求原子物理学的发展史

作者&投稿:佴荷 (若有异议请与网页底部的电邮联系)
原子物理的发展史?~

19世纪,原子物理给史上物理学带来一片瞩光,它的发展也成为物理一个重要的里程碑!了解它的发展,让我们一起走近…… 原子物理学是研究原子的结构、运动规律及相互作用的物理学分支。它主要研究:原子的电子结构;原子光谱;原子之间或与其他物质的碰撞过程和相互作用。

经过相当长时期的探索,直到20世纪初,人们对原子本身的结构和内部运动规律才有了比较清楚的认识,之后才逐步建立起近代的原子物理学。

1897年前后,科学家们逐渐确定了电子的各种基本特性,并确立了电子是各种原子的共同组成部分。通常,原子是电中性的,而既然一切原子中都有带负电的电子,那么原子中就必然有带正电的物质。20世纪初,对这一问题曾提出过两种不同的假设。

1904年,汤姆逊提出原子中正电荷以均匀的体密度分布在一个大小等于整个原子的球体内,而带负电的电子则一粒粒地分布在球内的不同位置上,分别以某种频率振动着,从而发出电磁辐射。这个模型被形象的比喻为“果仁面包”模型,不过这个模型理论和实验结果相矛盾,很快就被放弃了。

1911年卢瑟福在他所做的粒子散射实验基础上,提出原子的中心是一个重的带正电的核,与整个原子的大小相比,核很小。电子围绕核转动,类似大行星绕太阳转动。这种模型叫做原子的核模型,又称行星模型。从这个模型导出的结论同实验结果符合的很好,很快就被公认了。

绕核作旋转运动的电子有加速度,根据经典的电磁理论,电子应当自动地辐射能量,使原子的能量逐渐减少、辐射的频率逐渐改变,因而发射光谱应是连续光谱。电子因能量的减少而循螺线逐渐接近原子核,最后落到原子核上,所以原子应是一个不稳定的系统。

但事实上原子是稳定的,原子所发射的光谱是线状的,而不是连续的。这些事实表明:从研究宏观现象中确立的经典电动力学,不适用于原子中的微观过程。这就需要进一步分析原子现象,探索原子内部运动的规律性,并建立适合于微观过程的原子理论。

1913年,丹麦物理学家玻尔在卢瑟福所提出的核模型的基础上,结合原子光谱的经验规律,应用普朗克于1900年提出的量子假说,和爱因斯坦于1905年提出的光子假说,提出了原子所具有的能量形成不连续的能级,当能级发生跃迁时,原子就发射出一定频率的光的假说。

玻尔的假设能够说明氢原子光谱等某些原子现象,初次成功地建立了一种氢原子结构理论。建立玻尔理论是原子结构和原子光谱理论的一个重大进展,但对原子问题作进一步的研究时,却显示出这种理论的缺点,因此只能把它视为很粗略的近似理论。

1924年,德布罗意提出微观粒子具有波粒二象性的假设,以后的观察证明,微观粒子具有波的性质。1926年薛定谔在此基础上建立了波动力学。同时,其他学者,如海森伯、玻恩、狄喇克等人,从另外途径建立了等效的理论,这种理论就是现在所说的量子力学,它能很好地解释原子现象。

20世纪的前30年,原子物理学处于物理学的前沿,发展很快,促进了量子力学的建立,开创了近代物理的新时代。由于量子力学成功地解决了当时遇到的一些原子物理问题,很多物理学家就认为原子运动的基本规律已清楚,剩下来的只是一些细节问题了。

由于认识上的局限性,加上研究原子核和基本粒子的吸引,除一部分波谱学家对原子能级的精细结构与超精细结构进行了深入的研究,取得了一些成就外,很多物理学家都把注意力集中到研究原子核和基本粒子上,在相当长的一段时间里,对原子物理未能进行全面深入的研究,使原子物理的发展受到了一定的影响。

20世纪50年代末期,由于空间技术和空间物理学的发展,工程师和科学家们发现,只使用已有的原子物理学知识来解决空间科学和空间技术问题已是很不够了。过去,人们已精确测定了很多谱线的波长,深入研究了原子的能级,对谱线和能级的理论解释也比较准确。

但是,对谱线强度、跃迁几率、碰撞截面等这些空间科学中非常重要的基本知识,则了解得很少,甚至对这些物理量的某些参数只知道其量级。核试验中遇到的很多问题也都与这些知识有关。因此还必须对原子物理进行新的实验和理论探讨。

