电子排布问题
◆ 多电子原子在基态时,核外电子总是尽可能地先占据能量最低的轨道,以使体系能量最低。
◆ 轨道能级规律
①当角量子数相同时,随主量子数增加,轨道能级升高1s<2s<3s<4s; 2p<3p<4p<5p; 3d<4d<5d
②当主量子数相同时,随角量子数增加,轨道能级升高ns<np<nd<nf
③当主量子数与角量子数都不同时,能级次序比较复杂,有时出现“能级交错”现象,即某些主量子数较大的原子轨道其能级可以比主量子数较小的原子轨道低。如 4s<3d, 5s<4d , 6s<4f<5d<6p
◆ 鲍林近似能级图
鲍林根据大量光谱数据以及某些近似的理论计算,得到了多电子原子的原子轨道能级的近似图
能级组:按照能级高低的顺序,把能量相近的能级划成一组,称为能级组。按照1、2、3能级组顺序,能量依次增高。
电子分布式:核外电子的分布表达式,如
K:
Ti:

鲍林近似能级顺序并不是所有元素轨道能级的实际顺序,它只不过是表示在考虑电子分布时,随核电荷数的增加的一个电子应分布在一哪一个轨道的一般规律,它不代表核外电子的实际分布情况,如钛原子的近似能级顺序为:

而其电子分布式为:

(3)洪特规则:解决同一电子层电子排布问题
◆ 处于主量子数和角量子数都相同的轨道中的电子,总是尽先占据磁量子数不同的轨道,而且自旋量子数相同(自旋平行)
◆ 两个电子同占一个轨道,这时电子间的排斥作用会使系统能量升高,两个电子只有分占等价轨道时,才有利于降低系统的能量,所以洪特规则可认为是最低能量原理的补充
如 P: 3P轨道上的3个电子分布应为:↑↑↑
(4)特殊情况
◆ 有19种元素原子的电子分布式不完全符合近似能级顺序,如: 它们的3d轨道电子分别为10和5,处于全满或半满状态,原子比较稳定,对于p、f轨道,半满状态为p3和f7,全满状态为p6和f14
◆ 外层电子构型即外层电子分布式,对于原子来说:
主族元素:最外层的电子分布式,如:
副族元素:最外层S电子和次外层d电子的分布式,如:
◆ 元素离子的外层电子构型:
当原子失去电子成为阳离子时,一般是能量较高的最外层的电子失去,而且往往引起电子层数的减少。如:

当原子得到电子成为阴离子时,电子总是分布在最外电子层上,如:

元素离子的外层电子构型 (1)8电子构型
(2)9~17电子构型
(3)18电子构型
(4)18+2电子构型

核外电子的运动状态

电子在原子中的运动状态,可n,l,m,ms四个量子数来描述。

(一)主量子数n

主量子数n是用来描述原子中电子出现几率最大区域离核的远近,或者说它是决定电子层数的。主量子数的n的取值为1,2,3…等正整数。例如,n=1代表电子离核的平均距离最近的一层,即第一电子层;n=2代表电子离核的平均距离比第一层稍远的一层,即第二电子层。余此类推。可见n愈大电子离核的平均距离愈远。

在光谱学上常用大写拉丁字母K,L,M,N,O,P,Q代表电子层数。

主量子数(n)
1
2
3
4
5
6
7

电子层符号
K
L
M
N
O
P
Q

主量子数n是决定电子能量高低的主要因素。对单电子原子来说,n值愈大,电子的能量愈高。但是对多电子原子来说,核外电子的能量除了同主量子数n有关以外还同原子轨道(或电子云)的形状有关。因此,n值愈大,电子的能量愈高这名话,只有在原子轨道(或电子云)的形状相同的条件下,才是正确的。

(二)副量子数l

副量子数又称角量子数。当n给定时,l可取值为0,1,2,3…(n-1)。在每一个主量子数n中,有n个副量子数,其最大值为n-1。例如n=1时,只有一个副量子数,l=0,n=2时,有两个副量子数,l=0,l=1。余此类推。按光谱学上的习惯l还可以用s,p,d,f等符号表示。

l 0 1 2 3
光谱符号 s p d F

副量子数l的一个重要物理意义是表示原子轨道(或电子云)的形状。L=0时(称s轨道),其原子轨道(或电子云)呈球形分布(图4-5);l=1时(称p轨道),其原子轨道(或电子云)呈哑铃形分布(图4-6);…

