高分子纳米微粒的应用领域有什么?

作者&投稿:罗劳 (若有异议请与网页底部的电邮联系)
纳米技术在生活中的应用~

纳米技术在治理有害气体方面、污水处理方面.汽车等领域都有着很重要的应用
1、治理有害气体
工业生产中使用的汽油、柴油以及作为汽车燃料的汽油、柴油等,由于含有硫的化合物在燃烧时会产生二氧化硫气体,这是二氧化硫最大的污染源,所以石油提炼中有一道脱硫工艺以降低其硫的含量。
纳米钛酸钻(CoTiO,)是一种非常好的室友脱硫催化剂,经它催化的石油中硫的含量小于0.01% ,达到国际标准。
2、污水处理方面
污水中通常含有有毒有害物质、悬浮物、泥沙、铁锈、异味污染物、细菌病毒等。污水治理就是将这些物质从水中去除。新的一种纳米技术可以将污水中的贵金属如金、钌、钯、铂等安全提炼出来,变害为宝。一种新型的纳米级净水剂具有很强的吸附能力。
它的吸附能力和絮凝能力是普通净水剂三氯化铝的10~20倍。
3、汽车领域的应用
汽车制造中应用的塑料数量将越来越多。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。由于纳米粒子尺寸小于可见光 的波长,纳米塑料可以显示出良好的透明度和较高的光泽度,这样的纳米塑料在汽车上将有广泛的用途。
经过纳米技术处理的部分材料耐磨性更是黄铜的27倍、钢 铁的7倍。除此之外,纳米塑料除了可回收外,还有长期耐紫外线、色泽稳定、质量较轻等优点,在汽车配件中的应用领域相当广泛。
在汽车外装件中,主要用于保险杠、散热 器、底盘、车身外板、车轮护罩、活动车顶及其它保护胶条、挡风胶条等。在内饰件中,主要用于仪表板和内饰板、安全气囊材料等。相关业内专家预测,在未来的 20年内,纳米塑料将大量取代现有的车用塑料制品,有相当大的市场潜力。

扩展资料:
多年来,中国纳米材料和纳米结构研究取得了引人注目的成就。目前,我国在纳米材料学领域取得的成就高过世界上任何一个国家,充分证明了我国在纳米技术领域占有举足轻重的地位。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,
如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。
对于固体粉末或纤维,当其有一维尺寸小于100nm,即达到纳米尺寸,即可称为所谓纳米材料,对于理想球状颗粒,当比表面积大于60㎡/g时,其直径将小于100nm,达到纳米尺寸。

