第二题 数学证明题

作者&投稿:马褚 (若有异议请与网页底部的电邮联系)
初中数学证明题~

数学的解题方法是随着对数学对象的研究的深入而发展起来的。六年级的同学们很快就要小学毕业,中学的大门已经向我们敞开。为了能进一步学好数学,有必要掌握初中数学的特点尤其是解题方法。 下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。同样这些方法也能给你们现在的学习有些帮助。请同学们把它作为资料好好保存,当然,以后全部学会弄懂,保存大脑当中再好不过了。
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10、客观性题的解题方法

选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。


抽屉原理去做

有理数m/n 如果m和n都是整数,则n不为0 而且不妨把n设为正整数(因为如果n是负整数,则-n是正整数 (-m)/(-n)=m/n,所以用-m,-n代替m,n即可)

现在n为除数,那么余数就只有0,1,2,…,n-1这n种可能值,是有限个。

在做除法时,如果经过有限步可除尽,那么剩下的可以认为是0的循环。
如果经过有限步不可除尽,那么余数有无限多。必有两次得到的余数会相同。而后面的结果就会开始循环。

~~~~~~~~~~~~
如果你认为说,在除法的演算过程这样的说法不严谨。
你可以考虑这样说
对考虑m,10*m,... 10^k *m ... 有无限多个数
10^k *m除以n的余数 就是在除法的演算过程中第k步的余数。
所以必有两个除以n的余数相同

无限循环小数

引言
欢迎光临本网页。在这个网页中,你可以学习到「无限循环小数」的概念。你亦可用本人编写的应用程序做有关无限循环小数的「数学实验」。

把分数化为无限循环小数
从小学低年班开始我们便学习分数和小数(这里指有限位小数),并且认识到两者之间可以互相转换。把分数转换成小数实际上就是做除法。我们在小学学习除法时,很早便发现做除法可能有两种结果,有些如10/4在小数点后若干位便「除得尽」,有些则如10/3是永远「除不尽」的。我们也认识到,某些分数即使除不尽,它们也可能表现为一个无限循环小数,例如10/3=3.333...(注1)。其实,如果我们把「除得尽」的分数也看成是无限循环小数(例如10/2=5.000...),那么我们可以把所有「规则」的分数都归为无限循环小数。接下来我们要问,是否存在「不规则」的分数,即是否存在不能表达为无限循环小数的分数呢?

在小学我们都学过圆周率π可以取22/7这个分数作为近似值。那么22/7是否无限循环小数呢?假如我们用普通的计算器算一下,发现22/7的近似结果是3.142857,似乎不循环。那么22/7是否就是一个「不规则」分数呢?答案是否定的。其实,如果我们有足够的耐性,把22/7继续算下去,我们便会发现这个分数从小数点后第7位便开始循环。这即是说,22/7实际是一个无限循环小数:

22 / 7 = 3.142857142857142857...