图4-5 s电子云图 4-6 p电子

副量子数l的另一个物理意义是表示同一电子层中具有不同状态的亚层。例如,n=3时,l可取值为0,1,2。即在第三层电子层上有三个亚层,分别为s,p,d亚层。为了区别不同电子层上的亚层,在亚层符号前面冠以电子层数。例如,2s是第二电子层上的亚层,3p是第三电子层上的p亚层。表4-1列出了主量子数n,副量子数l及相应电子层、亚层之间的关系。

表4-1 主量子数n,副量子数l及其相应电子层亚层之间的关系

n
电子层
l
亚层

1
1
0
1s

2
2
0
2s

1
2p

3
3
0
3s

1
3p

2
3d

4
4
0
4s

1
4p

2
4d

3
4f

对于单电子体系的氢原子来说,各种状态的电子能量只与n有关。但是对于多电子原子来说,由于原子中各电子之间的相互作用,因而当n相同,l不同时,各种状态的电子能量也不同,l愈大,能量愈高。即同一电子层上的不同亚层其能量不同,这些亚层又称为能级。因此副量子数l的第三个物理意义是:它同多电子原子中电子的能量有关,是决定多电子原子中电子能量的次要因素。

(三)磁量子数m

磁量子数m决定原子轨道(或电子云)在空间的伸展方向。当l给定时,m的取值为从-l到+l之间的一切整数(包括0在内),即0,±1,±2,±3,…±l,共有2l+1个取值。即原子轨道(或电子云)在空间有2l+1个伸展方向。原子轨道(或电子云)在空间的每一个伸展方向称做一个轨道。例如,l=0时,s电子云呈球形对称分布,没有方向性。m只能有一个值,即m=0,说明s亚层只有一个轨道为s轨道。当l=1时,m可有-1,0,+1三个取值,说明p电子云在空间有三种取向,即p亚层中有三个以x,y,z轴为对称轴的px,py,pz轨道。当l=2时,m可有五个取值,即d电子云在空间有五种取向,d亚层中有五个不同伸展方向的d轨道(图4-7)。

图4-7 s,p,d电子云在空间的分布

n,l相同,m 不同的各轨道具有相同的能量,把能量相同的轨道称为等价轨道。

(四)自旋量子数ms

原子中的电子除绕核作高速运动外,还绕自己的轴作自旋运动。电子的自旋运动用自旋量子数ms表示。ms 的取值有两个,+1/2和-1/2。说明电子的自旋只有两个方向,即顺时针方向和逆时针方向。通常用“↑”和“↓”表示。

综上所述,原子中每个电子的运动状态可以用n,l,m,ms四个量子数来描述。主量子数n决定电子出现几率最大的区域离核的远近(或电子层),并且是决定电子能量的主要因素;副量子数l决定原子轨道(或电子云)的形状,同时也影响电子的能量;磁量子数m决定原子轨道(或电子云)在空间的伸展方向;自旋量子数ms决定电子自旋的方向。因此四个量子数确定之后,电子在核外空间的运动状态也就确定了。

量子数,电子层,电子亚层之间的关系
每个电子层最多容纳的电子数 2 8 18 2n^2
主量子数n 1 2 3 4
电子层 K L M N
角量子数l 0 1 2 3
电子亚层 s p d f
每个亚层中轨道数目 1 3 5 7
每个亚层最多容纳电子数 2 6 10 14

核外电子的分布:
1. 原子中电子分布原理:
(两个原理一个规则):
(1)、泡利(Pauli)不相容原理
在同一原子中,不可能有四个量子数完全相同的电子存在。即每一个轨道内最多只能容纳两个自旋方向相反的电子。
(2)、能量最低原理
多电子原子处于基态时,核外电子的分布在不违反泡利原理前提下,总是尽先分布在能量较低的轨道,以使原子处于能量最低状态。
(3)、洪特(Hund)规则
原子在同一亚层的等价轨道上分布电子时,尽可能单独分布在不同的轨道,而且自旋方向相同(或称自旋平行)。

