如何做化学中有关反应速率的问题?

作者&投稿:薛沫 (若有异议请与网页底部的电邮联系)
化学反应速率这块的题怎么做?有什么技巧没有?~

化学反应速率主要和两大因素有关,1、体系温度。2、体系压强。3、催化剂

反应速度常和反应平衡一块考,但是切记不要受平衡的干扰以为转化率增大了反应速度就增大了,只要有这根筋,记住高温高压催化剂速率大,其他什么都别管,肯定能做对~

都是这么过来的,给你点经验
另外,催化剂不影响平衡只能加快(逆催化剂抑制)反应速度

化学反应速率首先决定于化学反应的性质,这是影响反应速率的内因.
例如溶液中的离子反应通常较快,异相反应(气-固反应,气-液反应,不相
溶的液-液反应等)通常较慢;即便都是在溶液中进行,不同的反应,速率
也不相同,离子交换反应快,氧化还原反应相对较慢.对于给定的化学反应
来说,其反应速率还要受到反应进行时所处条件的影响,这些条件主要包括
浓度(或压力),温度和有无催化剂等.

5.3.1 浓度对反应速率的影响

众所周知,燃料或钢铁在纯氧中的氧化反应比在空气中反应更剧烈,即
反应物氧气的浓度增大,反应速率也增大.大量的实验表明,化学反应速率
随反应物浓度的增加而增大.那么反应速率与反应物浓度之间到底有没有定
量关系呢 又有怎样的定量关系呢
1.反应机理(reaction mechanism)的概念
5.3 影响反应速率的外界因素 ·199·
很多化学反应不是一步就完成的,因此在研究化学反应速率时,常常需
要了解反应机理又称反应历程(reaction path),即需要了解在化学反应过程
中从反应物变为生成物所经历的具体途径.
例如人们熟知的化学反应:
Br2 (g) + H2 (g) → 2 HBr (g)
此反应式表示的是一个宏观的总反应.实际上,该反应并不是一步完成的,
而是经历了如下五个步骤:
(1) Br2 → 2 Br
(2) Br + H2 → HBr + H
(3) H + Br2 → HBr + Br
(4) H + HBr → H2 + Br
(5) Br + Br → Br2
上述五个步骤的每一步的生成物都是由反应物一步就直接转化而成的.这种
由反应物分子(或离子,原子,自由基等)直接作用而生成产物的反应称为
元反应(elementary reaction).由1个元反应组成的总反应称为简单反应,
如2NO2 → 2NO + O2是简单反应;由2个或2个以上元反应所组成的总反应
称为复杂反应,如上述溴和氢气的反应是由5个元反应所组成的复杂反应.
2.质量作用定律和速率方程(mass action law & rate equation)
经验告诉我们,当反应物浓度小时,反应进行得慢,而当反应物浓度增
大时,反应速率一般都要加快.研究浓度对反应速率的影响的方法之一是:
在保持其它反应物浓度不变的情况下,测定某个反应物浓度与初速率(t=0
时的反应速率)的函数关系.比如对于下列反应:
aA + bB → gG + dD
首先,假定其速率方程式(表示反应速率与反应物浓度之间关系的式
子)为
y
B
x
Ackcv= (5-3)
式中,k称为速率常数(rate constant).x和y分别叫做反应物A和B的反
应级数(reaction order),x+y是该化学反应的级数.x+y等于几,则该反应
就是几级反应.
·200· 第5章 化学反应速率
第二步,在保持反应物A的浓度不变的情况下改变反应物B的浓度进而
求出y,比如,当B的浓度增加到原来的n倍时,如果反应速率v也增加到
原来的n倍,则y=1,若增加到原来的n2倍,则y=2;同理,在保持B的浓
度不变的情况下改变A的浓度可求出x.如此便可求出反应的速率方程.
人类在很早的时候就开始研究浓度与反应速率的关系,1864年挪威的C
·M·古尔德贝格(C.M.Guldberg,1836~1902)和P·瓦格(P.Waage,
1833~1900)便总结出:在给定温度下,反应速率与反应物浓度(以计量系
数为指数)的乘积成正比,这个定量关系叫做质量作用定律.1888年奥斯特
瓦尔德(F.W.Ostwald,1853~1932)提出稀释定律,最先将质量作用定律应
用于电离上,在历史上起了重要作用.后来的大量实验证明,质量作用定律
只适用于元反应.也就是说,对于元反应或只包含1个元反应的简单反应,
可根据反应的方程式直接写出它的速率方程.例如下列反应
a A + b B → g G + d D
如果该反应是元反应,则它的速率方程就可以写成
b
B
a
Ackcv=
值得注意的是:如果通过上述实验方法求出的x和y恰好分别等于反应
物A和B的计量系数,也不能就此说明该反应一定是元反应.
对于复杂反应,除了根据上述实验方法求取速率方程外,如果已知反应
机理,也可通过理论推导得到速率方程.如:已知反应
I2 + H2 → 2HI
是经由下列两个元反应完成的:
(1) I2 → 2I (快)
(2) 2I + H2 → 2HI (慢)
第一步是快反应,很快达到平衡,此时
1
2
2
k
c
c
c
c
I
I
=












θ
θ
省去cΘ得,
21
2
IIckc= (1k是个常数)
第二步是各步反应中最慢的一步,称为速率控制步骤(rate determining
5.3 影响反应速率的外界因素 ·201·
step)或称为速率控制反应(rate determining reaction),它决定了整个反
应的速率,所以
2
22IHcckv=

