OFDM系统仿真,要比较不同调制方式下的误码率性能

作者&投稿:鄣蓝 (若有异议请与网页底部的电邮联系)
哪位有基于Matlab的OFDM系统仿真中,不同信道下误码率曲线的代码?万分感谢!!!~

拿去把 信道估计,有BER曲线

clear all;
close all;
fprintf( '
OFDM仿真

') ;
% --------------------------------------------- %
% 参数定义 %
% --------------------------------------------- %
IFFT_bin_length = 1024;
carrier_count = 200;
bits_per_symbol = 2;
symbols_per_carrier = 50;
% 子载波数 200
% 位数/ 符号 2
% 符号数/ 载波 50
% 训练符号数 10
% 循环前缀长度 T/4(作者注明) All-zero CP
% 调制方式 QDPSK
% 多径信道数 2、3、4(缺省)
% 信道最大时延 7 (单位数据符号)
% 仿真条件 收发之间严格同步
%SNR=input('SNR='); % 输入信噪比参数
SNR=3:14;%定义信噪比范围
BER=zeros(1,length(SNR));
baseband_out_length = carrier_count * symbols_per_carrier * bits_per_symbol;% 计算发送的二进制序列长度
carriers = (1: carrier_count) + (floor(IFFT_bin_length/4) - floor(carrier_count/2)); % 坐标: (1 to 200) + 156 , 157 -- 356
conjugate_carriers=IFFT_bin_length-carriers+2; % 坐标 :1024 - (157:356) + 2 = 1026 - (157:356) = (869:670)
% 构造共轭时间-载波矩阵,以便应用所谓的RCC,Reduced Computational Complexity算法,即ifft之后结果为实数
% Define the conjugate time-carrier matrix
% 也可以用flipdim函数构造对称共轭矩阵
% --------------------------------------------- %
% 信号发射 %
% --------------------------------------------- %
%out = rand(1,baseband_out_length);
%baseband_out1 = round(out) ;
%baseband_out2 = floor(out*2) ;
%baseband_out3 = ceil(out*2)-1 ;
%baseband_out4 = randint(1,baseband_out_length);
% 四种生成发送的二进制序列的方法,任取一种产生要发送的二进制序列
%if (baseband_out1 == baseband_out2 & baseband_out1 == baseband_out3 )
% fprintf('Transmission Sequence Generated

');
% baseband_out = baseband_out1 ;
%else
% fprintf('Check Code!!!!!!!!!!!!!!!!!!!!!

');
%end
% 验证四种生成发送的二进制序列的方法
baseband_out=round( rand(1,baseband_out_length));
convert_matrix = reshape(baseband_out,bits_per_symbol,length(baseband_out)/bits_per_symbol);
for k = 1length(baseband_out)/bits_per_symbol),
modulo_baseband(k) = 0;
for i = 1:bits_per_symbol
modulo_baseband(k) = modulo_baseband(k) + convert_matrix(i,k)* 2^(bits_per_symbol - i);
end
end
% 每2个比特转化为整数 0至3
% 采用'left-msb'方式
%-------------------------------------------------------------------------
% Test by lavabin
% A built-in function of directly change binary bits into decimal numbers
%-------------------------------------------------------------------------
%convert_matrix1 = zeros(length(baseband_out)/bits_per_symbol,bits_per_symbol);
%convert_matrix1 = convert_matrix' ;
%Test_convert_matrix1 = bi2de(convert_matrix1,bits_per_symbol,'left-msb');
%Test_convert_matrix2 = bi2de(convert_matrix1,bits_per_symbol,'right-msb');
% 函数说明:
% BI2DE Convert binary vectors to decimal numbers.
% D = BI2DE(B) converts a binary vector B to a decimal value D. When B is
% a matrix, the conversion is performed row-wise and the output D is a
% column vector of decimal values. The default orientation of thebinary
% input is Right-MSB; the first element in B represents the least significant bit.
%if (modulo_baseband == Test_convert_matrix1')
% fprintf('modulo_baseband = Test_convert_matrix1


');
%else if (modulo_baseband == Test_convert_matrix2')
% fprintf('modulo_baseband = Test_convert_matrix2


