天文远地卫星详细资料大全

作者&投稿:黎呼 (若有异议请与网页底部的电邮联系)
~

天文卫星,是对宇宙天体和其他空间物质进行科学观测的人造地球卫星。传统的天文观测都是在地面上由天文台利用各种天文仪器进行的。但是来自天体的辐射绝大部分被地球大气层所阻挡,很大部分的宇宙真相不能看到。天文卫星在离开地面几百千米或更高的轨道上运行,因为没有大气层的阻挡,卫星上所载的仪器能接收到来自天体的从无线电波段到红外波段、可见光波段、紫外波段直到X射线波段和γ射线波段的电磁波辐射。天文卫星的观测推动了太阳物理、恒星和星系物理的迅速发展,并且促进了一门新型的分支学科——空间天文学的形成。

基本介绍

  • 中文名 :天文远地卫星
  • 分类 :卫星
  • 轨道 :多数为圆形或近圆形
  • 高度 :数百公里,但一般不低于400公里
  • 结构 :很高的安装精度和结构稳定性
发展史,设备信息,轨道,控制,结构,观测仪器,卫星轨道,类别,寿命,重大发现,

发展史

第一颗天文卫星是美国1960年发射的“太阳辐射监测卫星”(Solrad-1),测到了太阳的紫外线和X射线通量。1962年开始,美国又发射了专门观测太阳的“轨道太阳观测台”(OSO)卫星系列。1968年和 1972年发射的“轨道天文台” (OAO)卫星是最早的专门用于紫外天文观测的卫星。1970年发射的“小型天文卫星” 1号(SAS-1),是第一颗X射线观测卫星,取得了重要的成果,使发现的X射线源剧增到 161个。第一颗专门用于γ射线天文观测的卫星是1972年发射的“小型天文卫星”2号(SAS-2)。用于红外天文观测的卫星发射得较晚,1983年初才发射了第一颗红外天文卫星(IRAS)。世界各国已经发射了许多天文卫星。

设备信息

轨道

天文卫星的轨道多数为圆形或近圆形,高度为数百公里,但一般不低于400公里。这是因为太阳系以外的天体离开 地球极远,增加轨道高度并不能缩短距离和改善观测能力,徒然增加运载器的运载能力。轨道太低时大气密度增加,卫星难以维持长时期运行。

控制

天文卫星必须在广阔的宇宙空间找到所观测的特定天体,并把观测仪器指向这个天体,这就要求具有极为精确的定向能力和卫星姿态控制精度。已经发射的天文卫星的定向和控制精度已达到角分或角秒的数量级,比其他卫星的定向精度高几十倍甚至上千倍。一些巡天测绘的天文卫星往往是自旋的,对控制的要求并不高,但仍然要求具有很高的定向能力。因此,天文卫星通常利用太阳和其他恒星位置作为定向的参考基准。在卫星上装有星敏感器、星图仪等高精度的测量仪器,把测到的星图与标准星图进行比较,以确定和计算方向。

结构

天文卫星在结构上必须有很高的安装精度和结构稳定性。有些天文卫星装有光学望远镜,结构热变形必须降低到最小才能保证观测精度,因此结构设计和选材要求很高。

观测仪器

天文卫星上装有各种复杂的科学观测仪器,如红外、紫外、X射线和可见光学望远镜等。这些仪器的构造复杂,制作困难。红外望远镜需要使用液氦或液氢长期冷却,探测元件必须处于接近绝对零度的超低温条件下。天文卫星的观测数据输出量大,卫星控制复杂,往往需要使用卫星上电子计算机来进行信息处理和操作控制。 美国在60~70年代发射过 3个系列的轨道观测台类型的天文卫星,它们是:“轨道太阳观测台”,“轨道天文台”,“高能天文台”。此外,美国和联邦德国正在联合研制一颗“空间望远镜”天文卫星。它的主体是一个直径2.4米的反射式光学天文望远镜,观测波长范围从近红外直到远紫外,可能观测到的宇宙距离比地面上最大的光学望远镜观测到的距离还远许多倍。