基态原子中电子的分布
1、核外电子填入轨道的顺序
应用近似能级图,根据“两个原理一条规则”,可以准确地写出91种元素原子的核外电子分布式来。
在110种元素中,只有19种元素原子层外电子的分布稍有例外:

它们是若再对它们进一步分析归纳还得到一条特殊规律——全充满,半充满规则:对同一电子亚层,当电子分布为全充满(P6、d10、f14)、半充满(P3、d5、f7)或全空(P0、d0、f0)时,电子云分布呈球状,原子结构较稳定,可挑出8种元素,剩余11种可作例外。

多电子原子结构
1、核外电子排布三原理
(1)泡利不相容原理:解决各电子层电子数目问题。
◆ 在任何一个原子中,决不可能有两个电子具有四个完全相同的量子数,即在同一个原子中,不可能有运动状态完全相同的电子。
◆ 当 n一定时,L可取(n-1)个值,而在L限定下,原子轨道可有(2L+1)个伸展方向,即(2L+1)个轨道,而每个轨道可容纳两个电子,所以每层最多容纳电子数为
电子层 1 2 3 4
电子数 2 8 18 32
(2)最低能量原理:解决电子排布问题
◆ 多电子原子在基态时,核外电子总是尽可能地先占据能量最低的轨道,以使体系能量最低。
◆ 轨道能级规律
①当角量子数相同时,随主量子数增加,轨道能级升高1s<2s<3s<4s; 2p<3p<4p<5p; 3d<4d<5d
②当主量子数相同时,随角量子数增加,轨道能级升高ns<np<nd<nf
③当主量子数与角量子数都不同时,能级次序比较复杂,有时出现“能级交错”现象,即某些主量子数较大的原子轨道其能级可以比主量子数较小的原子轨道低。如 4s<3d, 5s<4d , 6s<4f<5d<6p
◆ 鲍林近似能级图
鲍林根据大量光谱数据以及某些近似的理论计算,得到了多电子原子的原子轨道能级的近似图
能级组:按照能级高低的顺序,把能量相近的能级划成一组,称为能级组。按照1、2、3能级组顺序,能量依次增高。
电子分布式:核外电子的分布表达式,如
K:
Ti:

鲍林近似能级顺序并不是所有元素轨道能级的实际顺序,它只不过是表示在考虑电子分布时,随核电荷数的增加的一个电子应分布在一哪一个轨道的一般规律,它不代表核外电子的实际分布情况,如钛原子的近似能级顺序为:

而其电子分布式为:

(3)洪特规则:解决同一电子层电子排布问题
◆ 处于主量子数和角量子数都相同的轨道中的电子,总是尽先占据磁量子数不同的轨道,而且自旋量子数相同(自旋平行)
◆ 两个电子同占一个轨道,这时电子间的排斥作用会使系统能量升高,两个电子只有分占等价轨道时,才有利于降低系统的能量,所以洪特规则可认为是最低能量原理的补充
如 P: 3P轨道上的3个电子分布应为:↑↑↑
(4)特殊情况
◆ 有19种元素原子的电子分布式不完全符合近似能级顺序,如: 它们的3d轨道电子分别为10和5,处于全满或半满状态,原子比较稳定,对于p、f轨道,半满状态为p3和f7,全满状态为p6和f14
◆ 外层电子构型即外层电子分布式,对于原子来说:
主族元素:最外层的电子分布式,如:
副族元素:最外层S电子和次外层d电子的分布式,如:
◆ 元素离子的外层电子构型:
当原子失去电子成为阳离子时,一般是能量较高的最外层的电子失去,而且往往引起电子层数的减少。如:

当原子得到电子成为阴离子时,电子总是分布在最外电子层上,如:

元素离子的外层电子构型 (1)8电子构型
(2)9~17电子构型
(3)18电子构型
(4)18+2电子构型

核外电子排布遵循两个原理一个规则
其实你看看这个 图4-8 电子填充的次序 就可以啦~

(n, l, ml, ms) =(0,0, 0, 1/2)

你的满意答案是错的!!!
应该是n=1,l=0,ml=0,ms=1/2或ms=-1/2。
因为l=0,1,2,……,(n-1)。l永远比n小

(1,0,0,1/2)或(1,0,0,-1/2)

网上有


4量子数是什么?
4d1的四个量子数:决定轨道或电子能量(主量子数);决定电子空间运动的角动量(角量子数);决定原子轨道的伸展方向(磁量子数);描述轨道电子特征(自旋量子数)。可相乘的量子数都属于一种对称(像守恒那样),而在这种对称中使用两次对称变换式跟没用过是一样的。它们都属于一个叫Z2的抽象群。概念...

