比较城市与郊区大气特征的异同

作者&投稿:那蒲 (若有异议请与网页底部的电邮联系)
比较分析乡村和城市主要大气污染物异同。~

城市地区人为源排放强度大 一次 二次污染物浓度水平都较高
而且日变化规律与相关源活性密切相关 如早晚交通高峰时期 交通源排放强度很大 加之早晚混合层高度较小 相关污染物浓度水平很高 午间光照强烈 溶剂源排放强度很大 二次污染物浓度亦出现峰值
郊区大气中天然源排放的物种浓度较大 如果处于下风口则也可能出现较高浓度的二次污染物 如昌平地区曾多次观测到高达140~200ppb的臭氧

城市气候既有所属区域大气候背景的影响,又反映了城市化后人类活动所产生的作用,因此,不同大气候区的城市气候不尽相同,但也存在一些共同的城市气候特征,城市气候的共同特征有以下几方面:1.由于城市下垫面特殊性质;空气中由燃料产生的二氧化碳等较多;加上人为的热源等因子,城市气温明显高于郊区,这种情况称为“城市热岛效应”。国内外许多学者的研究表明:城市热岛强度是夜间大于白天,日落以后城郊温差迅速增大,日出以后又明显减小。2.城市中由于下垫面多为建筑物和不透水的路面,蒸发量、蒸腾量小,所以城市空气的平均绝对湿度和相对湿度都较小。但由于城市下垫面热力特性,边界层湍流交换以及人为因素均存在日变化,因此,城市绝对湿度的日振幅比郊区大,白天城区绝对湿度比郊区低,形成“干岛”,夜间城市绝对湿度比郊区大,形成“湿岛”。3.由于城市空气中尘埃和其他吸湿性核较多,在条件适合时,即使空气中水汽未达饱和,相对湿度仅达70~80%,城市中也会出现雾,所以城市的雾多于郊区。有些城市汽车尾气排放的废气,在强烈阳光照射下,还会形成一种以臭氧醛类和过氧乙酰硝酸酯(PAN)等为主要成分的浅兰色烟雾,称为“光化学烟雾”,这种雾对人体是有害的。4.由于城市热岛效应,市区中心空气受热不断上升,四周郊区相对较冷的空气向城区辐合补充,而在城市热岛中心上升的空气又在一定高度向四周郊区辐散下沉以补偿郊区低空的空缺,这样就形成了一种局地环流,称为城市热岛环流。这种环流在静朗少云,背景风场极其微弱的静稳天气条件下,最为明显。应该指出虽然城市热岛效应夜间大于白天,但由于夜间郊区大气结稳定,有时还存在逆温层,因此上升气流层不强,而白天郊区大气层结本身不稳定,流入城市后,上升速度快,所以城市热岛环流白天比夜间强,而且夜间的郊区风具有阵性。5.城市中由于有热岛中心的上升气流,空气中又有较多的粉尘等凝结核,因此云量比郊区为多,城市中及其下风方向的降水量也比其他地区为多。另外,城市中由于大量使用能源,向大气中排放出许多二氧化硫和氧化氮,它们在一系列复杂的化学反应下,形成硫酸和硝酸,通过成雨过程和冲刷过程成为酸雨降落。酸雨可导致土壤贫瘠,森林生长速率减慢,微生物活动受到抑制,对鱼类生存构成威胁,刺激人的咽喉和眼睛……因此,防治酸雨是刻不容缓的任务。

人类活动对气候的影响

人类活动对气候的影响有两种;一种是无意识的影响,即在人类活动中对气候产生的副作用;一种是为了某种目的,采取一定的措施,有意识地改变气候条件。在现阶段,以第一种影响占绝对优势,而这种影响以以下三方面表现得最为显著,即①在工农业生产中排放至大气中的温室气体和各种污染物质,改变大气的化学组成;②在农牧业发展和其它活动中改变下垫面的性质,如破坏森林和草原植被,海洋石油污染等等;③在城市中的城市气候效应。自世界工业革命后的200年间,随着人口的剧增,科学技术发展和生产规模的迅速扩大,人类活动对气候的这种不利影响越来越大。