卫星轨道

卫星轨道就是卫星在太空中运行的轨迹。 具体来说就是卫星在太空中围绕着它的“主体”运行的时候所形成的路径,一般都是椭圆型的。通常情况下,这个轨道相对于其“主体”是固定的。卫星轨道平面与地球赤道平面的夹角叫“轨道倾角”,它是确定卫星轨道空间位置的一个重要参数。轨道倾角小于90度为顺行轨道,轨道倾角大于90度为逆行轨道;轨道倾角为0度则为赤道轨道;轨道倾角等于90度,则轨道平面通过地球南北极,亦称“极轨道”。 人造地球卫星绕地球运行,当它从地球南半球向北半球运行时,穿过地球赤道平面的那一点叫“升交点”。所谓升交点赤经,就是从春分点到地心的连线与从升交点到地心的连线的夹角。近地点幅角、半长轴、偏心率、倾角、升交点赤经和近地点时间这6个参数合称为人造地球卫星轨道的6要素。人造地球卫星在轨道上的每一个位置都会在地球表面上有一个投影,这叫“星下点”。所有星下点连成的曲线叫星下点轨迹。由于地球自转,星下点轨迹不只一条。相邻两条轨迹在同一纬度上的间隔正好等于地球在卫星轨道周期内转过的角度。根据星下点轨迹,可以预报卫星什么时候从什么地方上空经过。在航天指挥中心大厅的大型萤幕上,常可以看到上面显示的一条条星下点轨迹。相对于地球表面,星下点轨迹不断在平移。