');
% else
% fprintf('modulo_baseband ~= any Test_convert_matrix


');
% end
%end
% we get the result "modulo_baseband = Test_convert_matrix1".
%-------------------------------------------------------------------------
carrier_matrix = reshape(modulo_baseband,carrier_count,symbols_per_carrier)';
% 生成时间-载波矩阵
% --------------------------------------------- %
% QDPSK调制 %
% --------------------------------------------- %
carrier_matrix = [zeros(1,carrier_count); carrier_matrix]; % 添加一个差分调制的初始相位,为0
for i = 2symbols_per_carrier + 1)
carrier_matrix(i, = rem(carrier_matrix(i, + carrier_matrix (i-1,, 2^bits_per_symbol) ; % 差分调制
end
carrier_matrix = carrier_matrix*((2*pi)/(2^bits_per_symbol)) ; % 产生差分相位
[X, Y]=pol2cart(carrier_matrix, ones(size(carrier_matrix,1),size(carrier_matrix,2))); % 由极坐标向复数坐标转化 第一参数为相位 第二参数为幅度
% Carrier_matrix contains all the phase information and all the amplitudes are the same‘1’.
complex_carrier_matrix = complex(X, Y) ;
% 添加训练序列 `
training_symbols = [ 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 ...
-j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 ...
1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 ...
-1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j ...
-1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 1 j j 1 -1 -j -j -1 ]; % 25 times "1 j j 1" , 25 times "-1 -j -j -1", totally 200 symbols as a row
training_symbols = cat(1, training_symbols, training_symbols) ;
training_symbols = cat(1, training_symbols, training_symbols) ; % Production of 4 rows of training_symbols
complex_carrier_matrix = cat(1, training_symbols, complex_carrier_matrix) ; % 训练序列与数据合并
% block-type pilot symbols
IFFT_modulation = zeros(4 + symbols_per_carrier + 1,IFFT_bin_length) ;
% Here a row vector of zeros is between training symbols and data symbols!!! 
% 4 training symbols and 1 zero symbol
% every OFDM symbol takes a row of "IFFT_modulation"
IFFT_modulation(: , carriers) = complex_carrier_matrix;
IFFT_modulation(: , conjugate_carriers) = conj(complex_carrier_matrix) ;
%-------------------------------------------------------------------------
% Test by lavabin -- Find the indices of zeros
%index_of_zeros = zeros(symbols_per_carrier,IFFT_bin_length - 2*carrier_count);
%IFFT_modulation1 = zeros(4 + symbols_per_carrier + 1,IFFT_bin_length);
%IFFT_modulation2 = zeros(4 + symbols_per_carrier + 1,IFFT_bin_length);
%IFFT_modulation1(6:symbols_per_carrier+5, = IFFT_modulation(6:symbols_per_carrier+5,==0 ;
%for i = 1:symbols_per_carrier
%index_of_zeros(i, = find(IFFT_modulation1(i+5,==1);
%end
%-------------------------------------------------------------------------
time_wave_matrix = ifft(IFFT_modulation') ; % 进行IFFT操作
time_wave_matrix = time_wave_matrix'; % If X is a matrix, ifft returns the inverse Fourier transform of each column of the matrix.
for i = 1: 4 + symbols_per_carrier + 1
windowed_time_wave_matrix( i, : ) = real(time_wave_matrix( i, : )) ;
end
% get the real part of the result of IFFT
% 这一步可以省略,因为IFFT结果都是实数
% 由此可以看出,只是取了IFFT之后载波上的点,并未进行CP的复制和添加end
ofdm_modulation = reshape(windowed_time_wave_matrix',1, IFFT_bin_length*(4 + symbols_per_carrier + 1) ) ;
% P2S operation
%-------------------------------------------------------------------------
% Test by lavabin
% Another way of matrix transition
%ofdm_modulation_tmp = windowed_time_wave_matrix.';
%ofdm_modulation_test = ofdm_modulation_tmp(';
%if (ofdm_modulation_test == ofdm_modulation)
% fprintf('ofdm_modulation_test == ofdm_modulation