21
2
IIckc=代入,并将2个常数合并,则
22IHckcv=
不管通过哪种形式得到的速率方程,均可用以了解在给定条件下该反应
在任意反应物浓度下的反应速率.这里强调在给定条件下,就是因为当条件
改变时,速率方程可能发生变化,原因是:速率常数可能发生变化,甚至可
能因反应机理改变而导致反应物浓度的指数发生变化.
绝大多数的化学反应都不是一步就完成的,而是复杂反应,相应的反应
级数可以是整数,也可以是分数或小数.对于零级反应(zero order
reaction),其反应速率与反应物浓度的零次方成正比,也就是说,速率是
一个常数.许多发生在固体表面的反应是零级的,如氧化亚氮在细颗粒金表
面的热分解就是一实例:
)()()(gOgNgONAu
2222
1
+ →
=v0)(
2ONck=k (5-4)
和任何的零级反应一样,N2O的分解以匀速进行,即任一反应物在单位时间
内浓度的减少值是个常数.一般地,假如某反应物起始 (t=0) 时的浓度为
c0,反应时间t时的浓度为c,则
c = c0 - k t (5-5)
其中k为该反应物单位时间内浓度的减少值.
绝大多数的反应并不是零级的,它们的反应速率随反应物浓度的变化而
变化,其中一级反应(first order reaction)极为常见,典型的例子是五氧化二
氮的分解:
2N2O5(g) → 4NO2(g) + O2(g)
速率方程为
52oNkcv=,67℃时,此反应的速率常数1min35.0 =k.
一级反应的速率方程可用一般式表示为:
kcv= (5-6)
如果反应开始(t=0)时的浓度为c0,反应进行到任一时刻t时的浓度为c,则
·202· 第5章 化学反应速率
v= dt/dcvB
1 =ck'或cdc/ =kt,积分
∫∫=
c
c
t
kdt
c
dc
00

kt
c
c
lno= (5-7)
反应物浓度由0c消耗到02
1cc=所需要的反应时间称为半衰期(half-
life),以t
2
1表示.由上式可得
kk
t
693202
2
1
.ln
== (5-8)
可以看出,一级反应的半衰期与反应物的起始浓度0c无关.例如浓度从
0c降到0c/2,或从0c/2降到0c/4,以及从0c/4降到0c/8等等,所需时间都
相同,均为t
2
1.这是一级反应的一个特征,所以半衰期只在一级反应中较常
使用.也正因为一级反应的半衰期与反应物的起始浓度无关,所以可从半衰
期的大小直接看出反应的快慢.放射性同位素的衰变反应多为一级反应,通
常用半衰期来表示它的衰变速率,而不是用速率常数.
【例5.1】有一化学反应:a A + b B = C,在298.15K时,将A,B溶液按
不同浓度混合反应,得到以下实验数据:
A的起始浓度/mol·dm-3 B的起始浓度/mol·dm-3 初速率/ mol·dm-3·s-1
1.0 1.0 1.2×10-2
2.0 1.0 2.3×10-2
4.0 1.0 4.8×10-2
1.0 1.0 1.2×10-2
1.0 2.0 4.8×10-2
1.0 4.0 1.9×10-1
求该反应的速率方程式和速率常数.
解:反应的速率方程式可写为:
n
B
m
Ackcv =,分析实验数据,找出
m,n值.前面3次实验,B的浓度保持不变,而改变A的浓度.当A的浓
度增大为原来的x倍时,反应速率也增加为原来的x倍,从实验结果中看
出,反应速率与A的浓度成正比,即m=1.后面3次实验保持A的浓度不变
而改变B的浓度,当B的浓度增大为原来的x倍时,反应速率增大为原来的
x2倍,说明反应速率与B浓度的平方成正比,n=2.因此该反应的速率方程
5.3 影响反应速率的外界因素 ·203·
式为 2
BAckcv =,它是一个3级反应.代入任一组数据,即可求出速率常
数.
1262126
2
2
1021
11
1021

×=
×
×
=smoldm.smoldm
.
k
则该反应的速率方程为
221021BAccv ×=.
例5.2 298.15K时N2O5(g)分解作用半衰期为5小时42分,此值与N2O5
的起始压力无关.试求:(1)速率常数.(2)作用完成90%所需的时间
(以小时为单位).
解:(1)因为半衰期与起始压力无关. 所以是一级反应.
kt
c
c
=0ln.根据式(5-8)得:
)(.
.
..
/
1
21
1220
75
6932069320 ===h
t
k
(2) 根据式(5-7)得
t1220
10
1
.
.
ln=
∴ t = 18.9 (h)
5.3.2 温度对反应速率的影响

大多数化学反应的反应速率随着温度的升高而加快.这是因为温度升高
时,反应体系中活化分子的百分数增加,导致有效碰撞的次数增加的缘故.
将食物贮存在冰箱里,就是为了降低反应速率,防止食物腐败.氢气和氧气
在室温下作用极慢,以致几年都观察不出反应的发生,但如果温度升高到
873K,则立即发生剧烈反应,甚至发生爆炸.
1884年,范特霍夫根据温度对反应速率影响的实验,归纳得到一近似规
则:温度每升高10K,一般反应的速率大约增加2~4倍,这个规则称为范特
霍夫规则.
范特霍夫规则只能粗略估计温度对反应速率的影响,而不能说明为什么
升高同样的温度,不同的反应,其反应速率增大的程度却不同.也是在1887
年阿仑尼乌斯总结出另一个经验公式:
·204· 第5章 化学反应速率
RT
Ea
Aek