类别

x射线天文远地卫星 X射线天文卫星是观测天体的X射线辐射为主要目的的人造卫星,是X射线天文学的主要研究设备。第一颗X射线天文卫星是1970年12月12日美国在肯亚发射的乌呼鲁卫星,该卫星原名“探险者42号”,又名“小型天文卫星1号”(SAS-1),因发射当天正值肯亚独立7周年纪念日而得名Uhuru(兹瓦西里语意为“自由”)。卫星上装有两个相互反向的X射线探测器,利用卫星的旋转进行了系统的X射线巡天,确定了约350个X射线源,发现了许多银河系中的X射线双星、来自遥远星系团的X射线,以及第一个黑洞候选天体——天鹅座X-1。乌呼鲁卫星的观测取得了极大的成功,被认为是X射线天文学发展史上的一座里程碑。除了乌呼鲁卫星以外,1970年代至1980年代,各国还相继发射了一系列X射线天文卫星,包括英国的羚羊5、荷兰天文卫星、美国的小型天文卫星3号、高能天文台1号(1977年)和高能天文台2号(又名“爱因斯坦卫星”)、欧洲的X射线天文卫星(EXOSAT)、日本的银河卫星等,其中1978年发射的爱因斯坦卫星首次采用了大型掠射式X射线望远镜,能够对X射线源进行成像,是1970年代取得成果最多的X射线卫星。1999年发射的钱德拉X射线天文台20世纪90年代,义大利和荷兰共同研制的BeppoSAX卫星发现了伽玛射线暴的X射线余辉。德国、美国、英国联合研制的伦琴卫星(ROSAT)首次在软X射线波段进行了巡天观测,在9年时间里新发现了7万多个X射线源,使X射线源的总数达到了12万个。1993年日本发射的ASCA卫星则首先将CCD设备用于X射线成像。美国的罗西X射线时变探测器(RXTE)虽然不能成像,但是能够探测X射线源的快速光变。1999年,两个重要的X射线天文卫星先后发射升空——美国的钱德拉X射线天文台和欧洲的XMM-牛顿卫星。前者具有极高的空间解析度(小于1角秒)和较宽的能段(0.1-1keV),后者则具有非常高的谱解析度。它们是21世纪初X射线天文学主要的观测设备,取得了一大批重要的研究成果。除此之外,1990年代升空的X射线望远镜还有俄罗斯发射的探测高能X射线的伽马1卫星、日本发射的用于观测太阳耀斑的阳光卫星等。 小型天文卫星 美国发射的一种天文卫星系列﹐英文缩写是SAS。被列入“探险者”(Explorer)卫星系列的编号。计画发射四颗﹐ 现已发射三颗﹐在X射线和γ射线波段范围探测宇宙。计画轨道是高度555公里左右的圆轨道﹐沿赤道运行﹐周期95分。卫星形状为圆柱体﹐直径60厘米左右﹐高度不超过1米半﹐总重量小于200公斤。SAS-A(“探险者”42号)于1970年12月12日发射﹐适值肯亚独立纪念日﹐故命名为“自由号”(Uhuru﹐斯瓦希里语自由之意)。携带的仪器有两个X射线准直正比计数器组﹐重量63.5公斤﹐每组由六个单独的正比计数器组成﹐探测的能量范围是2~20千电子伏﹐探测极限约为2×10光子数/(厘米·秒)。卫星的探测任务是:进行高灵敏度﹑高解析度的X射线源巡天观测。研究X射线源强度随时间的变化。确定X射线源在2~20千电子伏范围内的能量分布。“自由号”卫星首次完成了X射线波段系统的巡天工作﹐提供了全天的X射线源分布图﹐并据以编成自由号X射线源表﹐这标志著X射线天文学发展到一个新阶段。SAS-B(“探险者”48号)于1972年11月15日发射。携有火花室探测γ射线﹐以研究银河系及河外的γ射线源的空间分布和能量分布﹐探测能段是20~200兆电子伏。饪盼佬欠⑾忠?酉抵行挠屑?岣坏摩梅?洎r并探测到显然是来自河外星系的γ辐射和来自巨蟹座星云的高能γ辐射。SAS-C(“探险者”53号)于1975年5月7日发射。卫星沿Z轴稳定地以每秒01的速度转动。自转轴的指向受地面指令控制﹐X轴在±25范围内相对一选定的源以每秒001的速度来回转动。SAS-C进行四项实验﹕河外X射线源分析﹐目的是确定极弱的河外X射线源的位置﹔探测器包括转动调制准直器和铍窗正比计数器。银河X射线源分析﹐目的是确定银河X射线源位置﹐并监测这些源的强度变化﹔探测器包括转动调制准直器﹑板式准直器和铍窗正比计数器。天蝎座X-1源的连续X射线变化监测。目的是以 约1/4的卫星转动时间监测亮X射线点源﹔探测器包括板式和管式准直器﹑铍窗和钛窗正比计数器。银河X射线吸收测绘﹐目的是测量低能弥漫X射线背景强度随银纬的变化﹐以确定星际物质的密度和分布﹔探测器包括薄窗和铍窗正比计数器﹑管状准直器和X射线集光器等。 红外线天文卫星 红外线天文卫星(IRAS)是在太空中的天文台,以红外线巡天,执行勘查整个天空的任务。红外线天文卫星是美国的NASA、荷兰的NIVR与英国的SERC联合执行的计画,于1983年1月25日发射升空,任务执行了10个月之久。IRAS以12、25、60和100微米的四种波长描绘了96%的天空,在12微米上的解析力是0.5',100微米的解析力是2'。他发现了500,000个红外线源,迄今还有许多个尚待进一步的研究。大约有75,000个相信是仍然处在恒星诞生阶段的星爆星系,其他许多则是处在行星形成阶段,有尘埃组成的星盘环绕着的一般恒星。新的发现包括环绕在织女星周围的尘埃盘和银河核心的第一张影像。IRAS的寿命,像其他的红外线卫星一样,受限于冷却系统:有效的在红外领域中工作,卫星必须冷却到难以想像的低温。IRAS携带了720升的超流体氦,借由超流体的蒸发让卫星保持在1.6K(-272°C)的低温。卫星温度一旦上升,便会妨碍观测的进行。

