BEGAN边界平衡生成对抗网络

作者&投稿:鞠房 (若有异议请与网页底部的电邮联系)
~

解决问题: GAN训练模型较为困难

做法: BEGAN并没有直接去估计生成分布 pg 和真实分布 px 的距离,而是估计两者分布误差的距离。

分布之间的误差分布相近的话,也可以认为 pg 和 px 是相近的。

BEGAN 将判别器 G 设计成自编码器用来重构分布误差,并优化分
布误差之间的距离,如下式:

BEGAN 提出一种均衡概念,用以平衡 G 和 D 的训练,使 GAN 即使使用很简单的网络,不加如 BN、minibath 等训练技巧也能得到很好的训练效果。
同时还提出了一种能够在样本多样性和样本质量上均衡的超参数以及衡量模型收敛性的方法。
实验中发现 BEGAN 收敛很快,并且 G 和 D 训练平衡,但超参数的选取比较考验经验。

1.使得GAN具有快速而稳定的收敛的标准训练过程。
2.引入均衡概念,均衡鉴别器和发生器的功率。
3.提供控制图像多样性和视觉质量之间权衡的新方法
4.收敛的近似度量

使用自动编码器作为鉴别器,使用从瓦瑟斯坦距离(类似于我先前提到的KL散度,具有正定性,对称性,三角不等式特性)导出的损失来匹配自动编码器损失分布。

L:R^Nx->R+训练像素式自动编码器的 1.损失函数:
BEGAN中提出了一种思路,它使用了自动编码器做为判别器 D,它所做的是尽可能地匹配误差的分布而不是直接匹配样本的分布,如果误差的分布之间足够的接近,那么真实的样本之间的分布也会足够的接近。

D:自动编码器功能
n:是目标标准
v:是Nx维度的样例

u1,2是自动编码器损失函数的两个分布
Γ(u1,u2)是1和2的所有组合的集合
m1,2∈R是他们各自的平均值
瓦瑟斯坦距离为:

其中x1和x2是从

利用詹森不等式,可以导出W1(u1,u2)的下界:

目标是优化自动编码器损失分布之间的瓦瑟斯坦距离的下限,而不是样本分布之间的下限。

设计鉴频器,使自动编码器损耗之间的等式1最大化。
设u1为损失L(x)的分布,其中x为实样本。
设u2为损失L(G(z))的分布
其中G : RNz →RNx为生成函数
z∈[-1,1]Nz为维数Nz的均匀随机样本

由于m1,m2 ∈R+到达最大化| m1-m2 |只有两种可能的解决方案:

选择解决方案(b)作为我们的目标,因为最小化m1自然会导致对真实图像的自动编码。
给定鉴别器和发生器参数θD和θG
每个参数都通过最小化损耗LD和LG来更新
将问题表示为GAN目标,其中zD和zG是z的样本:

在BEGAN中G和D对应的损失函数:

2.引入平衡:

当产生器和鉴别器损失之间保持平衡,满足情况:

生成的样本不能被鉴别器从真实样本中区分出来,那么它们的 误差分布包括预期误差应该是相同的 ,使得其均衡。

γ引入来平衡D既可以对真实图像自动编码,又可以正确的判别输入的样本。γ很小时,说明分母部分值很大,那么此时模型专注于识别的正确率,则出现G只生成可以骗过D的图像

鉴别器有两个相互竞争的目标:
1.自动编码真实图像和从生成的图像中鉴别真实图像。
2.γ项让我们平衡这两个目标。
较低的γ值导致较低的图像多样性 ,因为鉴别器更侧重于自动编码真实图像。
将γ称为分集比。有一个自然的边界,图像清晰,有细节。

对于θD和θG和每一训练步t,来说的目标
γ∈[0,1]是一个超参数,值越小代表生成的样本多样性越低
λk是 kt + 1 的更新步长,kt表示对D判别能力的重视度