');
%else
%fprintf('ofdm_modulation_test ~= ofdm_modulation


');
%end
% We get the result "ofdm_modulation_test == ofdm_modulation" .
%-------------------------------------------------------------------------
Tx_data=ofdm_modulation;
% --------------------------------------------- %
% 信道模拟 %
% --------------------------------------------- %
d1= 4; a1 = 0.2; d2 = 5; a2 = 0.3; d3 = 6; a3 = 0.4; d4 = 7; a4 = 0.5; %信道模拟
copy1 = zeros(size(Tx_data)) ;
for i = 1 + d1: length(Tx_data)
copy1(i) = a1*Tx_data( i - d1) ;
end
copy2 = zeros(size(Tx_data) ) ;
for i = 1 + d2: length( Tx_data)
copy2(i) = a2*Tx_data( i - d2) ;
end
copy3 = zeros(size(Tx_data) ) ;
for i = 1 + d3: length(Tx_data)
copy3(i) = a3*Tx_data ( i - d3) ;
end
copy4 = zeros(size(Tx_data) ) ;
for i = 1 + d4: length( Tx_data)
copy4(i) = a4*Tx_data(i - d4) ;
end
Tx_data = Tx_data + copy1 + copy2 + copy3 + copy4; % 4 multi-paths
Tx_signal_power = var(Tx_data);
for idx=1:length(SNR)%monte carlo 仿真模拟

linear_SNR = 10^( SNR(idx) /10) ;
noise_sigma = Tx_signal_power / linear_SNR;
noise_scale_factor = sqrt(noise_sigma) ;
noise = randn(1, length(Tx_data) )*noise_scale_factor;
Rx_Data = Tx_data + noise;
% --------------------------------------------- %
% 信号接收 %
% --------------------------------------------- %
Rx_Data_matrix = reshape(Rx_Data, IFFT_bin_length, 4 + symbols_per_carrier + 1) ;
Rx_spectrum = fft(Rx_Data_matrix) ;
% Suppose precise synchronazition between Tx and Rx
Rx_carriers = Rx_spectrum( carriers, : )';
Rx_training_symbols = Rx_carriers( (1: 4) , : ) ;
Rx_carriers = Rx_carriers((5: 55), : ) ;
% --------------------------------------------- %
% 信道估计 %
% --------------------------------------------- %