如果我们细心观察一下22/7的演算过程,我们便会明白为何这分数必然是循环的。在计算22/7的第一步骤中,我们先得商3和余数1。接着我们把余数1倍大为10,然后计算10/7,得商1和余数3。接着我们把余数3倍大为30 ,然后计算30/7,得商4和余数2。接着我们又把余数2倍大为20,然后计算20/7......如此类推。因此,在计算 22/7时,我们实际上是在不断做10/7或20/7或30/7...。可是,由于任何数除以7所得的余数只有7种可能(即0、 1、2、3、4、5和6)(注2),这样下去必然会重复出现之前的计算。当出现重复时,接着下来的计算便会跟之前做过的计算一模一样,因而出现循环小数的情况。例如,在22/7的运算中,当计算至小数点后第6位时,得商7 和余数1,接着我们把余数1倍大为10,然后计算10/7,但是此一计算在之前已做过,接下来的计算结果必然是 142857,因此22/7必然是不断重复出现142857这组数字的循环小数。

把上述讨论推广至一般情况,那么由于任何整数除以整数n,其余数只有n种可能(即0、1、2...、n - 1),因此在进行任何整数除法时,在运算至某一阶段时,必然会重复出现之前做过的运算,这时就必定重复出现之前的计算结果,即无限循环小数。换句话说,任何分数(在高等数学中称为「有理数」Rational Number)都必然是无限循环小数。

根据上段讨论,我们还可推算出,任何整数除以整数n,最迟至小数点后第n位便必定会开始出现循环。例如在 22/7的运算中,其结果便在小数点后第7位开始出现循环。不过,n只是一个上限(即最差情况),并非所有除法结果都会出现此「最差」情况。例如1/3的结果在小数点后第2位便开始出现循环。

上述讨论虽然只局限于整数除法,但其实也适用于涉及小数的除法,因为涉及小数的除法可以转化为整数除法。以12.5/1.05为例,只要我们把分子分母同时乘大100倍,得1250/105,其结果跟原来的除法相同。

数学实验
笔者用Flash编写了一个应用程序,让浏览者做一个数学实验,以验证上述讨论。使用者输入两个正整数后,程式便会计算这两个数相除的结果,计算进行至小数点后第1500位(使用者可用两个向上向下钮卷动计算结果)。由于本程序限制使用者输入的除数不得大于999,所以即使出现上述的「最差」情况,使用者也应能看到计算结果从小数点后哪一位开始出现循环。不过,在某些情况下,要看出小数点后哪一位开始出现循环有时也颇费神。各位可不妨试试让本程序算999/998,看看你是否看得出小数点后哪一位开始出现循环,以及循环数字包含哪些数字?如果没有上述的知识或这个程序,相信大多数人都会认为这个小数是不循环的。

请点击以下连结开启应用程序,该程序包含「使用说明」,浏览者只需依照说明上的指示便可使用该程序,请选择适合你计算机的程序。

无限循环小数应用程序(SWF文件)(你的计算机须安装Shockwave Flash软件,档案较小)
无限循环小数应用程序(EXE文件)(无需预先安装其它软件,但档案较大)
把无限循环小数化为分数
给定一个无限循环小数,我们是否能把它化为分数呢?其实方法也很简单,其关键在于利用「无限循环」这一点。例如,给定小数0.272727...,如何把它化为分数呢?我们可以先把它写成

1 x 0.272727... = 0.272727... (1)
由于这个小数包含两个循环数字,我们把它乘以100:

100 x 0.272727... = 27.2727... (2)
接着用(2)减(1),利用无限循环的特点,把小数点后的数字全部去掉,得

99 x 0.272727... = 27 (3)
接着把(3)化简,得

0.272727... = 3/11
当循环数字并非包括小数点后所有数字时,我们便需要多一点工夫。例如要把小数0.11345345...化为分数,可以这样做:

100 x 0.11345345... = 11.345345...
100000 x 0.11345345... = 11345.345...
99900 x 0.11345345... = 11334
0.11345345... = 11334/99900 = 1889/16650
利用上述方法,我们还可以获得某些意想不到的结果。试把0.99...化为分数:

1 x 0.99... = 0.99...
10 x 0.99... = 9.99
9 x 0.99... = 9
0.99... = 1
于是,我们得到1的无限循环小数表达式除了是1.00...外,还可以是0.99...。事实上,我们可以证明,凡是「除得尽」的分数,除可表达为以无限个0结尾的循环小数外,还可表达为以无限个9结尾的循环小数。

是否存在无限不循环小数?
在以上的讨论中,我们在有理数(即分数)与无限循环小数间建立了一一对应关系。接着下来,我们要问,是否存在无限不循环小数?答案是肯定的,而且我们可以很容易地构造这样的小数。例如以下的小数便是无限不循环的:

0.101001000100001000001...