= (5-9)
式中 aE——反应的活化能;
R——摩尔气体常数;
T——绝对温度;
A——指前因子(pre-exponential factor)或称为频率因子(frequency
factor),是反应的特征常数,其数值与反应物分子间的碰撞有
关而与浓度无关,与反应温度关系不大.
从上式可以看出,速率常数与反应的活化能及反应温度有关.将上式改
写成对数形式:
RT
E
Alnklna = (5-10)
显然,lnk与温度的倒数1/T之间为线性关系.若以lnk为纵坐标,以1/T
为横坐标作图,可得一直线,该直线的斜率为-Ea/R,直线在纵轴上的截距
即为lnA.由此就可以求出反应的活化能Ea和指前因子A.
例如下列HI(g)的生成反应和N2O5(g)的分解反应在不同温度下的速率常
数如下表
表5-1 不同温度下 HI(g)生成反应和N2O5(g)分解反应的速率常数
H2(g) + I2(g)2HI(g) N2O5(g) 2NO2(g) + 1/2O2
温度T/K速率常数k/ mol-1·dm3·s-1温度T/K速率常数k/s-1
556 4.45×10-5 273 7.87×10-7
575 1.37×10-4 293 1.76×10-5
629 2.52×10-3 298 3.38×10-5
666 1.41×10-2 308 1.35×10-4
700 6.43×10-2 318 4.98×10-4
781 1.35 328 0.0015
注:HI 的生成反应为 2 级反应,速率常数k的单位为 mol-1·dm3·s-1;N2O5的分解反
应是1级反应,故速率常数k的单位为s-1.
将HI的生成反应的lnk对1/T作图(图5-2)
由图可以求出斜率
K
R
Ea20000
0014000180
210
=


=
..
)(

111128166166280200003148 = = × =molkJmolJKKmolJEa.)(.
5.3 影响反应速率的外界因素 ·205·
然后将aE值及图中任意一组lnk~1/T数值代入式(5-10)中,如将 T=666K,
k=1.41×10-2mol-1·dm3·s-1及上面求得的aE值代入即可求得A:
666
20000
104112
×= = .ln
RT
E
klnAlna
lnA=25.768
A=1.553×1011 mol-1·dm3·s-1
实际上,当实验数据比较少时,也可以不必作图,而采取直接计算法进
行求算.只要测定温度T1,T2时的速率常数k1,k2,即可计算出反应的活化
能;或者已知活化能和一定温度(T1)下的反应速率常数k1,即可求出另一
温度(T2)下的速率常数k2来.
温度为T1时:
1
1
1
TR
E
Alnklna =
温度为T1时:
2
2
1
TR
E
Alnklna =
两式相减得: )
TT
TT
(
R
E
k
k
lna
21
12
1
2
= (5-11)
因为在浓度不变的情况下,反应速率与速率常数成正比.若假设温度为
T1时,反应的速率常数和反应速率分别为k1和v1;温度为T2时,反应的速
率常数和反应速率分别为k2和v2,则
图 5-2 HI(g)生成反应lnk与1/T关系图
-12
-10
-8
-6
-4
-2
0
2
0.0012 0.0014 0.0016 0.0018 0.002
1/(T/K)
ln(k/mol
-1
.dm
3
.s
-1
)
·206· 第5章 化学反应速率
1
2
1
2
1
2
k
k
cck
cck
v
v
y
B
x
A
y
B
x
A=


=
所以:
)(lnln
21
12
1
2
1
2
TT
TT
R
E
k
k
v
va
== (5-12)
通过以上讨论,可以得出结论:
(1)对于特定的化学反应而言,在浓度一定的情况下,反应速率取决
于反应的速率常数k,后者又与温度和反应的活化能有关.
(2)一般说来,活化能Ea为正值,所以,同一个化学反应,升高温
度,反应的速率常数k增大(这与升高温度,对吸热反应化学反应的平衡常
数增大,放热反应平衡常数减小不同) ,反应速率加快.
(3)由于不同的化学反应的活化能Ea不同,所以升高相同的温度,对
不同的化学反应,反应速率增大的程度不同, 活化能Ea大的,反应速率增
加的倍数比活化能小的化学反应的速率增加的倍数要大,即升高温度将使活
化能大的化学反应的速率升高得更明显.
(4)在相同的温度下,根据式(5-9)或式(5-10),对指前因子A相
近的化学反应来说,活化能Ea值越大,其速率常数k值越小,反应速率越
小;反之,Ea值越小者,反应速率越大.如某反应活化能降低10kJ·mol-1,
则其速率可增加50倍.
一般化学反应的活化能Ea大约在42~420 kJ·mol-1之间,而大多数化学
反应是在62~250 kJ·mol-1之间.当活化能小于42 kJ·mol-1时,反应的速率
很快,甚至不能用一般方法测定,如中和反应等;当活化能大于420
kJ·mol-1时,反应的速率将非常慢.
(5)对于可逆反应而言,温度对正逆反应影响是一致的,只不过变化
幅度不同.
【例5.3】338K时N2O5气相分解反应的速率常数为0.292min-1,活化能为
103.3 kJ·mol-1,求353 K时的速率常数k及半衰期t
2
1.
分析:由公式(5-11)可求得353K时的速率常数k.另外,由速率常数
5.3 影响反应速率的外界因素 ·207·
的单位为min-1,可知该反应为一级反应,代入一级反应的半衰期公式
t
2
1=0.693/k可求得353K温度下的半衰期.
解:(1) 求353K时的速率常数
T1=338K,T2=353 K,k1=0.292 min-1,Ea=103.3 kJ·mol-1
根据公式代入实验值,
)
353338
338353
(
314.8
103.103
292.0
ln
3
2
×
×
=
k
解得 k2=1.392 min-1
(2)求反应在353 K时的半衰期t
2
1
根据公式t
2
1=0.6932/k代入k2=1.392min-1,
解得 t
2
1=0.498min