Rx_training_symbols = Rx_training_symbols./ training_symbols;
Rx_training_symbols_deno = Rx_training_symbols.^2;
Rx_training_symbols_deno = Rx_training_symbols_deno(1,+Rx_training_symbols_deno(2,+Rx_training_symbols_deno(3,+Rx_training_symbols_deno(4, ;
Rx_training_symbols_nume = Rx_training_symbols(1, : ) +Rx_training_symbols(2, : ) + Rx_training_symbols(3, : ) +Rx_training_symbols(4, : ) ;
Rx_training_symbols_nume = conj(Rx_training_symbols_nume) ;
% 取4个向量的导频符号是为了进行平均优化
% 都是针对 “行向量”即单个的OFDM符号 进行操作
% 原理:寻求1/H,对FFT之后的数据进行频域补偿
% 1/H = conj(H)/H^2 because H^2 = H * conj(H)
Rx_training_symbols = Rx_training_symbols_nume./Rx_training_symbols_deno;
Rx_training_symbols = Rx_training_symbols_nume./Rx_training_symbols_deno;
Rx_training_symbols_2 = cat(1, Rx_training_symbols,Rx_training_symbols) ;
Rx_training_symbols_4 = cat(1, Rx_training_symbols_2,Rx_training_symbols_2) ;
Rx_training_symbols_8 = cat(1, Rx_training_symbols_4,Rx_training_symbols_4) ;
Rx_training_symbols_16 = cat(1, Rx_training_symbols_8, Rx_training_symbols_8) ;
Rx_training_symbols_32 = cat(1, Rx_training_symbols_16, Rx_training_symbols_16) ;
Rx_training_symbols_48 = cat(1, Rx_training_symbols_32, Rx_training_symbols_16) ;
Rx_training_symbols_50 = cat(1, Rx_training_symbols_48, Rx_training_symbols_2) ;
Rx_training_symbols = cat(1, Rx_training_symbols_50,Rx_training_symbols) ;
Rx_carriers = Rx_training_symbols.*Rx_carriers; % 进行频域单抽头均衡
Rx_phase = angle(Rx_carriers)*(180/pi) ;
phase_negative = find(Rx_phase < 0) ;
%----------------------Test of Using "rem"---------------------------------
%Rx_phase1 = Rx_phase;
%Rx_phase2 = Rx_phase;
%Rx_phase1(phase_negative) = rem(Rx_phase1(phase_negative) + 360, 360) ;
%Rx_phase2(phase_negative) = Rx_phase2(phase_negative) + 360 ;
%if Rx_phase2(phase_negative) == Rx_phase1(phase_negative)
%fprintf('
There is no need using rem in negative phase transition.
')
%else
% fprintf('
We need to use rem in negative phase transition.
')
%end
%-------------------------------------------------------------------------
Rx_phase(phase_negative) = rem(Rx_phase(phase_negative) + 360, 360) ; % 把负的相位转化为正的相位
Rx_decoded_phase = diff(Rx_phase) ;
% 这也是为什么要在前面加上初始相位的原因
% “Here a row vector of zeros is between training symbols and data symbols!!!”
phase_negative = find(Rx_decoded_phase < 0) ;
Rx_decoded_phase(phase_negative)= rem(Rx_decoded_phase(phase_negative) + 360, 360) ; % 再次把负的相位转化为正的相位
% --------------------------------------------- %
% QDPSK解调 %
% --------------------------------------------- %
base_phase = 360 /2^bits_per_symbol;
delta_phase = base_phase /2;
Rx_decoded_symbols = zeros(size(Rx_decoded_phase,1),size(Rx_decoded_phase,2)) ;
for i = 1: (2^bits_per_symbol - 1)
center_phase = base_phase*i;
plus_delta = center_phase + delta_phase; % Decision threshold 1
minus_delta = center_phase - delta_phase; % Decision threshold 2
decoded = find((Rx_decoded_phase minus_delta)) ;
Rx_decoded_symbols(decoded) = i;
end
% 仅仅对三个区域进行判决
% 剩下的区域就是零相位的空间了
% 这个区域在定义解调矩阵时已经定义为零
Rx_serial_symbols = reshape(Rx_decoded_symbols',1,size(Rx_decoded_symbols, 1)*size(Rx_decoded_symbols,2)) ;
for i = bits_per_symbol: -1: 1
if i ~= 1
Rx_binary_matrix(i, : ) = rem(Rx_serial_symbols, 2) ;
Rx_serial_symbols = floor(Rx_serial_symbols/2) ;
else
Rx_binary_matrix( i, : ) = Rx_serial_symbols;
end
end
% Integer to binary
baseband_in = reshape(Rx_binary_matrix, 1,size(Rx_binary_matrix, 1)*size(Rx_binary_matrix, 2) ) ;
% --------------------------------------------- %
% 误码率计算 %
% --------------------------------------------- %
%bit_errors(idx) = find(baseband_in ~= baseband_out) ;
% find的结果 其每个元素为满足逻辑条件的输入向量的标号,其向量长度也就是收发不一样的bit的个数
%bit_error_count(idx) = size(bit_errors, 2) ;
%total_bits = size( baseband_out, 2) ;
%bit_error_rate = bit_error_count/ total_bits;
%fprintf ( '%f
',bit_error_rate) ;
[number_err(idx),BER(idx)] = biterr(baseband_out,baseband_in ) ;
end
semilogy(SNR,BER,'r*');

legend('OFDM BER-SNR');
xlabel('SNR (dB)'); ylabel('BER');
title('OFDM');
grid on;
% --------------------------------------------- %
% The END %
% --------------------------------------------- %
%
% 1. 该程序进行了简单的LMS信道估计,没有加入与MMSE等其他信道估计算法的比较;
%
%2. 仿真条件为系统处于理想同步情况下。

