欧拉定理是什么东西

作者&投稿:绪范 (若有异议请与网页底部的电邮联系)
欧拉定理是什么东西?~


在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。另有欧拉公式。

在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理。在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一。欧拉定理实际上是费马小定理的推广。此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。另有欧拉公式。



欧拉定理 1、初等数论中的欧拉定理:  对于互质的整数a和n,有a^φ(n) ≡ 1 (mod n)
  证明:
  首先证明下面这个命题:
  对于集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是不大于n且与n互素的数,即n的一个化简剩余系,或称简系,或称缩系),考虑集合S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)}
  则S = Zn
  1) 由于a,n互质,xi也与n互质,则a*xi也一定于p互质,因此
  任意xi,a*xi(mod n) 必然是Zn的一个元素
  2) 对于Zn中两个元素xi和xj,如果xi ≠ xj
  则a*xi(mod n) ≠ a*xi(mod n),这个由a、p互质和消去律可以得出。
  所以,很明显,S=Zn
  既然这样,那么
  (a*x1 × a*x2×...×a*xφ(n))(mod n)
  = (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n)
  = (x1 × x2 × ... × xφ(n))(mod n)
  考虑上面等式左边和右边
  左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n)
  右边等于x1 × x2 × ... × xφ(n))(mod n)
  而x1 × x2 × ... × xφ(n)(mod n)和n互质
  根据消去律,可以从等式两边约去,就得到:
  a^φ(n) ≡ 1 (mod n)
  推论:对于互质的数a、n,满足a^(φ(n)+1) ≡ a (mod n)
  费马定理:
  a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p)
  证明这个定理非常简单,由于φ(p) = p-1,代入欧拉定理即可证明。
  同样有推论:对于不能被质数p整除的正整数a,有a^p ≡ a (mod p) 2、平面几何里的欧拉定理:  (1) (Euler定理)设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d,则d2=R2-2Rr.
  证明:如右下图,O、I分别为⊿ABC的外心与内心.
  连AI并延长交⊙O于点D,由AI平分ÐBAC,故D为弧BC的中点.
  连DO并延长交⊙O于E,则DE为与BC垂直的⊙O的直径.
  由圆幂定理知,R2-d2=(R+d)(R-d)=IA·ID.(作直线OI与⊙O交于两点,即可用证明)
  但DB=DI(可连BI,证明ÐDBI=ÐDIB得),
  故只需证2Rr=IA·DB,即2R∶DB=IA∶r 即可.
  而这个比例式可由⊿AFI∽⊿EBD证得.故得R2-d2=2Rr,即证.
  (2)四边形ABCD的两条对角线AC、BD的中点分别为M、N,则:AB^2+BC^2+CD^2+DA^2=AC^2+BD^2+4MN^2.
  证明:如右上图,连接BD、BM,由中线公式有AB^2+BC^2=2(BM^2+AM^2).DA^2+CD^2=2(DM^2+AM^2,又BM^2+DM^2=2(BN^2+MN^2),4AM^2=AC^2, 4BN^2=BD^2,故AB^2+BC^2+CD^2+DA^2=2(BM^2+DM^2)+4AM^2=4BN^2+4MN^2+4AM^2=AC^2+BD^2+4MN^2
  注:当A、B、C、D为空间四点时,结论依然成立,且有AB^2+BC^2+CD^2+DA^2≥ AC^2+BD^2,此结论为第四届美国数学奥林匹克试题
   [编辑本段]欧拉公式  简单多面体的顶点数V、面数F及棱数E间有关系
  V+F-E=2
  这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。 [编辑本段]认识欧拉  欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。
  欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。
  欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(Gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等,至今沿用。
  欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有关系V+F-E=2,此式称为欧拉公式。V+F-E即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”? 欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式...... [编辑本段]欧拉定理的意义  (1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律