5.3.3 催化剂对反应速率的影响

人们很早就知道在反应体系中引入某种物质便能加快反应速率而自身并
不在反应中消耗.让我们简单回顾一下催化剂的研究历史:
1833年英国的法拉第提出固体表面吸附是加速化学反应的原因,这是催
化作用研究的萌芽,1835年瑞典的柏齐力阿斯(J.J.Berzelius,1779~1848)
提出化学反应中的催化和催化剂概念,证实催化现象在化学反应中是非常普
遍的.1850年法国的威尔汉密在研究蔗糖的转化时采用了酸催化.1875年德
国的文克勒(C.Winkler,1838~1904)用铂石棉催化制造硫酸,为硫酸接触
法的工业化奠定技术基础.
被认为是现代物理化学之父的德国化学家奥斯特瓦尔德通过对各种强酸
对酯类水解的反应和醣的转化反应速率的加快现象发现了氢离子的催化作
用.他还从多方面研究了催化过程.1894年他撰文指出:吉布斯的理论使得
有必要假设催化剂加速了物质的反应而不改变物质内部的能量关系,1901 年
奥斯特瓦尔德提出催化剂是改变化学反应速率的物质,而不出现在最终产物
中,提出关于催化剂的现代观点,并指明催化剂在理论和实践中的重要性.
他深入研究了催化机理,由于在催化研究,化学平衡和化学反应速率方面的
卓越贡献,他获得了1909年诺贝尔化学奖.
·208· 第5章 化学反应速率
1900 年美籍俄国科学家冈伯格(M.Gomberg,1866~1947),从分子量
测定首次发现自由基三苯甲烷(自由基是电子处于激发状态的分子或分子碎
片,化学性质活泼).1904 年英国科学家哈顿(A.Harden,1865~1940),
分解得到非蛋白质小分子"辅酶",这是酶催化不可缺少的物质.1922 年丹麦
的布朗斯特提出所有催化过程形成临界络合物,由络合物的形成和分解决定
反应的速率,并推得反应方程式.1954 年,苏联化学动力学大师谢苗诺夫
(H.H.Ceмeнов,1896~1986)提出多相催化的链反应理论.
催化剂(catalyst)的现代表述为:能够改变化学反应速率,而本身的组
成,质量和化学性质在反应前后保持不变的物质.按照催化剂与反应物的聚
集状态和相溶性,可将催化剂的催化过程分为均相催化(homogeneous
catalysis)和多相催化(heterogeneous catalysis).
均相催化是指催化剂和反应物在同一个相中,有气相和液相催化.如前
述酯和蔗糖在酸的催化下进行的反应.均相催化的反应速率不仅与反应物的
浓度有关,还与催化剂的浓度有关.
多相催化反应主要是液体反应物或气体反应物在固体催化剂表面进行的
反应,其中以气体在固体催化剂表面的反应较常见.多相催化剂的活性与其
组成,结构和状态密切相关.一般说来,催化剂的粒子越细或表面积越大,
表面缺陷越多,其催化活性越好.多相催化剂可连续进行催化;产物易于分
离,使用温度范围宽,故许多工业反应都采用多相催化,或将均相催化剂负
载于多孔的载体上,如将酶负载于若干不溶性载体上,获得固定化酶,应用
很广.
在影响反应速率的主要外界因素中,催化剂的作用要比浓度(包括气体
反应物的分压),温度显著得多.
为什么催化剂能提高反应速率呢 研究表明,催化剂能降低反应的活化
能.如图5-3,在没有催化剂时,反应物分子必须越过一个能垒,到达"山
顶"——过渡态.活化能由使用催化剂前的Ea,正 =E3-E1改变为使用催化剂
后的Ea,正=E4-E1,所要越过的能垒降低了.显然,跨越的能垒越小,即活
化能越低,分子活化越容易,反应速率也就越快.使用催化剂后,活化能实
际降低了
5.3 影响反应速率的外界因素 ·209·
△Ea,正 =(E3-E1)-(E4-E1)=3E-4E
当然,逆反应的活化能也相应地由使用催化剂前的Ea,逆 = E3-E2改变为
使用后的Ea,逆 =E4-E2,活化能降低值
△Ea,逆 =(E3-E2)-(E4-E2)=E3-E4
可见催化剂的使用同等程度地降低了正逆反应的活化能.也就是说,使用催
化剂后,正逆反应的速率都得到了提高,不过提高的倍数不相等.
在理解催化剂与反应速率的关系时,应注意以下几点:
(1)催化剂提高反应速率是通过降低反应的活化能来实现的.催化剂
可以参加化学反应,并改变原来的反应途径.催化剂在参与化学反应时,先
生成中间化合物,而这种中间化合物通过两种途径重新产生出催化剂并形成
产物:
① A + C → AC → D + F + C
② A + C → AC
AC + B → AB + C
其中,C为催化剂;A,B为反应物;D,F,AB为生成物.例如,合成氨在
800.15K的反应,无催化剂时活化能Ea =335kJ·mol-1,当用铁作催化剂时,其
反应机理及活化能如下:
第一步 N2 + 2Fe → 2N…Fe Ea =126~167kJ·mol-1
第二步 2N…Fe + 3/2 H2 → NH3 + Fe Ea =12.6 kJ·mol-1
表5-2给出了部分反应在使用催化剂前后的活化能数值的比较,从表中
可以看出,催化反应的活化能一般比非催化反应的活化能降低约80 kJ · mol -1左
·210· 第5章 化学反应速率
右.
表5-2 催化和非催化反应的活化能数值比较
(2) 在反应速率方程式中,催化剂对反应速率的影响体现在反应速率
常数(k)内.对于确定的反应而言,反应温度一定时,采用不同的催化剂
一般有不同的k值.
(3)如前所述,对同一可逆反应来说,催化剂等值地降低了正,逆反
应的活化能,即对正,逆反应的速率都有加快的作用.
(4)催化剂具有选择性.不同类型的化学反应需要不同的催化剂;对于
同样的反应物,即使在其它条件相同或相近的情况下,选用不同的催化剂,
反应速率可能是不同的(见上表),甚至得到不同的产物.例如乙醇的分解
反应有以下几种情况:
(5)催化剂不能改变体系的热力学性质.催化剂可以缩短到达平衡所需
要的时间,但不能改变反应的方向以及反应进行的程度——平衡的位置,也
就是说不能改变反应的平衡常数;催化剂也不能改变反应的热效应,因为在
等温,等容及不做非体积功的情况下,反应的热效应等于体系的内能变,即
QV,正 =△U,而内能是状态函数,内能变只与体系的始终态有关,与过程经历
的路径无关,由图5-3可看出
QV,正 =△U = Ea,正 - Ea,逆
反 应
Ea(非催化)
kJ·mol-1
催化剂
Ea(催化)
kJ·mol-1
Au 104.6
2HI → H2 + I2 184.1
Pt 58.58
W 163.2
2NH3 → N2 +3H2 326.4
Fe 159~176
O2 + 2SO2 → 2SO3 251.04 Pt 62.7
C2H5OH
Cu,200~250℃CHCHO+H2
ZnO·Cr2O3,400~450℃
CH2=CH—CH=CH2
+H2O+H2
Al2O3,350~360℃
C2H4
+H2O
Al2O3, 140℃
C2H5OC2H5+H2O
5.3 影响反应速率的外界因素 ·211·
使用催化剂前后,热效应均等于E2 -E1 .
(6)催化剂有正,负之分.能加快反应速率的称为正催化剂;能减慢
反应速率的称为负催化剂.例如合成氨生产中使用的铁触媒,硫酸生产中使
用的V2O5,以及促进生物体化学反应的各种酶(淀粉酶,蛋白酶,脂肪酶
等)均为正催化剂;减缓金属腐蚀的缓蚀剂,防止橡胶,塑料老化的防老化
剂等均为负催化剂.通常所说的催化剂一般是指正催化剂.