那只能是你程序有问题 讲道理的话信噪比变大误码率趋于0
你调制方式是什么 就算用64qam snr大于15 ber也应该很小了

OFDM是一种无线环境下的高速传输技术。无线信道的频率响应曲线大多是非平坦的,而OFDM技术的主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输。这样,尽管总的信道是非平坦的,具有频率选择性,但是每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽,因此就可以大大消除信号波形间的干扰。由于在OFDM系统中各个子信道的载波相互正交,它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时又提高了频谱利用率。

OFDM技术属于多载波调制(Multi-Car?rierModulation,MCM)技术。有些文献上将OFDM和MCM混用,实际上不够严密。MCM与OFDM常用于无线信道,它们的区别在于:OFDM技术特指将信道划分成正交的子信道,频道利用率高;而MCM,可以是更多种信道划分方法。

OFDM技术的推出其实是为了提高载波的频谱利用率,或者是为了改进对多载波的调制,它的特点是各子载波相互正交,使扩频调制后的频谱可以相互重叠,从而减小了子载波间的相互干扰。在对每个载波完成调制以后,为了增加数据的吞吐量、提高数据传输的速度,它又采用了一种叫作HomePlug的处理技术,来对所有将要被发送数据信号位的载波进行合并处理,把众多的单个信号合并成一个独立的传输信号进行发送。另外OFDM之所以备受关注,其中一条重要的原因是它可以利用离散傅立叶反变换/离散傅立叶变换(IDFT/DFT)代替多载波调制和解调。

OFDM增强了抗频率选择性衰落和抗窄带干扰的能力。在单载波系统中,单个衰落或者干扰可能导致整个链路不可用,但在多载波的OFDM系统中,只会有一小部分载波受影响。此外,纠错码的使用还可以帮助其恢复一些载波上的信息。通过合理地挑选子载波位置,可以使OFDM的频谱波形保持平坦,同时保证了各载波之间的正交。

OFDM尽管还是一种频分复用(FDM),但已完全不同于过去的FDM。OFDM的接收机实际上是通过FFT实现的一组解调器。它将不同载波搬移至零频,然后在一个码元周期内积分,其他载波信号由于与所积分的信号正交,因此不会对信息的提取产生影响。OFDM的数据传输速率也与子载波的数量有关。

OFDM每个载波所使用的调制方法可以不同。各个载波能够根据信道状况的不同选择不同的调制方式,比如BPSK、QPSK、8PSK、16QAM、64QAM等等,以频谱利用率和误码率之间的最佳平衡为原则。我们通过选择满足一定误码率的最佳调制方式就可以获得最大频谱效率。无线多径信道的频率选择性衰落会使接收信号功率大幅下降,经常会达到30dB之多,信噪比也随之大幅下降。为了提高频谱利用率,应该使用与信噪比相匹配的调制方式。可靠性是通信系统正常运行的基本考核指标,所以很多通信系统都倾向于选择BPSK或QPSK调制,以确保在信道最坏条件下的信噪比要求,但是这两种调制方式的频谱效率很低。OFDM技术使用了自适应调制,根据信道条件的好坏来选择不同的调制方式。比如在终端靠近基站时,信道条件一般会比较好,调制方式就可以由BPSK(频谱效率1bit/s/Hz)转化成16QAM-64QAM(频谱效率4~6bit/s/Hz),整个系统的频谱利用率就会得到大幅度的提高。自适应调制能够扩大系统容量,但它要求信号必须包含一定的开销比特,以告知接收端发射信号所应采用的调制方式。终端还要定期更新调制信息,这也会增加更多的开销比特。

OFDM还采用了功率控制和自适应调制相协调工作方式。信道好的时候,发射功率不变,可以增强调制方式(如64QAM),或者在低调制方式(如QPSK)时降低发射功率。功率控制与自适应调制要取得平衡。也就是说对于一个发射台,如果它有良好的信道,在发送功率保持不变的情况下,可使用较高的调制方案如64QAM;如果功率减小,调制方案也就可以相应降低,使用QPSK方式等。