除了这些「人为」构造的数外,在中学我们还会学到很多这样的数,称为「无理数」(Irrational Number)(注3 )。例如,可以证明2的平方根、3的平方根、圆周率π、自然数底e等等都是无理数。事实上,从「集合论」( Set Theory)我们得知无理数的数目比有理数的数目多得多(注4)。不过由于本网页的主旨是有理数,笔者不在此讨论这些问题了。

注1:这里所指的循环并非指小数点后的所有数字均为循环数字,例如23/6的结果为3.8333...,这个小数的循环数字并不包含小数点后第1位的数字8。

注2:此一结果是初等数论(Number Theory)中著名的「除法演算Division Algorithm定理」。虽然我们在念小学和中学时不会正式学到数论的内容,但在我们进行无数次除法运算后,我们应能直观地自行「发现」此一定理。

注3:无理数的基本定义是不能表达为分数的实数。但由于在上面我们已看到分数等同于无限循环小数,所以我们可以得出以下结论:无理数就是无限不循环小数。

注4:套用集合论的说法,有理数集是「可数无穷集」(Countably Infinite Set),而无理数集则是「不可数无穷集」(Uncountably Infinite Set)。

从小学低年班开始我们便学习分数和小数(这里指有限位小数),并且认识到两者之间可以互相转换。把分数转换成小数实际上就是做除法。我们在小学学习除法时,很早便发现做除法可能有两种结果,有些如10/4在小数点后若干位便「除得尽」,有些则如10/3是永远「除不尽」的。我们也认识到,某些分数即使除不尽,它们也可能表现为一个无限循环小数,例如10/3=3.333...(注1)。其实,如果我们把「除得尽」的分数也看成是无限循环小数(例如10/2=5.000...),那么我们可以把所有「规则」的分数都归为无限循环小数。接下来我们要问,是否存在「不规则」的分数,即是否存在不能表达为无限循环小数的分数呢?

在小学我们都学过圆周率π可以取22/7这个分数作为近似值。那么22/7是否无限循环小数呢?假如我们用普通的计算器算一下,发现22/7的近似结果是3.142857,似乎不循环。那么22/7是否就是一个「不规则」分数呢?答案是否定的。其实,如果我们有足够的耐性,把22/7继续算下去,我们便会发现这个分数从小数点后第7位便开始循环。这即是说,22/7实际是一个无限循环小数:

22 / 7 = 3.142857142857142857...
如果我们细心观察一下22/7的演算过程,我们便会明白为何这分数必然是循环的。在计算22/7的第一步骤中,我们先得商3和余数1。接着我们把余数1倍大为10,然后计算10/7,得商1和余数3。接着我们把余数3倍大为30 ,然后计算30/7,得商4和余数2。接着我们又把余数2倍大为20,然后计算20/7......如此类推。因此,在计算 22/7时,我们实际上是在不断做10/7或20/7或30/7...。可是,由于任何数除以7所得的余数只有7种可能(即0、 1、2、3、4、5和6)(注2),这样下去必然会重复出现之前的计算。当出现重复时,接着下来的计算便会跟之前做过的计算一模一样,因而出现循环小数的情况。例如,在22/7的运算中,当计算至小数点后第6位时,得商7 和余数1,接着我们把余数1倍大为10,然后计算10/7,但是此一计算在之前已做过,接下来的计算结果必然是 142857,因此22/7必然是不断重复出现142857这组数字的循环小数。

把上述讨论推广至一般情况,那么由于任何整数除以整数n,其余数只有n种可能(即0、1、2...、n - 1),因此在进行任何整数除法时,在运算至某一阶段时,必然会重复出现之前做过的运算,这时就必定重复出现之前的计算结果,即无限循环小数。换句话说,任何分数(在高等数学中称为「有理数」Rational Number)都必然是无限循环小数。

根据上段讨论,我们还可推算出,任何整数除以整数n,最迟至小数点后第n位便必定会开始出现循环。例如在 22/7的运算中,其结果便在小数点后第7位开始出现循环。不过,n只是一个上限(即最差情况),并非所有除法结果都会出现此「最差」情况。例如1/3的结果在小数点后第2位便开始出现循环。

上述讨论虽然只局限于整数除法,但其实也适用于涉及小数的除法,因为涉及小数的除法可以转化为整数除法。以12.5/1.05为例,只要我们把分子分母同时乘大100倍,得1250/105,其结果跟原来的除法相同。
参考资料:http://home.pacific.net.hk/~kfzhou/Decimals.html

我要分数啊
从小学低年班开始我们便学习分数和小数(这里指有限位小数),并且认识到两者之间可以互相转换。把分数转换成小数实际上就是做除法。我们在小学学习除法时,很早便发现做除法可能有两种结果,有些如10/4在小数点后若干位便「除得尽」,有些则如10/3是永远「除不尽」的。我们也认识到,某些分数即使除不尽,它们也可能表现为一个无限循环小数,例如10/3=3.333...(注1)。其实,如果我们把「除得尽」的分数也看成是无限循环小数(例如10/2=5.000...),那么我们可以把所有「规则」的分数都归为无限循环小数。接下来我们要问,是否存在「不规则」的分数,即是否存在不能表达为无限循环小数的分数呢?