纳米技术可以运用在哪些地方
哪些地方使用了纳米技术
医学,车,玻璃。
写回答共53个回答
医者仁心201211
LV.1
聊聊关注成为第3位粉丝
纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域:
1、纳米技术在新材料中的应用
2、纳米技术在微电子、电力等领域中的应用
3、纳米技术在制造业中的应用
4、纳米技术在生物、医药学中的应用
5、纳米技术在化学、环境监测中的应用
6、纳米技术在能源、交通等领域的应用
7、纳米技术在农业中的应用
8、 纳米技术在日常生活中的应用
衣 在纺织和化纤制品中添纳米微粒,可以除味杀菌。化纤布挺括结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。
食 利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准,纳米食品色香味俱全,还有益健康。 住 纳米技术的运用,使墙面涂料的耐洗刷性可提高10倍。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。含有纳米微粒的建筑材料,还可以吸收对人体有害的紫外线。
行 纳米材料可以提高和改进交通工具的性能指标。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,能大大提高发动机效率、工作寿命和可靠性。纳米卫星可以随时向驾驶人员提供交通信息,帮助其安全驾驶。 医 利用纳米技术制成的微型药物输送器,可携带一定剂量的药物,在体外电磁信号的引导下准确到达病灶部位,有效地起到治疗作用,并减轻药物的不良的反映。用纳米制造成的微型机器人,其体积小于红细胞,通过向病人血管中注射,能疏通脑血管的血栓。清除心脏动脉的脂肪和沉淀物,还可“嚼碎”泌尿系统的结石等。纳米技术将是健康生活的好帮手。
纳米技术应用前景十分广阔,经济效益十分巨大,美国权威机构预测,2010年纳米技术市场估计达到14400亿美元,纳米技术未来的应用将远远超过计算机工业。纳米复合、塑胶、橡胶和纤维的改性,纳米功能涂层材料的设计和应用,将给传统产生和产品注入新的高科技含量。专家指出,纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”现在我国以纳米材料和纳米技术注册的公司有近100个,建立了10多条纳米材料和纳米技术的生产线。纳米布料、服装已批量生产,象电脑工作装、无静电服、防紫外线服等纳米服装都已问世。加入纳米技术的新型油漆,不仅耐洗刷性提高了十几倍,而且无毒无害无异味。纳米技术正在改善着、提高着人们的生活质量
查看全部28个回答
泛普纳米黑板支持多种书写方式,防水防暴
纳米黑板采用自动感应识别技术,表面大量积水仍可正常触控!纳米黑板纯平外观,具备信号拼接转换功能,单屏,双屏自由组合
苏州泛普科技股份有..广告
溧阳朝阳是球形活性炭 厂家直销 当天发货
朝阳活性炭是专业的球形活性炭,供应污水处理活性炭,脱色/除臭/吸附活性炭。朝阳柱状废气处理活性炭,比表面积大,吸附迅速快,平均使用寿命长,诚信厂家。当天发货
溧阳市朝阳活性炭厂广告
相关问题全部
我们的生活中什么地方已经用到纳米技术?纳米技术是通过什么方式予以实现的?
我们生活中冰箱已经用到了纳米技术,纸张也用到了纳米技术。纳米技术是通过科技来实现的。
61 浏览51892020-03-17
你会把纳米技术运用到生活中的哪些地方?
纳米技术运用到生活中的哪些地方?这个一般情况下就是很多的衣食住行都会用的像我们穿的一些衣服都是用纳米的材料做的。
243 浏览17542020-03-05
纳米技术应用在那些地方
美国军用方面,日本医疗方面。 中国目前就一家安然纳米公司,运用在民用上面。
17 浏览1962017-09-12
如果让你利用纳米技术你会把它应用在生活中的哪些地方?
如果让我利用了纳米技术,我会把它应用在生活的方方面面。 首先就是日常的衣食住行使用纳米技术。 我们可以穿使用纳米纤维织成的衣服,不仅气密性更好,而且还可以防水。 另外还可以使用纳米材料建造房屋,肯定更加牢固可靠,抗震性更好。 而且使用纳米技术制造的汽车飞机之类的也就会更加牢固,不容易产生破碎或者变形。
187 浏览5122020-03-15
纳米技术运用在哪些方面?
纳米技术在生活中的应用体现在衣食住行。 1、衣 在纺织和化纤制品中添加纳米微粒,可以除味杀菌。化纤布虽然结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。 2、食 利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准。纳米食品色香味俱全,还有益健康。 3、住 纳米技术的运用,使墙面涂料的耐洗刷性可提高10倍。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。含有纳米微粒的建筑材料,还可以吸收对人体有害的紫外线。 4、行 纳米材料可以提高和改进交通工具的性能指标。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,能大大提高发动机效率、工作寿命和可靠性。纳米卫星可以随时向驾驶人员提供交通信息,帮助其安全驾驶。 扩展资料: 纳米材料是80年代中期发展起来的新型材料,它比负氧离子先进50年。由于纳米微粒(1-100nm)的独特结构状态,使其产生了小尺寸效应、量子尺寸效应、表面效应、宏观量子隧道效应等,从而使纳米材料表现出光、电、热、磁、吸收、反射、吸附、催化以及生物活性等特殊功能。 纳米材料具有许多独特功能,而且用量少,但却赋予材料意想不到的高性能,附加值甚高。纳米复合高分子材料、纳米抗菌、保鲜、除臭材料等等,由于纳米材料的尺寸小,比血液中的红血球小一千多倍,比细菌小几十倍,气体通过其扩散的速度比常规材料快几千倍。纳米颗粒与生物细胞膜的化物作用很强,极易进入细胞内。

高分子纳米生物材料从亚微观结构上来看,有高分子纳米微粒、纳米微囊、纳米胶束、纳米纤维、纳米孔结构生物材料等等。下面主要就高分子纳米微粒及其应用做一简单介绍。

高分子纳米微粒或称高分子纳米微球,粒径尺度在1~1000nm范围,可通过微乳液聚合等多种方法得到。这种微粒具有很大的比表面积,出现了一些普通材料所不具有的新性质和新功能。