5.3.4 影响多相反应速率的因素

多相反应(heterogeneous reaction)包括气-固反应,液-固反应,固-固
反应以及液-液反应等.在工程上实际所遇到的许多化学反应是多相反应,
如固体和液体燃料的燃烧,金属的氧化或腐蚀,金属在酸中的溶解,水泥和
玻璃的制造等.多相反应多数是在相的界面上进行的,只有少数多相反应主
要发生在不同的相中.所以多相反应多由扩散,吸附和化学反应等步骤组
成.如固体表面上进行的气体反应,一般说可以分为下列几步:①气体分子
扩散到固体表面;②气体分子被吸附在固体表面;③被吸附物质在固体表面
进行化学反应;④生成物从固体表面脱附(解吸);⑤生成物通过扩散离开
固体表面.
由此可见,多相反应的反应速率除与浓度(压力),温度和催化剂有关
外,还与相界面(接触面积)大小,界面的物理和化学性质以及有无新的相
产生等因素有关.
反应物的量一定时,若固体反应物粉碎度,液体反应物分散度越高,反
应粒子越小,反应物表面积越大,有效碰撞机会越多,则反应速率越大.例
如刨花比木柴易于燃烧,锌粉与盐酸的反应比锌粒与盐酸的反应要快得多.
因此,在生产中常把固体反应物粉碎成小颗粒或磨成细粉,拌匀,再进行反
应;将液体反应物喷淋,雾化,使其与气态反应物充分混合,接触,或将不
互溶的液态反应物乳化成乳液来增大相与相之间的接触面,以提高反应速
率.在多相反应中,接触面增大,会使反应速率显著增加.因此对于一些破
坏性的反应,例如面粉厂中易发生的"尘炸"反应(大量飘逸在厂房内的面
·212· 第5章 化学反应速率
粉小颗粒与空气高度混合,遇火燃烧,爆炸),则务必要在车间安装防尘,
防火,防爆装置.纺织厂的细纤维,煤矿中的"粉尘"等与空气混合,超过
安全系数时也会迅速氧化而燃烧,甚至引起爆炸事故,应当特别注意通风和
防火.
此外,多相反应速率还受扩散作用的影响.扩散可以使还没有起作用的
反应物不断地进入相界面,同时使生成物不断地离开界面扩散出去,从而增
大反应速率.以气-固反应为例,煤在燃烧时,鼓风可使氧气不断靠近煤的
表面,同时使生成的二氧化碳不断从煤的表面离去,而使炉火烧得更旺.
液-固反应也常用搅拌来促进扩散,提高反应速率(搅拌在工业生产中还同
时起促进传热的作用).溶液中进行的反应有时还用振荡的方法促进扩散.
综上所述,除了化学反应的本性外,反应物的浓度及表面积的大小,扩
散速率,反应压力及温度,尤其是催化剂,都有可能影响反应速率.此外,可能影响某些化学反应的反应速率.

