基因工程研究中需要哪几类酶,这些酶各有什么作用?

作者&投稿:仁哀 (若有异议请与网页底部的电邮联系)
基因工程中有哪些常用的工具酶,他们各自的主要作用是什么?~

基因工程中主要的工具酶有限制酶和dna连接酶。
限制酶的作用是切割目的基因两端,而dna连接酶是将目的基因和运输体的黏性末端连接在一起。

基因工程中常用的工具酶有:限制酶、聚合酶、连接酶、修饰酶和核酸酶五大类,各自的主要作用如下:
1、限制酶:
可以识别并附着特定的脱氧核苷酸序列,并对每条链中特定部位的两个脱氧核糖核苷酸之间的磷酸二酯键进行切割。
2、聚合酶:
可以专门生物催化合成脱氧核糖核酸(DNA)和核糖核酸(RNA)的一类酶。
3、连接酶:
作用是催化两种大型分子以一种新的化学键结合一起的酶,一般会涉及水解其中一个分子的团。

4、修饰酶:
能催化稀有碱基参入RNA或DNA,或对原有碱基进行修饰的酶。以防止限制性内切酶的破坏。
体内有些酶可在其他酶的作用下,将酶的结构进行共价修饰,而使其在高活性形式和相对较低的活性形式之间互相转变,这种调节称为共价修饰调节。
5、核酸酶:
是能够将聚核苷酸链的磷酸二酯键切断的酶,核酸酶属于水解酶,作用于磷酸二酯键的P-O 位置,核酸酶是在核酸分解的第一步中,作用于水解核苷酸之间的磷酸二酯键的一种核酸。在高等动植物中都有作用于磷酸二酯键的。