寿命

天文卫星的寿命同其他人造卫星,取决于许多因素。第一大影响卫星寿命的因素是卫星本身。卫星正常功能的发挥,需要卫星本身各系统都能良好地工作,而卫星各部件都是有寿命的,某部件过了寿命期,它一出故障就会导致整个卫星失效。所以,人造卫星在设计研制过程中,都要分析各部件的寿命,对于一些寿命较短的部件,可以采取备份的方法提高其寿命,从而提高卫星整体的寿命。另外,由于生产制造可靠性的因素或空间环境的作用,一些部件在到寿之前也会提前损坏,这就要求在地面上提高加工制造精度,并且对一些容易损坏的重要部件实行多余度备份。大型套用卫星需要不断地对轨道和姿态进行调整,以使之能正常使用。轨道调整和姿态保持主要靠火箭发动机,它在不断消耗推进剂。为此,通信卫星等套用卫星也就越来越大,以尽可能携带更多的推进剂,来延长其使用寿命。第二大影响卫星寿命的因素是空间环境。人造卫星在运动过程中要受到各种外力的作用,包括地球非球形的形状摄动,大气阻力摄动,太阳光压摄动,日、月引力摄动等。这些摄动的影响常常导致人造卫星的轨道形状和大小都发生变化,对卫星的运动轨道在空间的位置和寿命的长短都起着重要作用。此外,空间的重粒子事件也会对卫星部件产生不利作用,会导致某些部件失效,为此,必须对一些易受影响的部件进行防护。第三大影响卫星寿命的因素是轨道因素。一般低轨道卫星寿命都比较短,高轨道卫星寿命相对较长,这主要是因为轨道高度不同,大气产生的阻力不同。提高卫星的寿命,可以产生很大的效益,因此在卫星设计制造阶段,要综合考虑影响卫星寿命的种种因素,并尽可能消除或削弱不利因素,提高其使用寿命。

重大发现

天文卫星的种类很多,各国发射的数量也不少,取得的成果相当丰硕。1978年1月26日,美国和欧洲联合研制的“国际紫外探险者卫星”发射,获得了大量突出成果。它观测到多达26颗彗星,测量到来自彗星的氢氧辐射;通过对恒星的观测证明了大质量恒星会辐射强大的恒星风;对正在形成的 新恒星进行了细致观测;研究了一些冷恒星的表面气体光谱辐射;研究了超新星遗迹;观测了球状星团;分析了麦哲伦星云的元素丰度;探测到并研究了活动星系和类星体发出的紫外辐射;尝试估计了黑洞的质量,确定在NGC4151星系中可能存在一个黑洞;对“大麦哲伦”星云中的超新星1987A进行了连续数小时的观察,获得了它的紫外辐射流信息。1989年11月18日,美国研制的“宇宙背景辐射探测卫星”(COBE)发射升空,它发现了宇宙大爆炸时产生的“涟淇”,揭示出目前所知最大并且最古老的宇宙结构,部分解答了宇宙学的最大奥秘。1995年11月16日,欧洲空间局研制的红外天文卫星“红外空间观测台”发射升空,进入远地点达71000千米的大椭圆轨道。它的新发现有:对深空的冷氢分子进行了红外观测,直接观察到了这种过去无法看到的暗物质,为宇宙中存在大量暗物质的理论提供了极好的证据;通过对正在消亡的恒星的细致观测,发现了深空天体产生的水蒸气;发现了过去一无所知的新星系;拍摄到两个星系剧烈碰撞的图像;拍摄到远离地球2000万光年的旋涡星系的图像,表明在其旋臂的特定位置正在诞生一颗恒星;观察到恒星正在消亡的细节,如距地球3000万光年的NGC6543星等。当然,哈勃太空望远镜取得的成果更加突出,主要有:增进了人类对宇宙年龄和大小的了解;证明某些星系中央存在超高质量的黑洞;观察了数千个星系和星系团;探测到了宇宙诞生早期的原始星系,使科学家有可能跟踪研究宇宙发展的历史;对神秘的类星体和其存在的环境进行了深入观测;更深入揭示了恒星的不同形成过程;对宇宙诞生早期恒星形成过程中重元素的组成进行了研究;揭示了已死亡的恒星周围气体壳的复杂组成;对猎户座星云中年轻恒星周围的尘埃环进行了观测,揭示出银河系中存在其他行星系统;对苏梅克彗星与木星相撞进行了详细观测;对火星等行星的气候情况进行了观测;发现木星的两颗卫星大气层中存在氧。




人造卫星有哪些用途?
(2)地球观测卫星:地球观测卫星,泛指用于对地球资源与环境进行遥感的各种人造地球卫星和航天器。对地观测卫星主要包括气象卫星、陆地卫星、海洋卫星、轨道航天站以及其他特殊用途的卫星。人们可以利用地球观测卫星进行监测以获取大面积观测数据最终可有效达到综合地分析资料。(3)天文卫星:天文卫星是用来观测...