自适应调制要求系统必须对信道的性能有及时和精确的了解,如果在差的信道上使用较强的调制方式,那么就会产生很高的误码率,影响系统的可用性。OFDM系统可以用导频信号或参考码字来测试信道的好坏。发送一个已知数据的码字,测出每条信道的信噪比,根据这个信噪比来确定最适合的调制方式。
  在传统的多载波通信系统中,整个系统频带被划分为若干个互相分离的子信道(载波)。载波之间有一定的保护间隔,接收端通过滤波器把各个子信道分离之后接收所需信息。这样虽然可以避免不同信道互相干扰,但却以牺牲频率利用率为代价。而且当子信道数量很大的时候,大量分离各子信道信号的滤波器的设置就成了几乎不可能的事情。

  上个世纪中期,人们提出了频带混叠的多载波通信方案,选择相互之间正交的载波频率作子载波,也就是我们所说的OFDM。这种“正交”表示的是载波频率间精确的数学关系。按照这种设想,OFDM既能充分利用信道带宽,也可以避免使用高速均衡和抗突发噪声差错。OFDM是一种特殊的多载波通信方案,单个用户的信息流被串/并变换为多个低速率码流,每个码流都用一个子载波发送。OFDM不用带通滤波器来分隔子载波,而是通过快速傅立叶变换(FFT)来选用那些即便混叠也能够保持正交的波形。

  OFDM是一种无线环境下的高速传输技术。无线信道的频率响应曲线大多是非平坦的,而OFDM技术的主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输。这样,尽管总的信道是非平坦的,具有频率选择性,但是每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽,因此就可以大大消除信号波形间的干扰。由于在OFDM系统中各个子信道的载波相互正交,它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时又提高了频谱利用率。

  OFDM技术属于多载波调制(Multi-Car?rierModulation,MCM)技术。有些文献上将OFDM和MCM混用,实际上不够严密。MCM与OFDM常用于无线信道,它们的区别在于:OFDM技术特指将信道划分成正交的子信道,频道利用率高;而MCM,可以是更多种信道划分方法。

  OFDM技术的推出其实是为了提高载波的频谱利用率,或者是为了改进对多载波的调制,它的特点是各子载波相互正交,使扩频调制后的频谱可以相互重叠,从而减小了子载波间的相互干扰。在对每个载波完成调制以后,为了增加数据的吞吐量、提高数据传输的速度,它又采用了一种叫作HomePlug的处理技术,来对所有将要被发送数据信号位的载波进行合并处理,把众多的单个信号合并成一个独立的传输信号进行发送。另外OFDM之所以备受关注,其中一条重要的原因是它可以利用离散傅立叶反变换/离散傅立叶变换(IDFT/DFT)代替多载波调制和解调。

  OFDM增强了抗频率选择性衰落和抗窄带干扰的能力。在单载波系统中,单个衰落或者干扰可能导致整个链路不可用,但在多载波的OFDM系统中,只会有一小部分载波受影响。此外,纠错码的使用还可以帮助其恢复一些载波上的信息。通过合理地挑选子载波位置,可以使OFDM的频谱波形保持平坦,同时保证了各载波之间的正交。

  OFDM尽管还是一种频分复用(FDM),但已完全不同于过去的FDM。OFDM的接收机实际上是通过FFT实现的一组解调器。它将不同载波搬移至零频,然后在一个码元周期内积分,其他载波信号由于与所积分的信号正交,因此不会对信息的提取产生影响。OFDM的数据传输速率也与子载波的数量有关
  OFDM每个载波所使用的调制方法可以不同。各个载波能够根据信道状况的不同选择不同的调制方式,比如BPSK、QPSK、8PSK、16QAM、64QAM等等,以频谱利用率和误码率之间的最佳平衡为原则。我们通过选择满足一定误码率的最佳调制方式就可以获得最大频谱效率。无线多径信道的频率选择性衰落会使接收信号功率大幅下降,经常会达到30dB之多,信噪比也随之大幅下降。为了提高频谱利用率,应该使用与信噪比相匹配的调制方式。可靠性是通信系统正常运行的基本考核指标,所以很多通信系统都倾向于选择BPSK或QPSK调制,以确保在信道最坏条件下的信噪比要求,但是这两种调制方式的频谱效率很低。OFDM技术使用了自适应调制,根据信道条件的好坏来选择不同的调制方式。比如在终端靠近基站时,信道条件一般会比较好,调制方式就可以由BPSK(频谱效率1bit/s/Hz)转化成16QAM-64QAM(频谱效率4~6bit/s/Hz),整个系统的频谱利用率就会得到大幅度的提高。自适应调制能够扩大系统容量,但它要求信号必须包含一定的开销比特,以告知接收端发射信号所应采用的调制方式。终端还要定期更新调制信息,这也会增加更多的开销比特。