原子物理学的发展对激光技术的产生和发展,作出过很大的贡献。激光出现以后,用激光技术来研究原了物理学问题,实验精度有了很大提高,因此又发现了很多新现象和新问题。射频和微波波谱学新实验方法的建立,也成为研究原子光谱线的精细结构的有力工具,推动了对原子能级精细结构的研究。因此,在20世纪50年代末以后,原子物理学的研究又重新被重视起来,成为很活跃的领域。

近十多年来,对原子碰撞的研究工作进展很快,已成为原子物理学的一个主要发展方向。目前原子碰撞研究的课题非常广泛,涉及光子、电子、离子、中性原子等与原子和分子碰撞的物理过程。与原子碰撞的研究相应,发展了电子束、离子束、粒子加速器、同步辐射加速器、激光器等激光源、各种能谱仪等测谱设备,以及电子、离子探测器、光电探测器和微弱信号检测方法,还广泛地应用了核物理技术和光谱技术,也发展了新的理论和计算方法。电子计算机的应用,加速了理论计算和实验数据的处理。

原子光谱与激光技术的结合,使光谱分辨率达到了百万分之一赫兹以下,时间分辨率接近万亿分之一秒量级,空间分辨达到光谱波长的数量级,实现了光谱在时间、空间上的高分辨。由于激光的功率密度已达到一千万瓦每平方厘米以上,光波电场场强已经超过原子的内场场强,强激光与原子相互作用产生了饱和吸收和双光子、多光子吸收等现象,发展了非线性光谱学,从而成为原了物理学中另一个十分活跃的研究方向。

极端物理条件(高温、低温、高压、强场等)下和特殊条件(高激发态、高离化态)下原子的结构和物性的研究,也已成为原子物理研究中的重要领域。

原子是从宏观到微观的第一个层次,是一个重要的中间环节。物质世界这些层次的结构和运动变化,是相互联系、相互影响的,对它们的研究缺一不可,很多其他重要的基础学科和技术科学的发展也都要以原子物理为基础,例如化学、生物学、空间物理、天体物理、物理力学等。激光技术、核聚变和空间技术的研究也要原子物理提供一些重要的数据,因此研究和发展原子物理这门学科有着十分重要的理论和实际意义。

早在对于电有任何具体认知之前,人们就已经知道发电鱼会发出电击。根据公元前2750年撰写的古埃及书籍,这些鱼被称为“尼罗河的雷使者”,是所有其它鱼的保护者。大约两千五百年之后,希腊人、罗马人,阿拉伯自然学者和阿拉伯医学者,才又出现关于发电鱼的记载。
1832年法国人皮克西制造出世界第一台试验性发电机。1850年英国斯旺用纸碳制成灯丝泡问世。1866年德国西门子制出可应用的发电机。
1879年10月21日,美国爱迪生(和英国约塞夫·斯旺)都研究碳质灯丝电灯泡。爱迪生经千余次的试验用碳素灯丝的白炽灯泡得到了实际应用,故称爱迪生发明了电灯。
杰克·基尔比于1958年和罗伯特·诺伊斯于1959年分别独立发明集成电路。现今,大量晶体管、二极管、电阻器、电容器等等电子原件都可以被装配在单独的集成电路里。
电真正的应用是在18世纪末19世纪,直到20世纪21世纪才真正的走入平常百姓家。

扩展资料起电现象
摩擦起电,是通过摩擦的方式使得物体带上电荷的物理现象。摩擦起电的步骤,是使用两种不同的绝缘体相互摩擦,使得它们的最外层电子得到足够的能量发生转移,摩擦起电后两绝缘体必带等量异性电。
静电吸附,是当带静电的物体靠近微小的不带静电的物体时,微小物体表面的自由电荷发生转移,感应出与带静电物体相反的电性,而被吸引贴附于带静电物体上。利用静电吸引轻小物体的原理,可以达到吸附工业粉尘的效果。
静电感应,是指导体中的电荷在外电场的作用下在导体中重新分布的现象,由英国科学家约翰·坎通和瑞典科学家约翰·卡尔·维尔克分别在1753年和1762年发现。
静电屏蔽,是指对于一个接地的空腔导体,外接电场不会影响腔内的物体,腔内带电体的电场也不会影响腔外的物体。
静电屏蔽的应用很广泛,例如电子仪器外的金属网罩、电缆外层包裹的金属皮等都是用于防止外部电场对内部的影响。需要注意,如果外部的电场是交变电场,则静电屏蔽的条件不再成立,另见电磁屏蔽。
参考资料来源:百度百科-电