在小学我们都学过圆周率π可以取22/7这个分数作为近似值。那么22/7是否无限循环小数呢?假如我们用普通的计算器算一下,发现22/7的近似结果是3.142857,似乎不循环。那么22/7是否就是一个「不规则」分数呢?答案是否定的。其实,如果我们有足够的耐性,把22/7继续算下去,我们便会发现这个分数从小数点后第7位便开始循环。这即是说,22/7实际是一个无限循环小数:

22 / 7 = 3.142857142857142857...
如果我们细心观察一下22/7的演算过程,我们便会明白为何这分数必然是循环的。在计算22/7的第一步骤中,我们先得商3和余数1。接着我们把余数1倍大为10,然后计算10/7,得商1和余数3。接着我们把余数3倍大为30 ,然后计算30/7,得商4和余数2。接着我们又把余数2倍大为20,然后计算20/7......如此类推。因此,在计算 22/7时,我们实际上是在不断做10/7或20/7或30/7...。可是,由于任何数除以7所得的余数只有7种可能(即0、 1、2、3、4、5和6)(注2),这样下去必然会重复出现之前的计算。当出现重复时,接着下来的计算便会跟之前做过的计算一模一样,因而出现循环小数的情况。例如,在22/7的运算中,当计算至小数点后第6位时,得商7 和余数1,接着我们把余数1倍大为10,然后计算10/7,但是此一计算在之前已做过,接下来的计算结果必然是 142857,因此22/7必然是不断重复出现142857这组数字的循环小数。

把上述讨论推广至一般情况,那么由于任何整数除以整数n,其余数只有n种可能(即0、1、2...、n - 1),因此在进行任何整数除法时,在运算至某一阶段时,必然会重复出现之前做过的运算,这时就必定重复出现之前的计算结果,即无限循环小数。换句话说,任何分数(在高等数学中称为「有理数」Rational Number)都必然是无限循环小数。

根据上段讨论,我们还可推算出,任何整数除以整数n,最迟至小数点后第n位便必定会开始出现循环。例如在 22/7的运算中,其结果便在小数点后第7位开始出现循环。不过,n只是一个上限(即最差情况),并非所有除法结果都会出现此「最差」情况。例如1/3的结果在小数点后第2位便开始出现循环。

上述讨论虽然只局限于整数除法,但其实也适用于涉及小数的除法,因为涉及小数的除法可以转化为整数除法。以12.5/1.05为例,只要我们把分子分母同时乘大100倍,得1250/105,其结果跟原来的除法相同。

从小学低年班开始我们便学习分数和小数(这里指有限位小数),并且认识到两者之间可以互相转换。把分数转换成小数实际上就是做除法。我们在小学学习除法时,很早便发现做除法可能有两种结果,有些如10/4在小数点后若干位便「除得尽」,有些则如10/3是永远「除不尽」的。我们也认识到,某些分数即使除不尽,它们也可能表现为一个无限循环小数,例如10/3=3.333...(注1)。其实,如果我们把「除得尽」的分数也看成是无限循环小数(例如10/2=5.000...),那么我们可以把所有「规则」的分数都归为无限循环小数。接下来我们要问,是否存在「不规则」的分数,即是否存在不能表达为无限循环小数的分数呢?