  (2)思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。
  (3)引入拓扑学:从立体图到拉开图,各面的形状、长度、距离、面积等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。
  定理引导我们进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。
  (4)提出多面体分类方法:
  在欧拉公式中, f (p)=V+F-E 叫做欧拉示性数。欧拉定理告诉我们,简单多面体f (p)=2。
  除简单多面体外,还有非简单多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的表面不能经过连续变形变为一个球面,而能变为一个环面。其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面体的欧拉示性数为0。
  (5)利用欧拉定理可解决一些实际问题
  如:为什么正多面体只有5种? 足球与C60的关系?否有棱数为7的正多面体?等 [编辑本段]欧拉定理的证明  方法1:(利用几何画板)
  逐步减少多面体的棱数,分析V+F-E
  先以简单的四面体ABCD为例分析证法。
  去掉一个面,使它变为平面图形,四面体顶点数V、棱数E与剩下的面数F1变形后都没有变。因此,要研究V、E和F关系,只需去掉一个面变为平面图形,证V+F1-E=1
  (1)去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。
  (2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一条棱。
  以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E =2。
  对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。
  方法2:计算多面体各面内角和
  设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和Σα
  一方面,在原图中利用各面求内角总和。
  设有F个面,各面的边数为n1,n2,…,nF,各面内角总和为:
  Σα = [(n1-2)·180度+(n2-2)·180度+…+(nF-2) ·180度]
  = (n1+n2+…+nF -2F) ·180度
  =(2E-2F) ·180度 = (E-F) ·360度 (1)
  另一方面,在拉开图中利用顶点求内角总和。
  设剪去的一个面为n边形,其内角和为(n-2)·180角,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。中间V-n个顶点处的内角和为(V-n)·360度,边上的n个顶点处的内角和(n-2)·180度。
  所以,多面体各面的内角总和:
  Σα = (V-n)·360度+(n-2)·180度+(n-2)·180度
  =(V-2)·360度(2)
  由(1)(2)得: (E-F) ·360度=(V-2)·360度
  所以 V+F-E=2.
  方法3 用拓朴学方法证明欧拉公式
   图尝试一下用拓朴学方法证明关于多面体的面、棱、顶点数的欧拉公式。
  欧拉公式:对于任意多面体(即各面都是平面多边形并且没有洞的立体),假设F,E和V分别表示面,棱(或边),角(或顶)的个数,那末
  F-E+V=2。
  证明 如图(图是立方体,但证明是一般的,是“拓朴”的):
  (1)把多面体(图中①)看成表面是薄橡皮的中空立体。
  (2)去掉多面体的一个面,就可以完全拉开铺在平面上而得到一个平面中的直线形,像图中②的样子。假设F′,E′和V′分别表示这个平面图形的(简单)多边形、边和顶点的个数,我们只须证明F′-E′+V′=1。
  (3)对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中③的样子。每引进一条对角线,F′和E′各增加1,而V′却不变,所以F′-E′+V′不变。因此当完全分割成三角形的时候,F′-E′+V′的值仍然没有变。有些三角形有一边或两边在平面图形的边界上。
  (4)如果某一个三角形有一边在边界上,例如图④中的△ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了△ABC。这样F′和E′各减去1而V′不变,所以F′-E′+V′也没有变。
  (5)如果某一个三角形有二边在边界上,例如图⑤中的△DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉△DEF。这样F′减去1,E′减去2,V′减去1,因此F′-E′+V′仍没有变。
  (6)这样继续进行,直到只剩下一个三角形为止,像图中⑥的样子。这时F′=1,E′=3,V′=3,因此F′-E′+V′=1-3+3=1。
  (7)因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中⑦那样。
  (8)如果最后是像图中⑧的样子,我们可以去掉其中的一个三角形,也就是去掉1个三角形,3个边和2个顶点。因此F′-E′+V′仍然没有变。
  即F′-E′+V′=1
  成立,于是欧拉公式:
  F-E+V=2
  得证。 [编辑本段]欧拉定理的运用方法  (1)分式:
  a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
  当r=0,1时式子的值为0
  当r=2时值为1
  当r=3时值为a+b+c
  (2)复数