采用比例控制理论来维持平衡

这是使用一个变量kt ∈[0,1]来实现的,以控制在梯度下降过程中对L(G(zD))的重视程度。
我们初始化k0 = 0.λk是k的比例增益;
在机器学习术语中,它是k的学习率。
我们在实验中使用了0.001。
本质上,这可以被认为是闭环反馈控制的一种形式,其中kt在每一步被调整以保持等式4。
在早期训练阶段,G倾向于为自动编码器生成易于重建的数据,因为生成的数据接近于0,并且还没有准确地了解真实的数据分布。
这时L(X)>L(G(z))
与需要交替训练 D 和 G 或预训练 D 的传统训练相比,BEGAN提出的方法开始不需要稳定训练。
Adam在训练中使用默认的超参数
θD 和 θG 基于各自的损失通过独立的Adam优化器独立更新。
我们通常使用 n = 16 的批量。
3.全局收敛度量:

确定 GANs 的收敛性通常是一项困难的任务,因为最初的公式被定义为零和博弈。
结果,一个亏损上升,另一个亏损下降。

我们通过使用 平衡概念 导出了 收敛的全局度量 :我们可以将收敛过程框架为找到比例控制算法(控制装置输出信号与输人信号间呈线性关系的控制作用数学表示法)|γL(x)-L(G(Zg))|的 瞬时过程误差绝对值最小的最近重构L(x) 。这一衡量标准由两项和:

该度量可用于确定网络何时达到其 最终状态 模型是否已崩溃 也即是模型是否收敛。

4.模型架构
鉴别器: R Nx->R Nx是一个卷积深度神经网络,其架构为自动编码器。
Nx = H × W × C 是x 尺寸的简写
其中 H、 W、 C 是高度、宽度和颜色。

我们使用自动编码器和深度编码器和解码器。目的是尽可能简单,以避免典型的GAN诡计。
结构如图 1 所示。我们使用了 3 × 3 的卷积,在它们的输出端应用了指数线性单位。
每层重复多次(通常为 2 次)。我们观察到,重复次数越多,视觉效果越好。
卷积滤波器随着每次下采样线性增加。
下采样作为步长为 2 的子采样实现,上采样由最近邻完成。
在编码器和解码器之间的边界处,经过处理的数据的张量通过完全连接的层被映射到嵌入状态 h ∈RNh 和从嵌入状态 h∈ RNh 来,其中 Nh 是自动编码器的隐藏状态的维度,而没有任何非线性。

生成器 G : RNz → RNx 使用与鉴别器解码器相同的架构(虽然权重不同)。
但为了简化。输入状态为均匀采样的 z∈ [-1, 1]Nz。
这个简单的架构实现了高质量的结果,并展示了技术的健壮性。
此外,可选的细化有助于梯度传播,并产生更清晰的图像。受深度残差网络[8]的启发,使用消失残差初始化网络:对于连续的相同大小的层,层的输入与其输出相结合:inx+1 =carry×inx+(1 carry)×outx。
在实验中,我们从进位= 1 开始,经过 16000 步
逐渐减少到 0。
我们还引入了跳跃连接[8, 17, 9]来帮助梯度传播。第一解码器张量 h0 是通过将 h 投影到 8 × 8 × n 张量而获得的。在每个上采样步骤之后,输出与上采样到相同维数的 h0 连接。
这在隐藏状态和解码器的每个连续上采样层之间创建了跳跃连接。
我们没有探索 GANs 中通常使用的其他技术,如批量归一化、缺失、转置卷积或卷积滤波器的指数增长,尽管它们可能会进一步改进这些结果

5.通过实验来理解

变 γ 的值时,模型生成结果的多样性和质量对比效果如下所示,从中可以看出
γ值越小,生成的图像越清晰,也更接近;
γ值越大,多样性提高了,但是图像的质量同样也下降了

BEGAN的空间连续性与其他GAN相比表现更优异:

伴随着模型收敛,图像质量也在不断提升

总之:BEGAN针对 GAN 训练难易度难、控制生成样本多样性难、平衡鉴别器和生成器收敛难等问题,做出了很大的改善。

参考论文:Berthelot D, Schumm T, Metz L. BEGAN: boundary equilibrium generative adversarial networks[J]. arXiv:1703.10717,
2017




还有5段,再帮忙翻译一下,谢谢哦!
本文表述了讲故事如何被被用来向低年级的学生介绍复杂的数学概念,包括两个研究者用的插图。Egan伊根(1986)建议以精神在故事的形式下组织最好为前提,调整初级课程目标以使其包括讲故事。这个故事和其他人喜欢的故事,提供了一个富有创造性的选择帮助我们的孩子们更好的理解数学。Storytelling is a powerf...