在小学我们都学过圆周率π可以取22/7这个分数作为近似值。那么22/7是否无限循环小数呢?假如我们用普通的计算器算一下,发现22/7的近似结果是3.142857,似乎不循环。那么22/7是否就是一个「不规则」分数呢?答案是否定的。其实,如果我们有足够的耐性,把22/7继续算下去,我们便会发现这个分数从小数点后第7位便开始循环。这即是说,22/7实际是一个无限循环小数:

22 / 7 = 3.142857142857142857...
如果我们细心观察一下22/7的演算过程,我们便会明白为何这分数必然是循环的。在计算22/7的第一步骤中,我们先得商3和余数1。接着我们把余数1倍大为10,然后计算10/7,得商1和余数3。接着我们把余数3倍大为30 ,然后计算30/7,得商4和余数2。接着我们又把余数2倍大为20,然后计算20/7......如此类推。因此,在计算 22/7时,我们实际上是在不断做10/7或20/7或30/7...。可是,由于任何数除以7所得的余数只有7种可能(即0、 1、2、3、4、5和6)(注2),这样下去必然会重复出现之前的计算。当出现重复时,接着下来的计算便会跟之前做过的计算一模一样,因而出现循环小数的情况。例如,在22/7的运算中,当计算至小数点后第6位时,得商7 和余数1,接着我们把余数1倍大为10,然后计算10/7,但是此一计算在之前已做过,接下来的计算结果必然是 142857,因此22/7必然是不断重复出现142857这组数字的循环小数。

把上述讨论推广至一般情况,那么由于任何整数除以整数n,其余数只有n种可能(即0、1、2...、n - 1),因此在进行任何整数除法时,在运算至某一阶段时,必然会重复出现之前做过的运算,这时就必定重复出现之前的计算结果,即无限循环小数。换句话说,任何分数(在高等数学中称为「有理数」Rational Number)都必然是无限循环小数。

根据上段讨论,我们还可推算出,任何整数除以整数n,最迟至小数点后第n位便必定会开始出现循环。例如在 22/7的运算中,其结果便在小数点后第7位开始出现循环。不过,n只是一个上限(即最差情况),并非所有除法结果都会出现此「最差」情况。例如1/3的结果在小数点后第2位便开始出现循环。

上述讨论虽然只局限于整数除法,但其实也适用于涉及小数的除法,因为涉及小数的除法可以转化为整数除法。以12.5/1.05为例,只要我们把分子分母同时乘大100倍,得1250/105,其结果跟原来的除法相同。

就是这样


秀屿区19444646140: 第二题数学证明题证明: 有理数m/n展开的十进制小数最终是要循环的. -
贯殷法乐:[答案] 抽屉原理去做 有理数m/n如果m和n都是整数,则n不为0而且不妨把n设为正整数(因为如果n是负整数,则-n是正整数(-m)/(-n)=m/n,所以用-m,-n代替m,n即可) 现在n为除数,那么余数就只有0,1,2,…,n-1这n种可能值...

秀屿区19444646140: 第二题 数学证明题 -
贯殷法乐: 抽屉原理去做 有理数m/n 如果m和n都是整数,则n不为0 而且不妨把n设为正整数(因为如果n是负整数,则-n是正整数 (-m)/(-n)=m/n,所以用-m,-n代替m,n即可) 现在n为除数,那么余数就只有0,1,2,…,n-1这n种可能值,是有限个.在做除...

秀屿区19444646140: 初二数学证明题(上学期)证明题(30道)一次函数应用题(20道)整式乘除与因式分解(40道)哥哥姐姐们 能告诉几道算几道 还要有解的哦 -
贯殷法乐:[答案] 一、填空题(每小题3分,共30分) 1、81的算术平方根是__________. 2、若 ,则a+b=__________ 3、一个正数 的平方... A. B. C. D. 15、函数y=k(x-k)(k<0)的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 16、已知函数y=kx(k>0)图象...