超声波,激光以及高能射线的作用,也

高中化学的基本理论中,化学反应速率和化学平衡是一类比较难理解,解题时最容易出错的问题,尤其是对于学生来说往往将影响化学反应速率的条件和影像化学平衡的条件混淆,总认为正反应速率增大平衡就向正反应方向移动,逆反应速率减小,平衡就一定向正反应方向移动。由于有以上的误解往往导致解题时出现错误。因此解题时一定要将反应速率的问题和化学平衡的问题分开来分析,千万注意分析速率问题时不考虑平衡问题。为了帮助同学们能准确快速解决有关反应速率和化学平衡的问题,特将此类问题归纳如下,希望同学们在解题时能按照下列步骤思考。在遇到关于化学平衡和速率问题时,首先分析清楚习题的疑问是关于化学反应速率的,还是关于化学平衡的。如果是有关反应速率的问题,始终把握如下几点理论:1、温度升高时,反应速率增大,在此时对于可逆反应来说,正反应速率和逆反应速率都增大,而且正反应速率和逆反应速率增大的幅度一定不同,正向为放热反应,则逆反应速率增大幅度大一些。2、增大反应物的浓度,增反应速率增大,在刚加入反应物的那一时刻,逆反应速率和加入前相同,过了那一个时刻,逆反应速率也增大;另外若所加物质为固体或纯液体时,正逆反应速率都不变。除此外,增大一种反应物的浓度,其自身的转化率降低,其它反应物的转化率都增大。3、增大压强时,若不能使反应物和生成物浓度发生改变,则正逆反应速率都不变,如向体系内加入惰性气体时,容器体积不变的情况。4、增大压强时,若能使反应物和生成物浓度发生改变,反应速率增大。在此时对于可逆反应来说,正反应速率和逆反应速率都增大,正反应速率和逆反应速率增大的幅度可能相同也可能不同,反应物中气体的计量数大于生成物中气体的计量数时,则正反应速率增大幅度大一些。5、催化剂对可逆反应来说,正反应速率和逆反应速率都增大,正反应速率和逆反应速率增大的幅度一定相同。如果是化学平衡类的问题,首先注意体系为恒容容器还是恒压容器,然后要分析清楚是化学平衡中的哪一类型的问题,不同的类型要用不同的解题方法分析,在化学平衡类的习题中包含的类型主要有如下五种:1、判断某状态时是否为平衡状态,这类问题主要会从以下几个方面提出,每个方面都要把握其原理和本质。(1)、所有物质的浓度或物质的量都保持不变时,达到了平衡状态。(2)、正你反应速率相等时,达到平衡状态。但是这种问题中一定要注意,必须是同一种物质的生成速率等于其消耗速率,或同一种物质的化学键断裂速率等于其化学键的生成速率。若选项中指的不是同一种物质,要根据不同物质的反应速率之比等于它们的计量数之比进行转化。(3)、对于恒容容器来说,体系内气体的总压强保持不变,有时也能确定其达到了平衡状态。反应前后气体的总物质的量不变的反应除外。(4)、对于恒压容器来说,体系内气体的总体积保持不变,有时也能确定其达到了平衡状态。反应前后气体的总物质的量不变的反应除外。(5)、体系内气体的平均分子量保持不变,或体系内气体的密度保持不变,一般能确定达到了平衡状态,但这种情况的反例较多,要能够认真分析。2、判断平衡移动方向。化学平衡的移动的本质原理是,改变条件以后导致正逆反应速率不再相等,才使平衡发生移动,若使正反应速率达与你反应速率则平衡一定正向移动。注意平衡正向移动只能说明改变条件后的那一个时刻,正反应速率比逆反应速率大,而不能说明正反应速率比改变条件前大,也可能比改变条件前小。判断移动方向时要深刻理解勒沙特列原理,平衡是一个能够自我调节外界变化的反应。若外界条件使温度升高,即外界提供了能量给体系,则平衡进行自我调节,将外界提供的能量储存到物质内部,使温度再降下来,这样平衡一定要向吸热方向移动,但温度下降后,一定比外界提供能量前要高,比提供能量的那一个时刻要低;若外界条件使压强增大,平衡进行自我调节,将压强再降下来。而在体积固定时,压强与气体的物质的量成正比,这样平衡一定要向气体物质的量减少的方向移动,但压强下降后,一定比外界增压前要高,比增压的那一个时刻要低;3、化学平衡中的图像问题在解决图像问题时要注意(1)横坐标和纵坐标的意义;(2)曲线走向;(3)曲线的起点、终点、拐点所代表的含义。在纵坐标是速率时,注意曲线陡峭程度越大,反应速率越快。4、等效平衡问题在等效平衡类的习题题干中,经常会出现“体积分数”四个字,即见到此四字,就应该知道是等效平衡的习题。这类习题一般又分作两种类型,第一种是提供几种起始条件,判断哪种条件与原条件形成平衡后各种物质的体积分数相同或不同;第二种是比较两种不同的起始条件下,某种物质的体积分数的大小。以上两种类型解决时的方法也不同,第一种类型,首先要将每一种条件全部转化为相同的起始情况,然后再和原条件相比,看平衡是否移动,作出判断。第二种类型,要分析两种起始条件下,是否能把第二种条件看成是第一种条件的简单倍数或简单分数,若是简单倍数,则第二种起始条件达到平衡时的状况可以看作,两个或几个第一种起始条件达到平衡后的体系简单地叠加起来后再压缩为一个体积。在压缩前和第一种情况完全相同,叠加后是否相同就要看平衡怎样移动了。若是简单分数,则第二种起始条件达到平衡时的状况可以看作,将第一种起始条件达到平衡后的体系切分出一部分来,再拉伸为一个体积。在拉伸前和第一种情况完全相同,拉伸后是否相同同样要看平衡怎样移动了。5、化学平衡的计算问题在化学平衡中一旦涉及到具体数值的问题,一定是关于化学平衡的计算问题。遇到此类问题无需过多思考,直接按照三段式进行求解。千万不要死盯着习题看而不动笔,那样只是浪费时间,要看见题就动笔写,当然不是无目的地写,书写内容按照下列步骤进行:(1)书写化学方程式(参看已知条件中的方程式)(2)将起始时各种物质的量对应地列在物质下方,此为第一段。此段书写时要参考已知条件,并写出单位。(3)在每种物质下方用其计量数乘上一个 " X " 对应地列在此物质下方,此为第二段。(4)反应物下方用第一段中的数值减去第二段中的数值对应地列在此物质下方,生成物下方用第一段中的数值加上第二段中的数值对应地列在此物质下方,此为第三段。在书写第二段和第三段时不要参考已知条件。(5)在将以上三段内容列出后,再参考已知条件可以列出含有" X " 的方程,从而将" X " 的具体数值解出,最后再根据要求进行计算。有关化学反应速率和化学平衡的习题中,最容易出现的问题是把反应速率的影响和化学平衡的影响放在一起进行分析,因此在解题过程中一定要将两者清晰的分离开。