目前,纳米高分子材料的应用已涉及免疫分析、药物控制释放载体及介人性诊疗等许多方面。免疫分析现在已作为一种常规的分析方法在对蛋白质、抗原、抗体乃至整个细胞的定量分析发挥着巨大的作用。免疫分析根据其标识物的不同可以分为荧光免疫分析、放射性免疫分析和酶联分析等。在特定的载体上以共价键结合的方式固定对应于分析对象的免疫亲和分子标识物,并将含有分析对象的溶液与载体温育,然后通过显微技术检测自由载体量,就可以精确地对分析对象进行定量分析。在免疫分析中,载体材料的选择十分关键。高分子纳米微粒,尤其是某些具有亲水性表面的粒子,对非特异性蛋白的吸附量很小,因此已被广泛地作为新型的标记物载体来使用。

在药物控制释放方面,高分子纳米微粒具有重要的应用价值。许多研究结果已经证实,某些药物只有在特定部位才能发挥其药效,同时它又易被消化液中的某些生物大分子所分解。因此,口服这类药物的药效并不理想。于是人们用某些生物可降解的高分子材料对药物进行保护并控制药物的释放速度,这些高分子材料通常以微球或微囊的形式存在。药物经载过运送后,药效损伤很小,而且药物还可以有效控制释放,延长了药物的作用时间。作为药物载体的高分子材料主要有聚乳酸、乳酸-乙醇酸共聚物、聚丙烯酸酯类等。纳米高分子材料制成的药物载体与各类药物,无沦是亲水性的、疏水性的药或者是生物大分子制剂,均能够负载或包覆多种药物,同时可以有效地控制药物的释放速度。

例如中南大学开展了让药物瞄准病变部位的“纳米导弹”的磁纳米微粒治疗肝癌研究,研究内容包括磁性阿霉素白蛋白纳米粒在正常肝的磁靶向性、在大鼠体内的分布及对大鼠移植性肝癌的治疗效果等。结果表明,磁性阿霉素白蛋白纳米粒具有高效磁靶向性,在大鼠移植肝肿瘤中的聚集明显增加,而且对移植性肿瘤有很好的疗效。

靶向技术的研究主要在物理化学导向和生物导向两个层次上进行。物理化学导向在实际应用中缺乏准确性,很难确保正常细胞不受到药物的攻击。生物导向可在更高层次:上解决靶向给药的问题。物理化学导向系利用药物载体的pH敏感、热敏感、磁敏感等特点在外部环境的作用下(如外加磁场)对肿瘤组织实行靶向给药。磁性纳米载体在生物体的靶向性是利用外加磁场,使磁性纳米粒在病变部位富集,减小正常组织的药物暴露,降低毒副作用,提高药物的疗效。磁性靶向纳米药物载体主要用于恶性肿瘤、心血管病、脑血栓、冠心病、肺气肿等疾病的治疗。生物导向系利用抗体、细胞膜表面受体或特定基因片段的专一性作用,将配位子结合在载体上,与目标细胞表面的抗原性识别器发生特异性结合,使药物能够准确送到肿瘤细胞中。药物(特别是抗癌药物)的靶向释放面临网状内皮系统(RES)对其非选择性清除的问题。再者,多数药物为疏水性,它们与纳米颗粒载体偶联时,可能产生沉淀,利用高分子聚合物凝胶成为药物载体可望解决此类问题。因凝胶可高度水合,如合成时对其尺寸达到纳米级,可用于增强对癌细胞的通透和保留效应。目前,虽然许多蛋白质类、酶类抗体能够在实验室中合成,但是更好的、特异性更强的靶向物质还有待于研究与开发。而且药物载体与靶向物质的结合方式也有待于研究。

该类技术安全、有效进入临床应用前仍需要诸如更可靠的纳米载体、更准确的靶向物质、更有效的治疗药物、更灵敏,操作性更方便的传感器以及体内载体作用机制的动态测试与分拆方法等重大问题尚待研究解决。