《时代周刊》强推的100本必读书目!开拓视野~
《Bitter Orange Tree》:女性视角的深度剖析Jokha Alharthi的《苦橙树》揭示了女性在社会变迁中的坚韧与情感深度,展现了阿曼女性的生存与梦想。《The Candy House》:记忆的共享与挑战Jennifer Egan的《糖果屋》通过革命性技术,探索了联系、家庭与个人自由的界限,是一部关于技术与人性的深刻寓言。《The...

建筑业伙伴关系重建与价值创造?
这一承诺要求使传统组织间孤立的关系转变成一种不受组织边界约束,能够共享组织资源和利益的融洽关系。MichaelLatham(1994)和 John Egan(1998)分别通过《构建团队》和《反思建筑业》两份极具影响力的报告指出,承包商与分包商间也应该建立伙伴关系,合作伙伴协议不但可以改善业主与承包商的关系,而且对促进承包商、分包商...

世界经典科幻小说推荐10本 10部世界经典科幻小说介绍
1、《海底两万里Twenty Thousand Leagues Under The Sea》(1870)。儒勒·凡尔纳Jules Verne是科幻小说的先驱,他的这部小说问世60年后,“科幻小说”这个词才正式出现在公众文化中。《海底两万里》是儒勒·凡尔纳最具预见性的作品,其中的潜艇战、水肺潜水甚至泰瑟枪之后都成为现实。美国建造的世界第一艘核...

猛鬼街的猛鬼怪胎
R\/ Canada:13+(Quebec) \/ France:-12\/ Norway:18(video premiere) \/ UK:18\/ West Germany:18\/ Netherlands:16\/ Mexico:C\/ Canada:18A\/ Singapore:M18制作成本:$6,000,000 (estimated)摄制格式:35 mm洗印格式:35 mm 导演:斯蒂芬·霍普金斯Stephen Hopkins编剧:韦斯·克雷文Wes Craven......

宜丰县15126123442: 生成式对抗网络GAN在NLP领域最近有哪些应用 -
妫钟津博: 1. GAN最开始是设计用于生成连续数据,但是自然语言处理中我们要用来生成离散tokens的序列.因为生成器(Generator,简称G)需要利用从判别器(Discriminator,简称D)得到的梯度进行训练,而G和D都需要完全可微,碰到有离散变量...

宜丰县15126123442: 生成式对抗网络GAN有哪些最新的发展,可以实际应用到哪些场景中 -
妫钟津博: 生成对抗网络是一种生成模型(Generative Model),其背后最基本的思想就是从训练库里获取很多的训练样本(Training Examples),从而学习这些训练案例生成的概率分布. 一些生成模型可以给出概率分布函数定义的估测,而另一些生成模型可以给你全新的样本,这些新样本来自于原有生成训练库的概率分布.

宜丰县15126123442: Python培训需要学习哪些内容
妫钟津博: 学习Python编程需要学习:第一阶段:Python语言及应用 课程内容:Python语言基础,面向对象设计,多线程编程,数据库交互技术,前端特效,Web框架,爬虫框架,网络编程 掌握技能:(1)掌握Python语言语法及面向对象设计;(2)掌...

宜丰县15126123442: matlab 神经网络 怎么做dropout -
妫钟津博: 这个特例称为对抗的网络.这里,仅用反向传播和 Dropout 来训练模型,生成模型通过前向传播来生成样本.不需要近似推理和 Markov 链.

宜丰县15126123442: 10、自编码器对样本进行变换得到的向量不一定能覆盖潜在空间任意...
妫钟津博: 个人感觉,gan之所以比其他生成模型更优秀,是因为gan在本质上相当于最优化js距离而不是kl距离.虽然后者会得到一个更general的分布,但是从生成角度来讲,一个special的分布更能使人感到生成的数据更佳“真实”.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网