关于航天的资料
1.日地空间探测。与欧洲空间局合作实施了“地球空间双星探测计划”,协同欧洲空间局的四颗空间探测卫星...神舟三号、四号在全载人状态下连续发射成功,预示着中国人“摘星揽月”已为期不远。神舟五号:神州圆梦

日本航空航天详细资料大全
从50年代以来开始恢复航空工业,先是修理飞机,继而引进专利仿制飞机,之后开始自行设计和制造飞机。日本从50年代中期开始发展火箭和航天技术,先后研制了“铅笔”、“卡帕”、“拉姆达”三个系列的固体探空火箭并进行了多次试射,然后开始研制运载火箭和人造地球卫星。 日本飞机和航空发动机制造企业主要有三菱...

关于地球的资料有哪些?
地球是太阳系从内到外的第三颗行星,也是太阳系中直径、质量和密度最大的类地行星,是人类唯一的家园。住在地球上的人类又常称呼地球为世界。地球亦作“地_”。太阳系中接近太阳的第三颗行星,形状两极稍扁,赤道略鼓,是个三轴椭球体。周围有大气层包围着,表面是陆地和海洋,有人类,动植物和微...

人造卫星离地面距离是什么意思呀?
而且人造卫星很多,可以替人类制造巨大的财富。人造卫星的寿命其实人造卫星也是有寿命的,不同的卫星寿命程度不同,大概是10年左右,寿命比较短的卫星在2-5年,宴游段唱的在8-10年左右。进地轨卫星观测卫星寿命便短,静止通信卫星寿命比较长。卫星寿命的主受诸多因素影响,而且人造文本文档文本文档文本...

关于神舟飞船的信息
道倾角42.4度、近地点高度200公里、远地点高度347公里的椭圆轨道上运行5圈,实 施变轨后,进入343公里...卫星,截至目前已将27颗国外制造的卫星成功送入太空,我国在国际商业卫星发射服务市场中占有了一席之地。...一、上文三段依次介绍了我国研制的载人宇宙飞船的( 用途 )、( 构造 )和解决飞船的一些特殊问题的措施...

地球的资料?
),按离太阳由近及远的次序数是第三颗。它有一颗天然的卫星---月球,二者组成一个天体系统---地月系统。 地球自西向东自转,同时又围绕太阳公转。地球自转与公转运动的结合使其产生了地球上的昼夜交替和四季变化(地球自转和公转的速度是不均匀的)。同时,由于受到太阳、月球、和附近行星的引力作用以及地球大气、...

太阳系八大行星的资料
2、土星:土星按照距太阳由近到远的距离排列是第六颗,是太阳系里的第二大行星,它有七个美丽的光环,他的光环鲜艳夺目,因此有人把土星成为“星中美人”。通过小型的望远镜观察也能明显地发现土星是一个扁球体。它赤道的直径比两极的直径大大约10%(赤道为120,536千米,两极为108,728千米),这是...

太空的科学探秘
维修和重新安置的卫星国际彗星探测器1985首次远距离与彗星会合(贾可比尼金纳彗星)旅行者2号1986首次飞越天王星旅行者2号1989首次飞越海王星旅行者1\/2号1992首...随后两国又相继发射了多个绕火星飞行的轨道器,更加详细地了解了这颗行星的情况。1976年,美国的海盗1号和海盗2号登陆器分别在火星上降落,并在降落的过程中...

关于太空的资料
太空是宇宙中一切超出地球大气层顶部的地方 太空也是指行星、卫星、恒星等等之间的区域,是行星际介质、星际介质、星系际介质、星系团际介质等等 物理学家将大气分为5层:对流层(海平面至10千米)、平流层(10~40千米)、中间层(40~80千米)、热成层(电离层,80~370千米)和外大气层(电离层,370...

顺城区18099236129: 太阳系中所有行星及卫星的具体详细资料 -
咸石盐酸: 水星最接近太阳,是太阳系中第二小行星.水星在直径上小于木卫三和土卫六,但它更重. 公转轨道:距太阳 57,910,000 千米 (0.38 天文单位)行星直径:4,880 千米质量:3.30e23 千克 金星是离太阳第二近,太阳系中第六大行星.在所有行...