DNA纳米技术(DNAnanoteehnology)是指以DNA的理化特性为原理设计的纳米技术,主要应用于分子的组装。DNA复制过程中所体现的碱基的单纯性、互补法则的恒定性和专一性、遗传信息的多样性以及构象上的特殊性和拓扑靶向性,都是纳米技术所需要的设计原理。现在利用生物大分子已经可以实现纳米颗粒的自组装。将一段单链的DNA片断连接在13nm直径的纳米金颗粒A表面,再把序列互补的另一种单链DNA片断连接在纳米金颗粒B表面。将A和B混合,在DNA杂交条件下,A和B将自动连接在一起。利用DNA双链的互补特性,可以实现纳米颗粒的自组装。利用生物大分子进行自组装,有一个显著的优点:可以提供高度特异性结合。这在构造复杂体系的自组装方面是必须的。

美国波士顿大学生物医学工程所Bukanov等研制的PD环(PD-loop)(在双链线性DNA中复合嵌入一段寡义核苷酸序列)比PCR扩增技术具有更大的优越性;其引物无需保存于原封不动的生物活性状态,其产物具有高度序列特异性,不像PCR产物那样可能发生错配现象。PD环的诞生为线性DNA寡义核苷酸杂交技术开辟了一条崭新的道路,使从复杂DNA混合物中选择分离出特殊DNA片段成为可能,并可能应用于DNA纳米技术中。

基因治疗是治疗学的巨大进步。质粒DNA插入目的细胞后,可修复遗传错误或可产生治疗因子(如多肽、蛋白质、抗原等)。利用纳米技术,可使DNA通过主动靶向作用定位于细胞;将质粒DNA浓缩至50~200nm大小且带上负电荷,有助于其对细胞核的有效入侵;而最后质粒DNA能否插入细胞核DNA的准确位点则取决于纳米粒子的大小和结构:此时的纳米粒子是由DNA本身所组成,但有关它的物理化学特性尚有待进一步研究。

脂质体(1iposome)是一种定时定向药物载体,属于靶向给药系统的一种新剂型。20世纪60年代,英国A.D.Banfiham首先发现磷脂分散在水中构成由脂质双分子层组成的内部为水相的封闭囊泡,由双分子磷脂类化合物悬浮在水中形成的具有类似生物膜结构和通透性的双分子囊泡称为脂质体。20世纪70年代初,Y.E.Padlman等在生物膜研究的基础上,首次将脂质体作为细菌和某些药物的载体。纳米脂质体作为药物载体有如下优点。

(1)由磷脂双分子层包封水相囊泡构成,与各种固态微球药物载体相区别,脂质体弹性大,生物相容性好。

(2)对所载药物有广泛的适应性,水溶性药物载入内水相、脂溶性药物溶于脂膜内,两亲性药物可插于脂膜上,而且同一个脂质体中可以同时包载亲水和疏水性药物。

(3)磷脂本身是细胞膜成分,因此纳米脂质体注入体内无毒,生物利用度高,不引起免疫反应。

(4)保护所载药物,防止体液对药物的稀释,及被体内酶的分解破坏。

纳米粒子将使药物在人体内的传输更为方便,对脂质体表面进行修饰,比如将对特定细胞具有选择性或亲和性的各种配体组装于脂质体表面,以达到寻靶目的。以肝脏为例,纳米粒子-药物复合物可通过被动和主动两种方式达到靶向作用;当该复合物被Kupffer细胞捕捉吞噬,使药物在肝脏内聚集,然后再逐步降解释放人血液循环,使肝脏药物浓度增加,对其他脏器的副作用减少,此为被动靶向作用;当纳米粒子尺寸足够小约100~150nm且表面覆以特殊包被后,便可以逃过Kupffer细胞的吞噬,靠其连接的单克隆抗体等物质定位于肝实质细胞发挥作用,此为主动靶向作用。用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织。

纳米粒子作为输送多肽与蛋白质类药物的载体是令人鼓舞的,这不仅是因为纳米粒子可改进多肽类药物的药代动力学参数,而且在一定程度上可以有效地促进肽类药物穿透生物屏障。纳米粒子给药系统作为多肽与蛋白质类药物发展的工具有着十分广泛的应用前景。

由于纳米粒子的粒径很小,具有大量的自由表面,使得纳米粒子具有较高的胶体稳定性和优异的吸附性能,并能较快地达到吸附平衡,因此,高分子纳米微粒可以直接用于生物物质的吸附分离。将纳米颗粒压成薄片制成过滤器,由于过滤孔径为纳米量级,在医药工业中可用于血清的消毒(引起人体发病的病毒尺寸一般为几十纳米)。通过在纳米粒子表面引入羧基、羟基、磺酸基、胺基等基团,就可以利用静电作用或氢键作用使纳米粒子与蛋白质、核酸等生物大分子产生相互作用,导致共沉降而达到分离生物大分子的目的。当条件改变时,又可以使生物大分子从纳米粒子上解吸附,使生物大分子得到回收。