原子结构发展史
前400年,希腊哲学家德谟克列特提出原子的概念。
1803年,英国物理学家约翰·道尔顿提出原子说。
1833年,英国物理学家法拉第提出法拉第电解定律,表明原子带电,且电可能以不连续的粒子存在。
1874年,司通内建议电解过程被交换的粒子叫做电子。
1879年,克鲁克斯从放电管(高电压低气压的真空管)中发现阴极射线。
1886年,哥德斯坦从放电管中发现阳极射线。
1897年,英国物理学家汤姆生证实阴极射线即阴极材料上释放出的高速电子流,并测量出电子的荷质比。e/m=1.7588×108 库仑/克
1909年,美国物理学家密立根的油滴实验测出电子之带电量,并强化了「电子是粒子」的概念。
1911年,英国物理学家卢瑟福的α粒子散射实验,发现原子有核,且原子核带正电、质量极大、体积很小。其条利用(粒子(即氦核)来撞击金箔,发现大部分(99.9%)粒子直穿金箔,其中少数成大角度偏折,甚至极少数被反向折回(十万分之一)。
1913年,英国物理学家莫塞莱分析了元素的X射线标识谱,建立原子序数的概念。
1913年,汤姆生之质谱仪测量质量数 , 并发现同位素。
1919年,拉塞褔发现质子。其利用α粒子撞击氮原子核与发现质子,接著又用α粒子撞击棚 (B) 、氟 (F) 、铝 (A1) 、磷 (P) 核等也都能产生质子,故推论「质子」为元素之原子核共有成分。
1932年,英国物理学家查德威克利用α粒子撞击铍原子核,发现了中子。
1935年,日本物理学家汤川秀树建立了介子理论。


科学家的发现发明的故事50字
在卢瑟福从阿尔法粒子小散射实验证实原子核存在后,许多科学家都发现原子核的质量数与质子数不符,卢瑟福在实验的基础上,积极思考,终于成功的预言了中子的存在,极大的推动了原子物理学的发展。 爱迪生,他除了在留声机、电灯、电话、电报、电影等方面的发明和贡献以外,在矿业、建筑业、化工等领域也有不少著名的创造和真...

第三次技术革命的标志是什么?对人类社会的发展起了怎样的作用
爱因斯坦的相对论和普朗克等人创立的量子力学改变了牛顿力学的物质观、时空观和运动观。30年代发展起来的原子物理学揭示了原子核裂变的奥秘,为人类利用原子能开辟了道路。二战后建立的高能物理学进一步研究了构成原子核的众多基本粒子的结构和转化规律,推动了核技术的发展。

高中物理学史
力学的发展史物理学是研究物质及其行为和运动的科学。它是最早形成的自然科学之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理学》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这...

原子物理学在发展过程中有什么共性问题
原子物理学是基于空间想象的物理学分支,它的发展要求不断探索思考,打破常规与缜密的逻辑。例如阿尔法粒子散射实验几个粒子的“非正常运动”只有严谨的善于观察的实验人才能由此得以得到实验的进展,同理X射线中光现象的研究也同样不能轻易忽视小量,考虑到研究对象本身就十分小。在物理学这个永远在发展中的...

大学物理论文2000字 关于原子弹
原子物理学发展 相对论 质能方程 原子能的提出 原子能的实践 发展原子弹的历史和一些传说(德国)美国原子弹的发展和成功(建议到实施)原子弹的后果(日本)原子弹的发展 对世界和社会的影响

20世纪的科技发展和21世纪的科技发展分别是什么样的?
20世纪是一个硕果累累的世纪,21世纪科学技术发展更是突飞猛进、日新月异。 一、20世纪初科学革命两大成就 1、相对论 1905年,20世纪最伟大的科学天才爱因斯坦在他26岁时创立了狭义相对论,提出了不同于经典物理学的崭新的时空观和质(m)能(E)相当关系式E=mc2(此处光速C=3×108米\/秒),在理论上为原子能的应用...

20世纪物理学的主要成就有哪些?列举取得这些成就的主要的物理学家
20代末量子力学的建立,是继1905-1915年相对论建立之后对经典物理学的又一次革命性的突破,它成功地揭示了微观物质世界的基本规律,加速了原子物理学和固态物理学的发展,为核物理学和粒子物理学准备了理论基础,同时也促进了化学键理论和分子生物学等的产生。因此,量子力学可以说是20世纪最多产的科学理论,迄今仍具有...

现代文明给人类带来好处还是坏处?
现代科学技术给我们带来的并不全是好处。科技发展进步的现在,每个人可以享受到哪些历史人物所享受不到东西,每个人对这个科技的发展、人民生活节奏的加快和生活水平的提高的同时,大大地忽略了科技给我们带来的种种危害。1、原子物理学:原子物理理论的发展是的人类掌握了核能技术但是也带来了广岛和长崎的核...