  由e^iθ=cosθ+isinθ,得到:
  sinθ=(e^iθ-e^-iθ)/2i
  cosθ=(e^iθ+e^-iθ)/2
  (3)三角形
  设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
  d^2=R^2-2Rr
  (4)多面体
  设v为顶点数,e为棱数,f是面数,则
  v-e+f=2-2p
  p为欧拉示性数,例如
  p=0 的多面体叫第零类多面体
  p=1 的多面体叫第一类多面体
  (5) 多边形
  设一个二维几何图形的顶点数为V,划分区域数为Ar,一笔画笔数为B,则有:
  V+Ar-B=1
  (如:矩形加上两条对角线所组成的图形,V=5,Ar=4,B=8)
  (6). 欧拉定理
  在同一个三角形中,它的外心Circumcenter、重心Gravity、九点圆圆心Nine-point-center、垂心Orthocenter共线。
  其实欧拉公式是有很多的,上面仅是几个常用的。 [编辑本段]使用欧拉定理计算足球五边形和六边形数  问:足球表面由五边型和六边型的皮革拼成,计算一共有多少个这样的五边型和六边型?
  答:足球是多面体,满足欧拉公式F-E+V=2,其中F,E,V分别表示面,棱,顶点的个数
  设足球表面正五边形(黑皮子)和正六边形(白皮子)的面各有x个和y个,那么
  面数F=x+y
  棱数E=(5x+6y)/2(每条棱由一块黑皮子和一块白皮子共用)
  顶点数V=(5x+6y)/3(每个顶点由三块皮子共用)
  由欧拉公式,x+y-(5x+6y)/2+(5x+6y)/3=2,
  解得x=12。所以,共有12块黑皮子
  所以,黑皮子一共有12×5=60条棱,这60条棱都是与白皮子缝合在一起的
  对于白皮子来说:每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起。
  所以白皮子所有边的一半是与黑皮子缝合在一起的
  那么白皮子就应该一共有60×2=120条边,120÷6=20
  所以共有20块白皮子
  (或者,每一个六边形的六条边都与其它的三个六边形的三条边和三个五边形的三条边连接;每一个五边形的五条边都与其它的五个六边形的五条边连接
  所以,五边形的个数x=3y/5。
  之前求得x=12,所以y=20)
  经济学中的“欧拉定理”
  在西方经济学里,产量和生产要素L、K的关系表述为Q=Q(L,K),如果具体的函数形式是一次齐次的,那么就有:Q=L(ðQ/ðL)+K(ðQ/ðK),换句话说,产品分配净尽取决于Q能否表示为一个一次齐次函数形式。
  因为ðQ/ðL=MPL=w/P被视为劳动对产量的贡献,ðQ/ðK=MPK=r/P被视为资本对产量的贡献,因此,此式被解释为“产品分配净尽定理”,也就是所有产品都被所有的要素恰好分配完而没有剩余。因为形式上符合数学欧拉定理,所以称为欧拉定理。
  【同余理论中的"欧拉定理"】
  设a,m∈N,(a,m)=1,则a^(f(m))≡1(mod m)
  (注:f(m)指模m的简系个数) [编辑本段]欧拉公式  在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做欧拉公式,它们分散在各个数学分支之中。
  1、复变函数论里的欧拉公式:
  e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。
  它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
  将公式里的x换成-x,得到:
  e^-ix=cosx-isinx,然后采用两式相加减的方法得到:
  sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.
  这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作∏就得到:
  e^i∏+1=0.
  这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。
  2、拓扑学里的欧拉公式:
  V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。
  如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。
  X(P)叫做P的拓扑不变量,是拓扑学研究的范围。
  3、初等数论里的欧拉公式:
  欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。
  欧拉证明了下面这个式子:
  如果n的标准素因子分解式是p1^a1*p2^a2*……*pm*am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有
  φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)
  利用容斥原理可以证明它。
  定理:正整数a与n互质,则a^φ(n)除以n余1
  证明:设集合{A1,A2,...,Am}为模n的一个缩系(若整数A1,A2,...,Am模n分别对应0,1,2,...,n-1中所有m个与n互素的自然数,则称集合{A1,A2,...,Am}为模n的一个缩系)
  则{a A1,a A2,...,a Am}也是模n的一个缩系(如果a Ax与a Ay (x不等于y)除以n余数相同,则a(Ax-Ay)是n的倍数,这显然不可能)
  即A1*A2*A3*……Am≡aA1*aA2*……aAm(mod n) (这里m=φ(n))
  两边约去A1*A2*A3*……Am即得1≡a^φ(n)(mod n)