  OFDM还采用了功率控制和自适应调制相协调工作方式。信道好的时候,发射功率不变,可以增强调制方式(如64QAM),或者在低调制方式(如QPSK)时降低发射功率。功率控制与自适应调制要取得平衡。也就是说对于一个发射台,如果它有良好的信道,在发送功率保持不变的情况下,可使用较高的调制方案如64QAM;如果功率减小,调制方案也就可以相应降低,使用QPSK方式等。

  自适应调制要求系统必须对信道的性能有及时和精确的了解,如果在差的信道上使用较强的调制方式,那么就会产生很高的误码率,影响系统的可用性。OFDM系统可以用导频信号或参考码字来测试信道的好坏。发送一个已知数据的码字,测出每条信道的信噪比,根据这个信噪比来确定最适合的调制方式。

  什么是OFDM

  OFDM的英文全称为Orthogonal Fre-quency Division Multiplexing,中文含义为正交频分复用技术。这种技术是HPA联盟(HomePlug Powerline Alliance)工业规范的基础,它采用一种不连续的多音调技术,将被称为载波的不同频率中的大量信号合并成单一的信号,从而完成信号传送。由于这种技术具有在杂波干扰下传送信号的能力,因此常常会被利用在容易受外界干扰或者抵抗外界干扰能力较差的传输介质中。

  其实,OFDM并不是如今发展起来的新技术,OFDM技术的应用已有近40年的历史,主要用于军用的无线高频通信系统。但是,一个OFDM系统的结构非常复杂,从而限制了其进一步推广。直到上世纪70年代,人们采用离散傅立叶变换来实现多个载波的调制,简化了系统结构,使得OFDM技术更趋于实用化。80年代,人们研究如何将OFDM技术应用于高速MODEM。进入90年代以来,OFDM技术的研究深入到无线调频信道上的宽带数据传输。目前OFDM技术已经被广泛应用于广播式的音频、视频领域和民用通信系统,主要的应用包括:非对称的数字用户环路(ADSL)、ETSI标准的数字音频广播(DAB)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)等


3d打印软件哪些收费
与主流的3D打印工业数据处理软件一样,3DXpert也具有仿真功能,为用户克服了热变形挑战提供帮助。目前该软件与设备绑定销售,但其出色的功能已被业内广泛关注。桌面级软件1.Cura<免费,支持FDM\/FFF工艺>Cura是一款由Ultimaker开发的免费开源3D打印切片软件,速度快、切片稳定,可跨平台支持多种操作系统。凭借上手度高、专业...

FDM与TDM有什么区别?
三、特点不同 1、FDM:复用路数多、分路方便,因此是目前模拟通信中最主要的一种复用方式,特别是在有线和微波通信系统中获得广泛应用。2、TDM:TDM是在时间上将信道划分为不同的时隙,在不同的时隙上间插不同的脉冲信号,依次来实现时域上多路信号的复用。参考资料来源:百度百科-TDM 百度百科-FDM ...

铸造模拟分析软件哪款好
我铸造专业毕业22年,使用过magma, procast, flow3d, 使用magma时间最长,快15年了,我个人认为magma是非常专业的,整个流程是程式化的,其中最棒的就是后处理,缺陷判据非常全面,涵盖所有铸造缺陷类型,如果你只是想run一下,跟同事耍下酷,给老板一个好印象,下面的话你可以忽略。要想用好铸造仿真...

什么是有限差分算法
由于局部放电信号比较微弱,加之高频信号传播过程中衰减较大,在测试系统中采用增益不低于20dB的宽带放大器。在实验过程中对空气中的局部放电高频信号进行衰减特性研究发现该检测系统有效检测范围为17米。在外部点2处(距离GIS外壳绝缘缝隙10cm)的检测结果如图6所示。比较图5(b)和图6表明,仿真结果和实测结果基本一致,这个...