急急急求中国科学家的故事
李时珍三四岁就开始学习察看植物,红的、黄的、白的,五颜六色的植物他都要弄清楚,等李时珍长大后发现,旧本草书里有许多错误,于是他下定决心把本草重新整理,把错误的地方改过来。于是,李时珍翻山越岭,到深山去采集药物。李时珍在进行收集整理本草刚目的过程中,并不是一帆风顺的,曾经有一次采集的...

二十世纪最重大的科学理论有几个物理学基本理论
我们以这个眼光来分析20世纪物理学的发展,就会发现也有三个主要的旋律,那就是量子化、对称、相位因子。 我们如果回顾20世纪人类的历史,就会发现其中有着惊人的进步。20世纪人类发现了一种新能源,比“火能’还要强很多倍的核能,这是人类历史上一个非常重大的事清;20世纪人类还学会了控制电子的行动,从而制造出了...

广宁县18477221128: 求原子物理学的发展史列个提纲就行了,比如**年***发现了什么, -
敖韦华舒:[答案] 原子结构发展史 前400年,希腊哲学家德谟克列特提出原子的概念. 1803年,英国物理学家约翰·道尔顿提出原子说. 1833年,英国物理学家法拉第提出法拉第电解定律,表明原子带电,且电可能以不连续的粒子存在. 1874年,司通内建议电解过程被...

广宁县18477221128: 原子物理学(崔宏滨著书籍) - 搜狗百科
敖韦华舒: 前400年,希腊哲学家德谟克列特提出原子的概念. 1803年,英国物理学家约翰?道尔顿提出原子说. 1833年,英国物理学家法拉第提出法拉第电解定律,表明原子带电,且电可能以不连续的粒子存在. 1874年,司通内建议电解过程被交换的...

广宁县18477221128: 物理的来源是什么? -
敖韦华舒: 物理来源于生活 物理是一门以实验为基础的科学,它的许多知识都是来源于生活的,因此作为这样的学科,它的目标非常的明确,那就是通过物理的学习,通过生活中的物理现象来发现物理规律,并最终应用于生活. 如:杠杆平衡条件的体会. 以生活中的例子,比如用汽车遇到石头挡路如何解决,如何开启饮料盖等生活中的例子来认识杠杆,把生活中的感性认识上升的对知识的理性认识上来,我想这就是物理的魅力所在吧! 物理来源于生活不是说说就可以的,那就是让我们学习的知识服务于我们的生活.

广宁县18477221128: 人类对原子的认识(原子物理学) -
敖韦华舒: 原子结构模型是科学家根据自己的认识,对原子结构的形象描摹.一种模型代表了人类对原子结构认识的一个阶段.人类认识原子的历史是漫长的,也是无止境的.下面介绍的几种原子结构模型简明形象地表示出了人类对原子结构认识逐步深化的演...

广宁县18477221128: 物理发展的几个阶段 -
敖韦华舒:[答案] 物理学是随着人类社会实践的发展而产生、形成和发展起来的,它经历了漫长的发展过程.纵观物理学的发展史,根据它不同阶段的特点,大致可以分为物理学萌芽时期、经典物理学时期和现代物理学时期三个发展阶段. (一)物理学萌芽时期 在古代...

广宁县18477221128: 原子物理学在发展过程中有什么共性问题 -
敖韦华舒: 原子物理学是基于空间想象的物理学分支,它的发展要求不断探索思考,打破常规与缜密的逻辑.例如阿尔法粒子散射实验几个粒子的“非正常运动”只有严谨的善于观察的实验人才能由此得以得到实验的进展,同理X射线中光现象的研究也同样不能轻易忽视小量,考虑到研究对象本身就十分小.在物理学这个永远在发展中的学科里没有绝对的真理,只有永远的假设与推理证明,清醒的认清自己的实验目的,与实验原理,不要让前人留下的审慎思考的果实成为新的更加正确的理论的阻滞.人类大脑中有了原始最初的印象才有了类比,推理,想象,用好大自然给我们最好的礼物,给人类一个美好的未来,不只在于“钱途”,是所有物理人和准备为之奋斗的青年要思考的永恒问题.

广宁县18477221128: 19世纪末三大发现的重大意义何在?(从物理学发展和对社会贡献来看) -
敖韦华舒:[答案] 电子的发现者是英国科学家汤姆孙发现的,这是第一个被发现的基本粒子,由于电子的发现,汤姆孙被后人誉为”一位最先打开通向基本粒子物理学大门的伟人”.他因电子发现和对气体导电理论和实验的研究所作出的贡献获1906年诺贝尔物理学奖. ...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网