参考资料来源:百度百科—限制酶
参考资料来源:百度百科—聚合酶
参考资料来源:百度百科—连接酶
参考资料来源:百度百科—修饰酶
参考资料来源:百度百科—核酸酶

用于基因工程的工具酶
一,限制性内切酶(Endonucleosase)
(一)限制性内切酶(Endonucleosase)的发现与分类
1) 50年代初发现细菌能将外来DNA片段在某些专一位点上切断,从而保证其不为外来噬菌体所感染,而其自身的染色体DNA由于被一种特殊的酶所修饰而得以保护,这种现象叫做限制-修饰,它们由三个基因位点所控制:hsd R, hsd M, hsd S, 十年后,人们搞清了细菌的限制与修饰分子机理:
hsd R---限制性内切酶
hsd M---限制性甲基化酶
hsd S---控制两个系统的表达
1968年Smith等人从流感嗜血杆菌株中分离出两个类内切酶,Hind II和Hind III,为基因工程技术的诞生奠定了基础.
截止到目前为止,已经分离出400余种II类酶,搞清识别位点的有300种,商品化的约有一百种,而实验室常用的有二十种 .
2)限制性核酸内切酶可分为三大类:
I类 能识别专一的核苷酸顺序,并在识别点附近切割双链,但切割序列没有专一性.
II类 识别位点(回文序列)严格专一,并在识别位点内将双链切断
III类 识别位点严格专一(不是回文序列),但切点不专一,往往不在识别位点内部.
因此在基因工程中具有实用价值的是II类限制性内切酶.
(二)II类限制性内切酶的命名及特性
命名原则:取属名的第一个字母大写,取种名的前两个字母小写,构成基本名称.该种中发现的不同的酶按照顺序编号I, II, III等.如存在变种和品系,取变种或品系的一个字母.若酶存在于质粒上,则需大写字母表示非染色体遗传因子.
如,HindIII从Haemophilus Influenzue d株中分离的第三个酶.EcoRI表示基因位于Escherichia coli中的抗药性R质粒上.
(三)II类限制性内切酶的底物识别顺序及切割位点
绝大多数的II类限制性内切酶在底物DNA上的识别顺序长度为4,5,6碱基对,这些碱基对的顺序呈回文结构(Palindromic),而且切点就在其内部,如EcoRI 5'-GAATTC-3' .
DNA被限制性内切酶切开之后,呈现两种断口:
钝端(平端)如Pvu II, Alu I, EcoR V等
粘端(粘性末端)如:EcoR I等
图2-1 限制性内切酶产生的末端
(四)识别位点在DNA分子中的频率
对于特定的限制性酶在DNA分子中的识别位点数目是可以计算的,四碱基的酶平均大约每256个核苷酸(44)有一个识别位点,而六碱基的酶大约4096(46)个核苷酸有一个识别序列,计算是在假定核苷酸随机排列的情况下进行的.实践中这种方法不完全正确,如λ DNA长49kb,对于六碱基的酶应该有12个切割位点,实际上要少一些,如Bgl II只有6个,BamHI只有5个,而SalI只有2个.
二,甲基化酶
在专一位点上甲基化,与限制性内切酶相对应.
(一)大肠杆菌中的甲基化酶
dam甲基化酶: 可在5'GATC3'序列中的腺嘌呤N6位置上引入甲基,这样可使一些识别顺序中含有5'GATC3'的限制性内切酶不能切割来自大肠杆菌的DNA如Bcl I(TGATCA),但BamH I(GGATAA)则不会因为N6A的甲基化而失去活性,因为这两种酶对底物的特异性不同.
dcm甲基化酶 此酶在序列5'CCAGG3'或5'CCTGG3'中的胞嘧啶C5上引入甲基,受其影响的限制性内切酶是EcoR II.
(二) 甲基化酶在基因工程中用途
许多II类限制性内切酶,都存在着相对的甲基化酶,它们可修饰限制酶识别顺序中的第三位腺嘌呤上,封闭酶切位点,从而使其免受切割.如:M.EcoRI催化s-腺苷-L-甲硫氨酸(SAM)的甲基转移到EcoRI识别顺序中的第三位腺嘌呤上,从而使DNA免受EcoRI的切割.
三,T4-DNA连接酶(T4-DNA Ligase)
来源于T4噬菌体感染的大肠杆菌,连接修复3'端羟基和5'端磷酸基因,脱水形成3'-5'磷酸二酯键
连接双链DNA上的单链缺口(Nick),因此亦可连接限制内切酶所产生的粘性末端
连接RNA模板上的DNA链缺口
连接平头双链DNA速度很慢,在高浓度的底物和酶的作用下方可进行,这属于分子之间的连接.
图2-2 连接酶的作用方式
四,核酸酶
作用: 降解磷酸二酯键
分为:外切酶 内切酶
(一) Bal 31(来自于细菌Alteromonas espejiana) 单链特异的核酸内切酶活性,双链特异的内切酶活性.依赖于Ca2+
用途:
构建限制酶图谱
产生末端缺失突变
DNA超螺旋线性化
(二)E. coli外切酶III
只降解DNA分子的一条链,产生单链的DNA分子.
(三)S1核酸酶(来源于米曲霉菌)
特性:
1. 降解单链DNA或RNA,降解DNA的速度大于降解的速度
2. 降解发生的方式为内切和外切
3. 酶切活性需4.0-4.5pH环境,Zn2+激活
4. 酶量过大时会降解双链核酸,因为双链降解活性比单链低75000倍
(四) DNase I: 来自于牛胰腺, 既可以降解单链也可以降解双链,没有特异性,产生单核苷酸或短链
五,聚合酶
(一)DNA聚合酶I
5'-3'聚合酶活性
3'-5'外切酶活性
5'-3'外切酶活性
核酸内切酶活性
可以被枯草杆菌蛋白酶水解成:Klenow片段和N端具5'-3'外切酶活性的分子.
图2-3 DNA聚合酶I
(二) Klenow酶
该酶无5'-3'外切活性,保留了5'-3'聚合活性及3'-5'外切活性,基因工程中利用该酶:
修复限制性内切酶造成的5'突出的粘性末端
标记DNA探针
催化cDNA第二条链的合成
末端终止法测序
图2-4 Klenow 酶的作用方式
(三) T4 DNA聚合酶
与Klenow酶相似,外切酶活性更高.体外诱变反应中效率很高.
(四)T7 DNA聚合酶
测序酶
(五) Taq DNA聚合酶
耐高温,主要用于PCR反应.
(六) 逆转录酶:将mRNA转录成cDNA