纳米高分子粒子还可以用于某些疑难病的介入性诊断和治疗。由于纳米粒子比红血球(6~9μm)小得多,可以在血液中自由运动,因此可以注入各种对机体无害的纳米粒子到人体的各部位,检查病变和进行治疗。据报道,动物实验结果表明,将载有地塞米松的乳酸-乙醇酸共聚物的纳米粒子,通过动脉给药的方法送人血管内,可以有效治疗动脉再狭窄,而载有抗增生药物的乳酸-乙醇酸共聚物纳米粒子经冠状动脉给药,可以有效防止冠状动脉再狭窄;除此之外,载有抗生素或抗癌制剂的纳米高分子可以用动脉输送给药的方法进入体内,用于某些特定器官的临床治疗。载有药物的纳米球还可以制成乳液进行肠外或肠内的注射;也可以制成疫苗进行皮下或肌肉注射。




纳米材料的应用
纳米微粒的尺寸常常比生物体内的细胞、红血球还要小,这就为医学研究提供了新的契机。目前已得到较好应用的实例有:利用纳米SiO2微粒实现细胞分离的技术,纳米微粒,特别是纳米金(Au)粒子的细胞内部染色,表面包覆磁性纳米微粒的新型药物或抗体进行局部定向治疗等。 正在研制的生物芯片包括细胞芯片、蛋白质芯片(生物分子芯片)...

纳米技术在我们的生活中有哪些应用?
纳米技术在生活中的应用体现在衣食住行。1、衣在纺织和化纤制品中添加纳米微粒,可以除味杀菌。化纤布虽然结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。2、食利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准。纳米食...

纳米技术有哪些应用?
纳米技术的应用如下:1、衣 在纺织和化纤制品中添加纳米微粒,可以除味杀菌。化纤布虽然结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。2、食 利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准。纳米...

生活中有哪些纳米技术的应用
生活中纳米技术的应用:1、衣在纺织和化纤制品中添加纳米微粒,可以除味杀菌。化纤布虽然结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。2、食利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准。3、平时...

纳米技术的应用
纳米技术的应用:衣品方面、食品方面、居住方面、交通方面、医疗方面。衣品方面 在纺织和化纤制品中添加纳米微粒,可以除味杀菌。化纤布虽然结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。 食用方面 利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米...

纳米材料有什么做用
微粒和纳粒作为给药系统,其制备材料的基本性质是无毒、稳定、有良好的生物性并且与药物不发生化学反应。纳米系统主要用于毒副作用大、生物半衰期短、易被生物酶降解的药物的给药。 纳米生物学用来研究在纳米尺度上的生物过程,从而根据生物学原理发展分子应用工程。在金属铁的超细颗粒表面覆盖一层厚为5~20nm的聚合物...

纳米技术的运用有哪些?
在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 7、纳米技术在农业中的应用 8、 纳米技术在日常生活中的应用 衣 在纺织和化纤制品中添纳米微粒,可以除...

纳米技术有哪些应用?
利用纳米技术可以制造出更小、更快、更节能的芯片和存储设备,推动信息技术的发展。此外,还可以制作柔性电子器件、染料敏化太阳能电池等新型材料。总之,纳米技术的应用领域非常广泛,可以用于医药、材料、能源、环境、信息等多个领域。随着纳米技术不断发展,相信会有更多的创新应用被发现并被广泛应用。

纳米在生活中的应用有哪些
纳米技术正逐渐渗透到我们的日常生活中,改善和丰富了我们的生活方式。1、在纺织品和化纤制品中,纳米技术的应用可以有效去除异味并具有杀菌功能。例如,将金属纳米微粒加入化纤布中,可解决静电问题。2、在食品领域,纳米材料被用于冰箱内壁,以抑制细菌生长。此外,纳米技术也应用于生产无菌餐具和食品包装,...