先把所有影响速率的因素写下来再一个个对应 根据题目找可能的因素


高中化学有机物反应中由Ni做催化剂与氢气加成的反应有哪些?尽量全一点...
含碳碳双键、碳碳三键、苯环、醛基、酮羰基、氰基类的物质都可以在Ni、Pt、Pd等做催化剂与H2发生加成反应.含羧基或者酯基的物质只有在更强还原性的环境下发生还原反应,不能在Ni、Pt、Pd等做催化剂与氢气加成.

在化学实验中可以做反应容器的容器有哪些?
试管,烧杯,锥形瓶,烧瓶,点滴板,坩埚(熔融状态下的反应)

小明用过氧化氢溶液做实验室制取氧气的实验,有关反应的化学方程式为...
过氧化氢分解生成水和氧气,故答案为:2H 2 O 2 Mn O 2 . 2H 2 O+O 2 ↑;氧化铜能与无色的稀硫酸反应后生成蓝色的硫酸铜溶液,故答案为:黑色固体溶解,溶液由无色变为蓝色;设计对照实验时,要控制一些变量相同,要想通过实验比较氧化铁与氧化铜催化能力的大小,就要取相同颗粒...

有关化学反应方程式计算,初三的,高手来啊,拜托写下具体过程,一定要有...
(2)caco3=cao+co2 由化学方程式可知1molcaco3生成1molco2 所以碳酸钙的质量为:3.3*100\/44=7.5 质量分数为;7.5\/10*100%=75 2 解:(1)H2SO4+Zn=ZnS04+H2 98 65 2 y 13 x 此题中锌完全反应了 根据方程式得氢气的质量为x=2*13\/65=0.4g (2)因为1mol稀硫酸消耗...

初三化学计算题中归一法,XY法, 拆分法,分配法,K值法是怎样的,最好有...
④十字交叉法主要应用在以下几方面的计算中:有关同位素的计算;有关平均分子量的计算;有关平均耗氧量的计算;混合物质量百分含量的计算。[例3]铜有两种天然同位素,65Cu和63Cu,铜元素的原子量为63.5,则65Cu的百分含量为___。65 0.563.5 63 1.5分析:答案:25% 3拆分法 高一化学离子反应化学式的拆分记住以下口诀:...

如何回答高考化学有关化学实验部分某步目的或者作用
(3)酸过量或碱过量时pH的计算(酸时以H浓度计算,碱时以OH计算再换算)。8、化学反应速度、化学平衡(1)能计算反应速率、理解各物质计量数与反应速率的关系(2)以“高则快”,“低则慢”来理解条件对反应速率的影响(3)理顺“反应速率”的“改变”与“平衡移动”的”辩证关系”(4)遵循反应方程式规范自己的“化学...

...这样做可以达到什么目的?写出有关化学反应方程式,这一做法_百度知 ...
自来水厂在处理河水时,常常加入三氯化铁,三氯化铁通过水解,产生氢氧化铁胶状沉淀,吸附悬浮物,达到水质澄清的目的.发生反应的方程式是:FeCl 3 +3H 2 O?Fe(OH) 3 +3HCl.由于水解的生成物中含有盐酸,显酸性,会使溶液的pH值减小.故答为:氯化铁通过水解,产生氢氧化铁胶状沉淀,吸附悬浮物,达到...

所有高中化学关于有机的方程式
因此,在做乙烯的性质实验前,可以将气体通过NaOH溶液以洗涤除去SO2,得到较纯净的乙烯。 乙炔又称电石气。结构简式HC≡CH,是最简单的炔烃。化学式C2H2 分子结构:分子为直线形的非极性分子。 无色、无味、易燃的气体,微溶于水,易溶于乙醇、丙酮等有机溶剂。 化学性质很活泼,能起加成、氧化、聚合及金属取代等反应...