欧拉定理 1、初等数论中的欧拉定理:  对于互质的整数a和n,有a^φ(n) ≡ 1 (mod n)
  证明:
  首先证明下面这个命题:
  对于集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是不大于n且与n互素的数,即n的一个化简剩余系,或称简系,或称缩系),考虑集合S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)}
  则S = Zn
  1) 由于a,n互质,xi也与n互质,则a*xi也一定于p互质,因此
  任意xi,a*xi(mod n) 必然是Zn的一个元素
  2) 对于Zn中两个元素xi和xj,如果xi ≠ xj
  则a*xi(mod n) ≠ a*xi(mod n),这个由a、p互质和消去律可以得出。
  所以,很明显,S=Zn
  既然这样,那么
  (a*x1 × a*x2×...×a*xφ(n))(mod n)
  = (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n)
  = (x1 × x2 × ... × xφ(n))(mod n)
  考虑上面等式左边和右边
  左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n)
  右边等于x1 × x2 × ... × xφ(n))(mod n)
  而x1 × x2 × ... × xφ(n)(mod n)和n互质
  根据消去律,可以从等式两边约去,就得到:
  a^φ(n) ≡ 1 (mod n)
  推论:对于互质的数a、n,满足a^(φ(n)+1) ≡ a (mod n)
  费马定理:
  a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p)
  证明这个定理非常简单,由于φ(p) = p-1,代入欧拉定理即可证明。
  同样有推论:对于不能被质数p整除的正整数a,有a^p ≡ a (mod p) 2、平面几何里的欧拉定理:  (1) (Euler定理)设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d,则d2=R2-2Rr.
  证明:如右下图,O、I分别为⊿ABC的外心与内心.
  连AI并延长交⊙O于点D,由AI平分ÐBAC,故D为弧BC的中点.
  连DO并延长交⊙O于E,则DE为与BC垂直的⊙O的直径.
  由圆幂定理知,R2-d2=(R+d)(R-d)=IA·ID.(作直线OI与⊙O交于两点,即可用证明)
  但DB=DI(可连BI,证明ÐDBI=ÐDIB得),
  故只需证2Rr=IA·DB,即2R∶DB=IA∶r 即可.
  而这个比例式可由⊿AFI∽⊿EBD证得.故得R2-d2=2Rr,即证.
  (2)四边形ABCD的两条对角线AC、BD的中点分别为M、N,则:AB^2+BC^2+CD^2+DA^2=AC^2+BD^2+4MN^2.
  证明:如右上图,连接BD、BM,由中线公式有AB^2+BC^2=2(BM^2+AM^2).DA^2+CD^2=2(DM^2+AM^2,又BM^2+DM^2=2(BN^2+MN^2),4AM^2=AC^2, 4BN^2=BD^2,故AB^2+BC^2+CD^2+DA^2=2(BM^2+DM^2)+4AM^2=4BN^2+4MN^2+4AM^2=AC^2+BD^2+4MN^2
  注:当A、B、C、D为空间四点时,结论依然成立,且有AB^2+BC^2+CD^2+DA^2≥ AC^2+BD^2,此结论为第四届美国数学奥林匹克试题
   [编辑本段]欧拉公式  简单多面体的顶点数V、面数F及棱数E间有关系
  V+F-E=2
  这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。