四个量子数的关系
四个量子数之间的关系:1、轨道量子数(n):决定了电子所在的轨道形状和运动状态。它取值从0到n-1,其中n是主量子数。轨道量子数与电子的能量和波函数有关,描述了电子在原子中的运动状态。2、角动量量子数(l):它与轨道量子数一起决定了电子的能量。角动量量子数取值为1\/2,3\/2,5\/2等,...

高中化学
四个量子数 在解薛定谔方程的过程中,为了得到电子运动状态合理的解,必须引入某些特定的参数,称为量子数,它们是n,ι和m.主量子数n=1,2,3,4……角量子数ι=0,1,2,3……(n-1)磁量子数m=+ι,…0,…-ι 主量子数n 主量子数n是决定原子中电子能量以及离核的平均距离的主要因素.它只能取1,...

四个量子数指的是什么?
n、l、ml、ms 主量子数,角量子数,磁量子数,自旋量子数

四个量子数的物理意义和取值规则
四个量子数的物理意义和取值规则如下:量子力学在推导原子中电子的运动状况时会出现四个量子数。n是主量子数,它对电子能量的影响通常是最大的。它主要就表示电子距离原子核的“平均距离”的远近,越远,n越大,相应的能量也越大。n等于电子绕核一周所对应的物质波的波数——绕核一周有n个波长的电子的...

什么叫做量子数,主量子数,角量子数,磁量子数
主量子数:指的是与能层对应的量子数,表示原子轨道的量子数的其中一种(其他还包括角量子数、磁量子数和自旋量子数),用小写字母n表示。角量子数:指的是表示电子在原子中运动状态的四个量子数之一,符号是l,是代表角动量的量子数,确定电子云的形状。磁量子数:指的是描述原子轨道或电子云在空间...

在原子的L壳层中,电子可能具有的四个量子数(n,l,m1,Ms)是?
L层,就是n=2 l(角量子数)表示原子轨道(或电子云)的形状;决定电子能量的次要因素。取 值:0,1,2,3,…,(n-1)等 光谱符号:s,p,d,f , …,等 所以是0,1 m(磁量子数)决定原子轨道或电子云在空间的伸展方向。取值:0,±1,±2,……,±l,m值受l值的限制,m可有(2...

原子的四个量子数怎么用?
首先要知道四个量子数的意义,才知道怎么用。比如氢原子的核外只有一个电子,用四个量子数表示电子的运动状态为n=1,l=0,m=0,ms=+1/2 碳原子核外又六个电子,最外层有四个电子,因为这四个电子都在第二层或第二周期,所以用量子数可表示为:n=2,l=0,m=0,ms=+1/2 n=2...

四个量子数
揭秘原子的微观世界:四个量子数的奥秘 在微观的量子世界里,电子的行为遵循着四个关键的量子数,它们如同原子的指南针,精确地定位和描述了电子的运动轨迹。让我们逐一探索这四个量子数的神奇作用:主量子数(n):电子层的秘密 主量子数(n),如同电子的楼层标签,其值从1开始递增,从K层(n=1)...

四个量子数的定义
电子的4个量子数所代表的意思分别是:决定轨道或电子能量(主量子数);决定电子空间运动的角动量(角量子数);决定原子轨道的伸展方向(磁量子数);描述轨道电子特征(自旋量子数)。1、主量子数:描述电子在原子核外运动状态的4个量子数之一,习惯用符号n表示。它的取值是正整数,主量子数是决定轨道...