AMV逆转录酶(鸟类成髓细胞性白血病病毒)
DNA聚合酶活性
RNase H活性
DNA内切酶活性
核酸结合活性
M-MLV逆转录酶(Moloney鼠白血病病毒)
两种逆转录酶的区别
肽链的组成
禽酶2条肽链,具聚合酶和很强的RNase H活性
鼠酶1条,较弱的RNase H活性
反应的最适温度
禽酶42°C,二级结构丰富RNA,禽酶效率高
反应的最适pH值
禽酶pH 8.3
鼠酶pH 7.6
六,DNA修饰酶
有大量的修饰酶,主要的有以下几种:
1) 碱性磷酸酯酶(来自于大肠杆菌或小牛肠道)可以去掉DNA分子的5'端的磷酸基团.
2) polynucleotide kinase: 来自于T4侵染的大肠杆菌,在5'端增加磷酸基团.
3) 末端脱氧核苷酸转移酶(terminal deoxynucleotidyl tansferase) 来自于小牛胸腺组织,在DNA分子的3'端增加一个或多个脱氧核苷酸.
4) Topoisomerase改变共价闭合双链DNA分子的结构
第二节 DNA的切割反应
一,缓冲系统的组成
II类酶的酶活条件:Tris-HCl PH7.5, 25-50mM;10mM MgCl2 ;NaCl 0-150mM; DTT 1mM
根据不同酶对盐离子要求不同,可将缓冲液分为以下三种情况:
高盐:100-150mM
中盐:50-100mM
低盐:0-50mM
二,酶切操作
DNA量的确定,加入酶量的确定,发应体积的确定(20μl),反应时间的确定,1-1.5hr,一般为37℃,但也有例外,如Taq I在65°C时活性最高.
单位限制性内切酶定义为:在最佳缓冲系统和20μl体积中反应1小时,完全水解1μgDNA所需的酶量.
三,酶切结果分析
(一) 酶切片段的检测
1) 通过凝胶电泳分离,根据分子量分离.根据凝胶的浓度可以分离不同分子量的片段,聚丙烯酰胺凝胶电泳可以分离1-300bp的分子.
2) DNA分子的检测 a. 染色EB,DNA分子小于25ng,很难检测到
b. 放射性自显影, 可以监测少到2ng DNA分子.
(二)估计DNA分子的大小
根据DNA分子的迁移率,可以用公式计算出分子量D=a-b(logM)
D是移动的距离,M是分子量,a, b是恒量但随着电泳条件的改变而改变.
也可以根据已知大小的片段进行比较,误差约在5%左右.
四,多酶联合酶解
对于对浓度要求相同的酶,原则上可以同时酶解;
对于对浓度要求不同的酶,可以:
1. 低盐浓度的酶先切,后补加NaCL
2. 一种酶切后,换缓冲液,加5mM NaAc 0.1体积,2体积乙醇,冰浴5min,4℃离心10min,干燥
五,定位酶切位点
建立酶切图谱需要一系列的酶.
首先确定每一种酶切后产生的分子量和片段的数目;
然后进行双酶切;
比较酶切和双酶切的结果,绘制酶切图谱;
含糊的位点可以通过部分酶切解决,可以短时间的酶切或者在4°C条件下进行.
六, 限制性内切酶的star活性
在PH不合适,或甘油浓度过高≥10%时,限制性内切酶的切割位点会出现非专一性,因此应确保酶的体积为总体积的十分之一以下.
第三节 DNA片段的连接
重组DNA分子构建的最后一步是连接,通过连接酶完成.相对而言,钝端的连接效率较低,因此一般提高DNA浓度的方法增加接触的机会.而粘性末端的连接效率较高,因为两个粘性末端可以通过氢键碱基互补配对.这种暂时的,碱基配对结构可以提高连接的效率.在分子克隆的连接方式主要有以下几种:
一,连接方式
(一)相同粘性末端的连接
来源:
相同的酶
同尾酶
问题:
极性有两种可能
同尾酶连接后,不能用任何一种酶酶切.称为"焊死".
(二)平头末端的连接
粘性末端--分子内部连接,平头末端--分子间的连接.
提高连接效率的方法:
加大酶用量(10倍)
加大平头末端底物的浓度
加入10%PEG(8000),促进分子间的有效作用
加入单价阳离子, 150-200mM NaCl
提高反应温度
平头连接同样存在两种极性
(三)不同粘性末端的连接
突出5'末端
Klenow补平,或S1核酸酶切平,然后平头连接
突出3'末端
T4-DNApol切平,然后平头连接
突出末端不同
Klenow补平,或S1核酸酶切平
连接后,可能恢复限制性位点,甚至还可能产生新的位点.XbaI与HindIII( XbaI恢复), XbaI与EcoRI(均保留),BamHI与Bgl II(产生ClaI位点)
(四)人工粘性末端的连接
5'突出的末端
外源片段先用Klenow补平;然后用TdT补加polyC;载体片段也用Klenow补平,加polyG,退火不经连接即可转化.目的是:不使酶切位点遭受破坏.
3'突出的末端
外源片段先用TdT加polyG;载体片段加polyC;然后退火;再用Klenow补齐;连接
平头末端
可直接用TdT补加末端,但以加polyA/T为佳.这样稍微加热,AT区就会出现单链区域,然后用S1核酸酶水解即可回收片段
(五)粘端与平端的连接
linker : 人工合成的,含有限制性内切酶识别序列的,短的双链DNA片段.
– 连接的效率较高
– 酶切时可能破坏DNA分子的完整.
adaptor:人工合成的,具有粘性末端寡聚核苷酸.
图 2-5 linker的连接方式
(六)粘性末端的更换
在DNA片段上某一酶切口处换成另一种酶切口
– BamHI酶切片段用Klenow补平,或用S1酶切平;连接一段linker或Adaptor,使之产生EcoRI粘性末端.这样BamHI切口就换成了EcoRI切口 .
– 由AluI更换EcoRI:AluI切开,T4-DNApol切平,另一段DNA EcoRI切开,Klenow补平,连接,原来含有AluI的片段变成含有EcoRI
二,重组率
重组率:连接反应结束后,含有外源DNA片段的重组分子数与加入的载体分子数之比.较为理想的重组率为25-75%
提高重组率的方法:
连接反应条件 外源片段:载体=2:1-10:1(分子数),增加碰撞机会,减少自身环化.
载体除磷 (磷酸酯酶5'除磷).
TdT在3'端增加人工粘性末端,防止载体自我环化 .