顺城区18099236129: 世界上还有哪些人造卫星 介绍一下
咸石盐酸: 科学卫星(scientific satellite):用于科学探测和研究的人造地球卫星.科学卫星根据用途的不同,安装望远镜、光谱仪、盖革计数器、电离计、压力测量仪和磁强计等观测、测量、分析和试验仪器,进行高层大气、地球辐射带、地球磁层、宇宙线、太阳辐射和极光等空间环境的科学探测和研究,太阳和其他天体观测,空间生物试验和空间微重力试验.科学卫星主要包括空间物理探测卫星、天文卫星、生物卫星和空间微重力试验卫星等.前苏联/俄罗斯、美国、法国、英国、日本、中国等众多国家相继发射了科学卫星,获得了大量有关空间物理环境、各种天体和空间物质的宝贵资料,取得了丰硕的科学探索和科学研究成果,对人类认识太空、进入太空、利用太空发挥了重要作用.

顺城区18099236129: 有哪些卫星?又有什么作用? -
咸石盐酸: 卫星的种类及作用:1、气象卫星:用来监测云层气象信息,提供最新的气象情况以及长期的气象分析.我国气象卫星有极轨和静止两个系列.极轨卫星围绕南北极跨越赤道飞行,飞行一圈约102分钟,轨道高度830公里左右.卫星所经过地点的...

顺城区18099236129: 人造卫星有哪些
咸石盐酸: 一、人造卫星按运行轨道区分 为低轨道卫星、中轨道卫星,高轨道卫星、地球同步轨道卫星、地球静止轨道卫星、太阳同步轨道卫星、大椭圆轨道卫星和极轨道卫星;按用途区分为科学卫星、应用卫星和技术试验卫星. 二、按用途分 它可分为...

顺城区18099236129: 卫星的资料 -
咸石盐酸: 人造卫星(Artificial Satellite):环绕地球在空间轨道上运行的无人航天器.人造卫星基本按照天体力学规律绕地球运动,但因在不同的轨道上受非球形地球引力场、大气阻力、太阳引力、月球引力和光压的影响,实际运动情况非常复杂.人造卫...

顺城区18099236129: 人造卫星的名称都有什么
咸石盐酸: 科学卫星:送入太空轨道,进行大气物理、天文物理、地球物理等实验或测试的卫星,如中华卫星一号、哈伯等. 通信卫星:做为电讯中继站的卫星,如:亚卫一号. 军事卫星:做为军事照相、侦察之用的卫星. 气象卫星:摄取云层图和有关气象资料的卫星. 资源卫星:摄取地表或深层组成之图像,做为地球资源探勘之用的卫星. 星际卫星:可航行至其它行星进行探测照相之卫星,一般称之为「行星探测器」,如先锋号、火星号、探路者号等.

顺城区18099236129: 关于木星的知识 -
咸石盐酸:[答案] 技名词定义 中文名称:木星 英文名称:Jupiter 定义:太阳系八大行星之一.太阳系中最大的行星. 应用学科:天文学(一级... 木卫四被称为伽利略卫星.其实木卫三是中国战国时代的天文学家甘德发现的,他著有《岁星经》和《天文星占》两书,可惜...

顺城区18099236129: 卫星的种类 -
咸石盐酸: 科学卫星,技术试验卫星和应用卫星.① 科学卫星是用于科学探测和研究的卫星,主要包括空间物理探测卫星和天文卫星,用来研究高层大气,地球辐射带,地球磁层,宇宙线,太阳辐射等,并可以观测其他星体.② 技术试验卫星是进行新...

顺城区18099236129: 人造卫星有哪几种?特点是啥? -
咸石盐酸: 人造地球卫星用途广、种类繁多,有太空“信使”通兆逗信卫星、太空“遥感器”地球资源卫星、太空“气象站”气象卫星、太空“向导”导航卫星、太空“间谍”侦察卫星、太空“广播员”广播卫星、太空“测绘员”测地卫星、太空“千里眼...

顺城区18099236129: 八大行星的资料 -
咸石盐酸: 八大行星特指太阳系的八个行星,按照离太阳的距离从近到远,它们依次为水星、金星、地球、火星、木星、土星、天王星、海王星.八大行星自转方向多数也和公转方向一致.只有金星和天王星两个例外.金星自转方向与公转方向相反.而天...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网