纳米技术的应用范围是什么?
手术机器人等、诊断工具: 基于纳米流体和纳米加工技术,发展基因检验、超灵敏标记与检测技术、高通量和多重分析技术等 医学影像:基于纳米颗粒技术的新型造影剂、靶向标记技术、理解基本的生命过程:基于原子力显微镜、隧道扫描显微镜等纳米力学和光学技术,在分子或原子层面,研究生命的过程。

大同区15143864739: 纳米主要应用在高分子哪些方面 -
舒司乌鸡: ,是一种新型的控释体系.制备纳米控释系统的高分子载体材料以合成的可生物降解的聚合物体系和天然的大分子体系为主 ,前者如聚氰基丙烯酸烷基酯、聚丙烯酰胺、乳酸 乙醇酸共聚物等 ,它们在体内通过主链酯键的水解而降解 .

大同区15143864739: 纳米材料的运用有哪些?
舒司乌鸡: 1、超微传感器.传感器是纳米微粒最有前途的应用领域之一.纳米微粒的特点如大比表面积、高活性特异物性、极微小性等与传感器所要求的多功能、微型化、高速化相...

大同区15143864739: 纳米材料有什么应用 -
舒司乌鸡: 除菌

大同区15143864739: 纳米科技具体都应用在哪些领域?纳米技术现在被广泛的使用在各个领域
舒司乌鸡: 一、陶瓷增韧 纳米微粒颗粒小,比表面大并有高的扩散速率,因而用纳米粉体进行烧结,致密化的速度快,还可以降低烧结温度. 二、磁性材料 1、巨磁电阻材料 磁性金...

大同区15143864739: 新型纳米微粒聚氨酯有什么用途?
舒司乌鸡: 通过将一种合成纳米微粒加入热塑性聚氨酯(TPU)材料中便可以加强该材料的抗磨损性.目前澳大利亚昆士兰大学生物工程和纳米科技研究所正与一高尔夫球生产商一起研究这种纳米微粒聚氨酯材料的各种用途.这种材料比起传统TPU材料来更薄、更韧、更软,因此特别适合制造高尔夫球和避孕套.例如,在高尔夫球表面涂上一层薄薄的纳米微粒聚氨酯涂层便可极大地加强高尔夫球的抗磨损性、延长使用寿命. 不光如此,只要有聚氨酯应用的领域都可以使用这种加入纳米微粒的技术,例如医疗领域的可植入物、采矿领域、纺织领域的类似氨纶的新型纺织物. 据悉,目前这种技术已经开始在昆士兰大学设立的技术转让公司TenasiTechPty进行商业推广.

大同区15143864739: 纳米技术应用于哪些领域 -
舒司乌鸡: 纳米技术是用单个原 子、分子制造物质的科学技术,纳米材料从根本上改变了材料的结构,纳米材料研究是目前材料科学研究的一个热点,其相应发展起来的纳米技术被会认为是世纪最具有前途的科研领域.目前其主要运用在:陶瓷领域、微...

大同区15143864739: 纳米可以在化学用哪些? -
舒司乌鸡: 纳米在化学上主要用在光催化领域.纳米粒子作为光催化剂拥有粒径细、催化效率高等优势,十分容易利用光学手段来对界面的电荷转移进行等特点进行研究.例如,利用纳米Ti02应用在高速公路照明装置的玻璃罩面中,由于其拥有较高水平的光催化活性,能够对其表面的油污进行分解处理,从而保证其良好的透视性.又例如,在火箭发射所使用的固体燃料推进器中,如添加大约为1wt%的超细铝或镍颗粒,可以使得其燃烧使用率增加100%.将表面为180m2/g的碳纳米管直接应用在NO的催化还原中,从而可以增加NO的转化率.

大同区15143864739: 纳米材料主要应用于哪些方面? -
舒司乌鸡: 1. 纳米结构材料: 包括纯金属、合金、复合材料和结构陶瓷,具有十分优异的机械、力学及热力性能.可使构件重量大大减轻.2. 纳米催化、敏感、储氢材料: 用于制造高效的异质催...

大同区15143864739: 纳米技术可用于哪一方面? -
舒司乌鸡: 纳米技术包含下列四个主要方面: ⒈纳米材料:当物质到纳米尺度以后,大约是在1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能.这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即...

大同区15143864739: 纳米技术的应用 -
舒司乌鸡: 信息产业科技、生物科技和纳米技术是现在世界上前沿科学领域的三大主要方向. 纳米是一个长度计量单位,它是一米的十亿分之一.纳米材料就是在纳米量级范围内调控物质结构研制而成的新材料.纳米技术就是 指在纳米尺度范围内,通过...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网