基因工程中通常对表达载体在哪些方面进行修饰?
首先,要选择合适的启动子并改进其活性,用以调控目的基因特异性表达。目前在基因工程中多采用特异性启动子,如组织特异性启动子,环境响应启动子及化学诱导启动子等,同时还要对特异性启动子序列进行加倍增强子序列。去除抑制子序列等改造,以最终实现在转录水平对目的基因进行定时、定位、定量表达的调控。第...

基因工程包括哪些主要内容?
基因工程主要包括基因重组、基因组的改造、核酸序列分析、分子进化分析、分子免疫学、基因克隆、基因诊断和基因治疗等内容。基因工程是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、...

基因工程原理简介
在基因工程中,研究者常采用特定的酶类,如序列特异的DNA限制性内切核酸酶、连接酶和激酶、DNA聚合酶和RNA聚合酶,以实现对DNA和RNA的精确操作。此外,采用分离纯化、凝胶电泳、DNA测序等研究方法,以及膜印迹和核酸杂交技术,进一步推动基因工程的进展。在具体操作中,研究者可能需要鉴别特定基因转录物的转...

基因工程中,用人工合成法获取目的基因需要哪些酶
基因工程流程的第一步就是获得目的DNA片段,如何获得目的DNA片段就成为基因工程的关键问题.所需目的基因的来源,不外乎是分离自然存在的基因或人工合成基因.常用的方法有PCR法、化学合成法、cDNA法及建立基因文库的方法来筛选 直接获取 1.从基因文库中获取 这个没什么就是现成的基因储存在受体菌上你用的时...