赫斯定理的内容是什么?有何有途?
也可表达为在条件不变的情况下,化学反应的热效应只与起始和终了状态有关,与变化途径无关。它是由俄国化学家Germain Hess发现并用于描述物质的热含量和能量变化与其反应路径无关,因而被称为赫斯定律。适用于任何状态函数,但使用该定律要注意:1、赫斯定律只适用于等温等压或等温等容过程,各步反应的...

氢氧化钙为什么可以做干燥剂,并写出有关反应的化学
一般使用氯化钙做干燥剂,很少有用氢氧化钙做干燥剂的。因为氯化钙可以和水形成水和分子,所以可以做干燥剂

富川瑶族自治县15065754938: 化学反应速率这块的题怎么做?有什么技巧没有? -
诸洪安宫: 化学反应速率主要和两大因素有关,1、体系温度.2、体系压强.3、催化剂 反应速度常和反应平衡一块考,但是切记不要受平衡的干扰以为转化率增大了反应速度就增大了,只要有这根筋,记住高温高压催化剂速率大,其他什么都别管,肯定能做对~ 都是这么过来的,给你点经验 另外,催化剂不影响平衡只能加快(逆催化剂抑制)反应速度

富川瑶族自治县15065754938: 高一化学反应速率的题怎么做? -
诸洪安宫: 化学反应进行的快慢程度,用单位时间反应物浓度的减少或生成物浓度的增加来表示.通常用单位时间内反物浓度的的减小或生成物浓度的减小或生成物浓度的增加来表示.表达式:△v(A)=△c(A)/△t 单位:mol/(L·s)或mol/(L·min) ...

富川瑶族自治县15065754938: 如何做化学中有关反应速率的问题? -
诸洪安宫: 高中化学的基本理论中,化学反应速率和化学平衡是一类比较难理解,解题时最容易出错的问题,尤其是对于学生来说往往将影响化学反应速率的条件和影像化学平衡的条件混淆,总认为正反应速率增大平衡就向正反应方向移动,逆反应速率减...

富川瑶族自治县15065754938: 化学反应速率问题如何能使化学反应速率加快或者是减慢,请将有关因素
诸洪安宫: 加快反应速率: 1 升高温度 2 加入正催化剂 3 若有气体参加,增大压强 4 增大反应物浓度 5 增大接触面积 减慢速率: 1 降低温度 2 减小压强 3 减小反应物浓度

富川瑶族自治县15065754938: 怎样计算化学反应速率? -
诸洪安宫: 1.化学反应速率 [化学反应速率的概念及其计算公式] (1)概念:化学反应速率是用来衡量化学反应进行的快慢程度,通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示.单位有mol•l-1•min-1或mol•l-1•s-1 (2)计算公式:某物质x...

富川瑶族自治县15065754938: 关于化学反应速率的计算请问对于可逆反应的正,逆反应的反应速率如何计算?是通过物质浓度来算吗?有计算式吗?具体如何计算?(如不好说明,可举例... -
诸洪安宫:[答案] 是用物质的量浓度计算,单位为mol/(L.s)或mol/(L.min)含义是单位时间内反应物物质的量浓度变化举个简单的例子氮气+3氢气=(可逆)2氨气如果起始浓度氮气为2MOL/L,2分钟后变为0.8MOL/L那么反应速率为 (2-0.8)/2=0.6m...

富川瑶族自治县15065754938: 化学中计算反应速率的问题,基本有哪些?解题思路?
诸洪安宫: 就是列出三段式开始,反应,终态 单位一致就行

富川瑶族自治县15065754938: 1.2.如何计算化学反应速率?同一反应中,不同的物质间表示的化学反应速率应如何转化?3.对于反应C+CO2=2CO,可使反应速率增大的措施是 ( )(1)... -
诸洪安宫:[答案] 1,单位时间内反应物物质的量的变化或生成物物质的量的变化,单位:mol/(L·s)或mol/(L·min) 2,可根据化学反应方程式如A+2B=3C中,如果A的反应速率是a,可以计算出B的反应速率是2a,C的反应速率是3a3,这题有小小的问题,C...

富川瑶族自治县15065754938: 影响化学反应速率的因素很多,某课外兴趣小组实验的方法通过图1所示装置研究反应速率的有关问题.(1)取一段镁条,用砂纸擦去表面的氧化膜,使镁条... -
诸洪安宫:[答案] (1)①2、4、6min时刻时氢气体积的分别为10 mL、20mL、36mL,其平均反应速率分别为5 mL/min、7.5mL/min、6mL/min,然后标出速率与时间图象为,故答案为:; ②该反应是放热反应,随着反应的进行,放出的热量越多,溶液的温度越高,反...

富川瑶族自治县15065754938: 关于化学中的反应速率的问题到底是怎么求的,好郁闷呀,教一下我吧,谢谢你了
诸洪安宫: 比如2H2+O2=2H2O,在某温度,某气压下,现有1L容器,其中有0.04molH2,0.04molO2,经过10min反应达到平衡 ,求H2的平均反应速率. 解: H2 O2 H2O 反应前: 0.04mol 0.04mol 0.00mol 反应时: 0.02mol 0.01mol 0.02mol 反应后: 0.02mol 0.03mol 0.02mol 则H2的反应速率为v=0.02mol/(1L*10min)=0.002mol/(L*min).

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网