毕达哥拉斯定理在现代应用中有哪些实际意义和应用?
首先,毕达哥拉斯定理在几何学中有着重要的应用。它可以帮助我们解决与直角三角形相关的问题,如计算直角三角形的边长、角度等。在建筑和工程领域,毕达哥拉斯定理被广泛应用于测量和设计,例如确定建筑物的高度、计算斜坡的倾斜度等。其次,毕达哥拉斯定理在物理学中也有着重要的应用。它可以用来解释和...

毕达哥拉斯定理是怎样的?
毕达哥拉斯定理指的是勾股定理。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。在中国,周朝时期的商高提出了“勾三股四弦五”...

拉米定理 说一下(物理)
应该是拉密定理,用于力的平衡的计算 画图:三个作用在同一点的力互成θ α β角度加起来是180度,有力F1F2F3 F1\/sinθ=F2\/sinα=F2\/sinβ 证明,利用力的三角形,是封闭的,正弦定理就可证明。

什么叫毕达哥拉斯定理
就是勾股定理勾股定理:在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定 古埃及人利用打结作RT三角形理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方; 即直角三角形两...

毕达哥拉斯定理及相关毕达哥拉斯学派资料有哪些?
毕达哥拉斯定理即勾股定理。勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。如果直角三角形两直角边为a和b,斜边为c,那么a?+b?=c?,(a,b,c)叫做勾股数组。远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。古埃及人也应用过勾股定理。在...

毕达哥拉斯定理内容
他们从五个苹果、五个手指等事物中抽象出了五这个数。这在今天看来很平常的事,但在当时的哲学和实用数学界,这算是一个巨大的进步。在实用数学方面,它使得算术成为可能。在哲学方面,这个发现促使人们相信数是构成实物世界的基础。 毕达哥拉斯定理——勾股定理 勾股定理毕达哥拉斯本人以发现勾股定理...

拉氏变换的初值定理是怎样得出的
如果时不包含冲激或高阶的奇异导数的话的情况下。但是你这个题目中,时表明时是可能包含冲激或高阶的奇异导数的,换言之上面证明过程中的泰勒展开是不收敛的,初值定理是不可以直接使用的。而,是的拉普拉斯变换,也就是上面说的时的冲激,去掉冲激项剩下的部分即可用初值定理。

毕达哥拉斯定理是怎么证明的?
毕达哥拉斯定理的证明方法图如下:已知一个正方形ABCD,边长为a+b,正方形ABCD各边各取一个点O、P、E、G,构成一个四边形OPEG。已知,BO=AP=DE=CG=a,OA=PD=EC=GB=b。如图所示:很容易可以得出,四边形OPEG也是正方形,设正方形OPEG边长为c。那么,正方形OPEG的面积等于正方形ABCD的面积减去4...

数学定理有哪些
一、毕达哥拉斯定理(勾股定理)毕达哥拉斯定理是指在一个直角三角形中,直角边的平方和等于斜边的平方。这是几何学中最基础的定理之一,对于解决涉及直角三角形的各种问题至关重要。该定理的发现具有深远的意义,它揭示了三角形中边与角的关系,为后续的几何学研究打下了基础。二、黄金分割定理 黄金...

毕达哥拉斯定理具有有什么特点?
毕达哥拉斯以a,b,c为直角三角形的两直角边和斜边,作边长为a+b的正方形,然后将边长为a+b的正方形作两种不同的分割,采用等量相减的方法对定理进行了证明。事实上,毕达哥拉斯定理是数学领域内证明方法最多的定理,1940年E.S.卢米斯(Loomis)在他的著作《毕达哥拉斯定理》(ThePythagorean...