基因工程技术包括哪些基本步骤
详情请查看视频回答

在基因工程研究和应用中,为什么必须使用载体来克隆外源DNA片段?详细一...
DNA的表达需要起始子和终止子,而单独的外援DNA片段是没有的,就不能成功表达,所以要用限制酶分别切载体和所需的DNA,让他们产生相同的末端,把外源DNA加进去,才能成功克隆

在基因工程研究和应用中,为什么必须使用载体来克隆外源DNA片断?_百度...
因为外源DNA片段不能进入靶细胞并复制自己,需要外力的帮助,而载体正好能满足这个需要。

工程项目建设可行性研究应考虑那些因素?
5、可行性研究是项目建设期项目管理的依据,是工程建设管理工作中的重要环节。 可行性研究不仅对拟建中的项目进行系统分析和全面论证,判断项目是否可行,值得投资,要进行反复比较,寻求最佳建设方案,避免项目方案的多变造成的人力、物力、财力的巨大浪费和时间的延误。这就需要严格项目建议书,可研报告的审批制度,确保可研...

质粒在基因工程中的作用是作为什么
质粒在基因工程中是作为载体送进受体细胞中去进行增殖和表达的工具。质粒具有自主复制能力,使其在子代细胞中也能保持恒定的拷贝数,并表达所携带的遗传信息。细菌质粒是DNA重组技术中常用的载体。载体是指把一个有用的外源基因通过基因工程手段,送进受体细胞中去进行增殖和表达的工具。将某种目标基因片段...

什么是基因工程基因工程的操作步骤
基因工程技术为基因的结构和功能的研究提供了有力的手段。基因工程也是我们要学习的一门知识。今天我就与大家分享基因工程相关知识,仅供大家参考! 基因工程的介绍 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代 方法 为手段,将不同来源的基因...

赤城县18778632016: 基因工程常用的酶有() ①DNA连接酶 ②蛋白酶 ③限制性核酸内切酶 ④解旋酶. -
毕诸速卡:[选项] A. ①③ B. ①④ C. ②④ D. ②③

赤城县18778632016: 基因工程研究中需要哪几类酶,这些酶各有什么作用 -
毕诸速卡: 基因工程中主要的工具酶有限制性核酸内切酶和DNA连接酶. 限制性核酸内切酶用来切割运载体和目的基因两端;而DNA连接酶则是将目的基因与运载体的黏性末端连接在一起.

赤城县18778632016: 在基因工程操作中所必不可少的工具酶的种类主要有哪些 -
毕诸速卡: 基因工程中主要的工具酶有限制性核酸内切酶和DNA连接酶. 限制性核酸内切酶用来切割运载体和目的基因两端;而DNA连接酶则是将目的基因与运载体的黏性末端连接在一起.

赤城县18778632016: 要使目的基因与对应的载体重组,所需的两种酶是() ①限制性核酸内切酶 ②DNA连接酶 ③DNA解旋酶 ④RNA聚合酶. -
毕诸速卡:[选项] A. ①② B. ③④ C. ①④ D. ②③

赤城县18778632016: 高中生物基因工程工具酶有哪些 -
毕诸速卡: 若基因工程中只有DNA,则只需要限制性核酸内切酶、 DNA连接酶两种酶,若含有RNA则需要逆转录酶将RNA逆转录成DNA,即有逆转录酶,限制性核酸内切酶、 DNA连接酶两种酶三种酶...

赤城县18778632016: 基因工程中,获取目的基因是第一步,在此步骤中,需要用到的酶是() -
毕诸速卡:[选项] A. 限制酶 B. 消化酶 C. 淀粉酶 D. 呼吸酶

赤城县18778632016: 基因工程需要什么酶?
毕诸速卡: 限制酶.DNA连接酶

赤城县18778632016: 高中生物:基因工程中,需要我们了解哪些酶?分别有什么作用 -
毕诸速卡: 限制性内切酶——识别并切割特异的双链DNA序列的一种内切核酸酶.DNA连接酶——连接粘性末端

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网