武陵区18933229536: 调制方式的OFDM -
颜温乌苯: 正交频分复用调制(简称为OFDM,Orthogonal Frequency Division Multiplexing) 采用正交频分复用技术,是多载波调制的一种.其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上...

武陵区18933229536: 为什么OFDM系统中要先对信号进行QPSK或者QAM调制...求指点....尽量详细 -
颜温乌苯: 先进行qam,qpsk,只是将来基带信号变成频带信号,然而ofdm是将频带信号之间相互靠拢,甚至有重叠,但是频率上有重叠却能解调出来.你该对比看看msk跟ofdm的区别,我觉得会搞混

武陵区18933229536: 基于matlab的ofdm系统仿真实现与分析怎么做 -
颜温乌苯: 你这个要问什么? 仅仅做ofdm仿真很简单,产生一个序列, 用ifft转换到时域,加上噪声,再用fft转换到频域, 比较下,计算误码,这样就可以做awgn信道下的仿真了.

武陵区18933229536: 在matlab中 对OFDM怎么仿真?
颜温乌苯: OFDM是通过MATLAB中的simulink功能进行的仿真,具体在simulink上通过一些仿真器件实现OFDM系统.你可以装下MATLAB,找本关于MATLAB|simulink和OFDM系统的书看看.建议去理解OFDM系统仿真时,把FDM系统仿真对比理解,这样可能效果会好点~ OFDM和simulink不是什么新鲜的东西了,许多地方可以找到文献学习,我就不去复制啦. 一点拙见,望对君有用~

武陵区18933229536: 用matlab进行系统仿真和设计 -
颜温乌苯: 这是我做的一个ofdm系统仿真.供你参考.呵呵.clear; clc; carr=256; %子载波个数 sym_c=10; %每个子载波含有的ofdm符号数 bit_sym=2; %每个符号含有的比特数,qpsk调制 ifft_n=256; %ifft点数 r=1/10; %保护间隔和ofdm数据的比例;...

武陵区18933229536: OFDM 是正交频分复用,他有什么优缺点?? -
颜温乌苯: 优点: 1、该技术可以自动地检测到传输介质下哪一个特定的载波存在高的信号衰减或干扰脉冲,然后采取合适的调制措施来使指定频率下的载波进行成功通信. 2、在窄带带宽下也能够发出大量的数据.OFDM技术能同时分开至少1000个数字...

武陵区18933229536: 求教MATLAB高手,关于用MATLAB仿真OFDM系统 -
颜温乌苯: matlab是要学习的,最起码你要会建立文件,会对其进行仿真.下面的程序可以直接复制到一个新的m文件中进行仿真.clear; clc; SNR=10; % 信噪比 fl=128; % 设置FFT长度 Ns=6; %设置一个祯结构中OFDM信号的个数 para=128;%设置...

武陵区18933229536: 怎样用matlab画OFDM信号频谱包络 -
颜温乌苯: 如果你的OFDM符号,给的直接是频域的N*M矩阵A,N表示子载波数,M是OFDM符号数目,那么 如果你要看一个OFDM符号的包络,就是 plot(abs(:,1)); 如果看所有的OFDM符号,就是 B=reshape(A,N*M,1); plot(abs(B));

武陵区18933229536: OFDM频偏校正算法的仿真 -
颜温乌苯: 最简单的就是利用重复数据,比如CP,前后两段数据比较相位.根据相位差和时间差可以得到频偏.除此以外,很多研究文章提出了更多方法.你可以到万方数据库搜索一下.

武陵区18933229536: 关于ofdm的一系列问题~ -
颜温乌苯: 1. 串并变换确实是一个数据的表现形式,串行序列就是一个数组,并行序列就是一个矩阵.串并变换是在ifft之前做的,不清楚你的系统框架是什么样的,ifft是打算在哪里做?2. 对光纤系统不熟,你现在的情况是不是帧格式定了,一帧里面每个符...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网