奎文区15380743022: 能量最低的四个量子数是? -
陆珊倍恩: 1 能量最低原理 自然界一个普遍的规律是“能量越低越稳定”.原子中的电子也是如此.在不违反保里原理的条件下,电子优先占据能量较低的原子轨道,使整个原子体系能量处于最低,这样的状态是原子的基态. 原子轨道能量的高低(也称...

奎文区15380743022: 如何通过4个量子数来判断是哪个元素 -
陆珊倍恩: 核外电子的运动状态 电子在原子中的运动状态,可n,l,m,ms四个量子数来描述. (一)主量子数n 主量子数n是用来描述原子中电子出现几率最大区域离核的远近,或者说它是决定电子层数的.主量子数的n的取值为1,2,3…等正整数.例如,n=1...

奎文区15380743022: 化学中原子结构示意图的书写规律“先配对,再分散”是什么意思? -
陆珊倍恩: 遵守量子力学三规则: 1、能量最低规则 2、泡利不相容原理 3、洪特规则 先写能量低的电子,再写能量高的电子;先写已配对的电子,再写未配对的孤电子;每个电子轨道上只能容纳一对自旋相反的电子.总而言之,世界上不存在一模一样的两个电子,描述电子的四个量子数必须不能同时全部相同.

奎文区15380743022: 高中化学--能量最低原理,泡利原理,洪特规则本人化学不太好,用浅显易懂的语言讲一下,要容易理解的避免复制粘贴!) -
陆珊倍恩:[答案] 我对楼上的回答有疑义.首先学一个东西要知道它是干什么用的,化学中的许多理论是为了解释一些规律而总结出来的,有些不带有普泛性.对于原子的核外电子的研究方法就引入了统计原理,即所谓的电子云是能量的几率波动形式.“能量最低原理”...

奎文区15380743022: 化学 电子层亚层 -
陆珊倍恩: 最外层不能超过8. 原子轨道的亚层的能量由低到高的顺序是:1s/2s2p/3s3p/4s3d4p....... 每一亚层最多能够容纳的电子数是:s(2),p(6),d(10) 所以19号元素K的电子排布为:1s2/2s2,2p6/3s2,3p6/4s1.

奎文区15380743022: 原子核外电子排布式和轨道式的区别是什么? -
陆珊倍恩: 原子核外电子排布式(1)能量最低原理 电子先填充能量低的轨道,后填充能量高的轨道.尽可能保持体系的能量最低. (2)Pauli ( 保利 ) 不相容原理 即同一原子中没有运动状态完全相同的电子,即同一原子中没有四个量子数完全相同的两个电子.于是每个原子轨道中只能容纳两个自旋方向相反的电子. (3) Hunt ( 洪特 ) 规则 电子在能量简并的轨道中,尽量以相同自旋方式成单排布.简并的各轨道保持一致,则体系的能量低.轨道全空,半充满,全充满对称性高,体系稳定.对于简并度高的 d 、f 轨道尤其明显;对于简并度低的 p 轨道则不明显. 轨道式就是要画图地,排布式只要写spdf就可以了

奎文区15380743022: 为什么每层最多容纳电子数为2n的平方? -
陆珊倍恩: LZ您好 您说的是原子的核外电子排布规律 那是因为原子核外排布的电子,在原子为基态时,排布要遵循三大定律造成的 三大定律是能量最低原则,泡利(不相容)原理和洪特规则 其中第二个泡利原理即是解释您问题的答案 对于任意一个原子...

奎文区15380743022: 过渡元素的电子亚层排布规律是什么
陆珊倍恩: 你是大学还是高中?高中不用管这个,不会考,因为从薛定谔方程开始你都没学过. 大学的基础无机化学会简单介绍原子外层电子排布规律,要满足Hund规则,Pauli原理和能量最低规则.如果你想充分理解这几条规则,那么你还需要学习结构化学,量子力学基础中会介绍通过解薛定谔方程得到的四个量子数,这四个量子数表征了电子的运动状态.当满足那几条规则之后,能保证电子的能量最低. 简单来说,需要用到的是n+0.7l规则首先判断应该排哪一层电子,因为从第六周期开始又出现了内过渡元素,还要考虑倒数第三层的排列.然后在满足自旋相同的情况下开始排...要注意充满和半充满的时候能量会非常低,此时最外层的电子排布又会受到影响... 非常复杂.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网