琼中黎族苗族自治县18432255499: 欧拉定理(数学定理) - 搜狗百科
势残英特: 1、在数学及许多分支中都可以见到很多以欧拉命名的常数、公式和定理.2、在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质.3、欧拉定理得名于瑞士数学家莱昂哈德·欧拉,该定理被认为是数学世界中最美妙的定理之一.4、欧拉定理实际上是费马小定理的推广.5、此外还有平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2).6、西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素.7、另有欧拉公式.

琼中黎族苗族自治县18432255499: ...是一个关于同余的性质.欧拉定理表明,若n,a为正整数,且n,a互质,则:我知道那个指数是欧拉函数的意思,但是我不知道中间的符号和符号的右边是什... -
势残英特:[答案] 两个整数a、b,若它们除以整数m所得的余数相等,则称a与b对于模m同余或a同余于b模m记作 a≡b (mod m)读作 a同余于b模m,或读作a与b对模m同余.对这个式子,通俗一点解释就是 :a^φ(n) 和 1 除以 n 的余数相同.下面是来自...

琼中黎族苗族自治县18432255499: 化学上说某个分子符合欧拉定律是什么意思 -
势残英特: 符合分子的立体结构.欧拉定律,内容是V-E+F=2,其中V是顶点个数,E是棱个数,F是面个数.在结构化学中常用来分析分子的立体结构.题目中已知P和S价层都是8电子,S氧化数是-2,表明每个P成3根键,每个S成两根键,化学式P4S5,P...

琼中黎族苗族自治县18432255499: 欧拉定理是什么举例5个
势残英特: 1、数论定理若n,a为互质正整数,则a∧φ(n)≡1(mod n)2、几何定理三角形的重心G,垂心H,外心O,九点圆圆心V,四点共线,称欧拉线3、拓扑定理凸多面体P的顶点V,面数F,棱数E之间的关系:V F-E=X(P)4、经济学欧拉分配定理Q=L*[∂Q/∂L] K*[∂Q/∂K]5、复变函数e∧ix=cosx isinx

琼中黎族苗族自治县18432255499: 欧拉公式sinx等于
势残英特: 欧拉公式sinx=[e^(ix)-e^(-ix)]/(2i).在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理.它于1640年由Descartes首先给出证明,后来Euler(欧拉)于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理.R+V-E=2就是欧拉公式.

琼中黎族苗族自治县18432255499: 欧拉定理有什么意义呢?
势残英特: 欧拉定理表明,若n,a为正整数,且n,a互质,则:欧拉定理证明将1~n中与n互质的数按顺序排布:x1,x2……xφ(n)(显然,共有φ(n)个数)我们考虑这么一些数:m1a*x1;m2a*x2;m3a*x3……mφ(n)a*xφ(n)1)这些数中的任意两个都不模n同余,因为如果有mS≡mR(modn)(这里假定mS更大一些),就有:mS-mRa(xS-xR)qn,即n能整除a(xS-xR)

琼中黎族苗族自治县18432255499: sinx和cosx的欧拉公式
势残英特: e^(-ix)=cosx-isinx,然后采用两式相加减的方法得到:sinx=[e^(ix)-e^(-ix)]/(2i),cosx=[e^(ix)+e^(-ix)]/2.欧拉公式又称为欧拉定理,也称为尤拉公式,是用在复分析领域的公式...

琼中黎族苗族自治县18432255499: 欧拉定律和欧拉定理是一个意思吗 -
势残英特: 欧拉定律;是牛顿运动定律的延伸,可以应用于多粒子系统运动或刚体运动,描述多粒子系统运动或刚体的平移运动、旋转运动分别与其感受的力、力矩之间的关系.欧拉定理,是一个关于同余的性质.欧拉定理表明,若n,a为正整数,且n,a互质,则:

琼中黎族苗族自治县18432255499: 16岁的巴斯卡发现的几何定理是怎样的?
势残英特: 法国著名数学家、哲学家笛卡尔看到16岁少年巴斯卡所写的一个定理后 十分惊讶,他不敢相信巴斯卡小小年纪能如此出色地发现这么重要的几何定 理.笛卡尔摇着头说:...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网