秀屿区19444646140: 数学题目..第二题怎么证明?
贯殷法乐: (2)证明:∵TB⊥面PBQ,∴TB⊥BP,TB⊥BQ 在直角三角形TBP中,∠TPB=α,TB=h,∴PB=hcotα. 同理得:QB=hcotβ. 在三角形PBQ中:PB=hcotα,QB=hcotβ,PQ=d,∠PBQ=θ 由余弦定理得:PQ^2=PB^2+QB^2-2PB*QBcos∠PBQ 即: d^2=(hcotα)^2+(hcotβ)^2-2hcotα*hcotβ*cosθ ∴h^2=d^2/[(cotα)^2+(cotβ)^2-2cotαcotβcosθ].

秀屿区19444646140: 一道初二下册的数学证明题(平行四边形)求证:两组对角分别相等的四边形是平行四边形 -
贯殷法乐:[答案] 很简单啊,四边形ABCD,两对角分别相等,设A=C B=D 又 A+B+C+D=360 所以A+B=180 内侧角相等两直线平行,所以AD平行于BC 同理AC平行于BD 得证

秀屿区19444646140: 一道初二数学几何证明题如图,E为AB上一动点,以AE为斜边作等腰直角△ADE,P为BE的中点,连接PD  PO试问:线段PD PO 是否存在某种确定的数量... -
贯殷法乐:[答案] 我只能猜测图是这样的. 过D作AB垂线交AB于F 则AF=EF 又EP=PB ∴FP=AB/2=OO' 又O'P=EP-EO'=(AB-AE)/2-EO'=AB/2-AE/2-EO'=AO'-EO'-DF=AE-DF=DF ∠DFP=∠PO'O=90° ∴△DFP≌△PO'O ∴PD=PO PD⊥PO

秀屿区19444646140: 两道初中数学几何证明题. -
贯殷法乐: 第一题的G是什么? 2延长AC,BE,交于I,延长CF交AB于点H,∵∠1=∠2,AE⊥HC,AE⊥BI∴等腰直角△AHC和ABI,∴AH=AC,AB=AI∴HB=CI.∵F,G,E分别为HC,BC,BI的中点,再根据中位线定理,可得GF=1/2HB,GE=1/2CI,∵HB=CI,∴GE=GF

秀屿区19444646140: 几道高二数学不等式的证明题一,用综合法证明下列不等式:№1:设a,b∈R,求证:a^2+b^2≥2(ab+a - b) - 1№2:证明(a/根号b)+(b/根号a)≥根号a+根号b,... -
贯殷法乐:[答案] 一 No.1 a^2+b^2-2ab-2(a-b)+1=[(a-b)-1]^2≥0,移项整理得所要证明结论.No.2 (a/根号b)-根号b+(b/根号a)-根号a=(1/根号b)*(a-b)-(1/根号a)*(a-b)=[(1/根号b))-(1/根号a)]*(a-b)=(根号a-根号b)^2*(根号a+根号b)/根号a...

秀屿区19444646140: 初二数学全等三角形证明题! -
贯殷法乐:[答案] (1)证明:∵∠CF⊥AE∴∠CFE=90°∴∠BCD+∠AEC=90°∵BD⊥CB∴∠DBC=90°∴∠BCD+∠D=90°∴∠AEC=∠D又∵∠ACE=∠CBD=90°,AC=BC∴△ACE≌△CBD(AAS)∴AE=BC(2)∵△ACE≌△CBD∴CE=BD=5∵AE是BC边的中线∴BE...

秀屿区19444646140: 数学证明题格式小疑惑(证明了第一题,然后第二题需要第一题的证明结论和证明第一题过程时求出来的一个条件)应该在第二题怎么写出来,是不是这样↓... -
贯殷法乐:[答案] 是的,只要你证明出来的结果,都可以直接拿出来用的.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网