一、改变大气化学组成与气候效应

工农业生产排入大量废气、微尘等污染物质进入大气,主要有二氧化碳(CO2)、甲烷(CH4)、一氧化二氮(N2O)和氟氯烃化合物(CFCs)等。在制冷工业发展前,大气中本没有这种气体成分。CFC11在1945年、CFC12在1935年开始有工业排放。到1980年,对流层低层CFC11含量约为168×10-3mL/L而CFC12为285×10-3mL/L,到1990年则分别增至280×10-3mL/L和484×10-3mL/L,其增长是十分迅速的。

表·3 城市与效区气候特征比较

所示。可见除CO2外,其它温室气体在大气中的含量皆极微,所以称为微量气体。但它们的增温效

应极强①,而且年增量大,在大气中衰变时间长,其影响甚巨。

臭氧(O3)也是一种温室气体,它受自然因子(太阳辐射中紫外辐射对高层大气氧分子进行

光化学作用而生成)影响而产生,但受人类活动排放的气体破坏,如氟氯烃化合物、卤化烷化合物、N2O和 CH4、CO均可破坏臭氧。其中以CFC11、CFC12起主要作用,其次是N2O。自80年代初期以后,臭氧量急剧减少,以南极为例,最低值达-15%,北极为-5%以上,从全球而言,正常情况下振荡应在±2%之间,据1987年实测,这一年达-4%以上。从60°N—60°S间臭氧总量自1978年以来已由平均为300多普生单位减少到1987年290单位以下,亦即减少了3—4%。从垂直变化而言,以15—20km高空减少最多,对流层低层略有增加。南极臭氧减少最为突出,在南极中心附近形成一个极小区,称为“南极臭氧洞”。自1979年到1987年,臭氧极小中心最低值由270单位降到150单位,小于240单位的面积在不断扩大,表明南极臭氧洞在不断加强和扩大。在1988年其O3总量虽曾有所回升,但到1989年南极臭氧洞又有所扩大。1994年10月4日世界气象组织发表的研究报告表明,南极洲3/4的陆地和附近海面上空的臭氧已比十年前减少了65%还要多一些。但有资料表明对流层的臭氧却稍有增加。

大气中温室气体的增加会造成气候变暖和海平面抬高。根据目前最可靠的观测值的综合,自1885以来直到1985年间的100中,全球气温已增加0.6—0.9℃。全球增暖的趋势也是0.8℃左右。1985年以后全球地面气温仍在继续增加,多数学者认为是温室气体排放所造成的。图中列出三种不同情况温室气体的排放所产生的增温效应,从气候模式计算结果还表明此种增暖是极地大于赤道,冬季大于夏季。全球气温升高的同时,海水温度也随之增加,这将使海水膨胀,导致海平面升高。再加上由于极地增暖剧烈,当大气中CO2浓度加倍后会造成极冰融化而冰界向极地萎缩,融化的水量会造成海平面抬升。实际观测资料证明,自1880年以来直到1980年,全球海平面在百年中已抬高了10—12cm。据计算,在温室气体排放量控制在1985年排放标准情况下,全球海平面将以5.5cm/10a速度而抬高,到2030年海平面会比1985年增加20cm,2050年增加34cm,若排放不加控制,到2030年,海平面就会比1985年抬升60cm,2050年抬升150cm。

温室气体增加对降水和全球生态系统都有一定影响。据气候模式计算,当大气中CO2含量加倍后,就全球讲,降水量年总量将增加7—11%,但各纬度变比不一。

温室气体中臭氧层的破坏对生态和人体健康影响甚大。臭氧减少,使到达地面的太阳辐射中的紫外辐射增加。大气中臭氧总量若减少1%,到达地面的紫外辐射会增加2%,此种紫外辐射会破坏核糖核酸(DNA)以改变遗传信息及破坏蛋白质、能杀死10m水深内的单细胞海洋浮游生物,减低渔产,以及破坏森林,减低农作物产量和质量,削弱,人体免疫力、损害眼睛、增加皮肤癌等疾病。

此外,由于人类活动排放出来的气体中还有大量硫化物、氮化物和人为尘埃,它们能造成大气污染,在一定条件下会形成“酸雨”,能使森林、鱼类、农作物及建筑物蒙受严重损失。大气中微尘的迅速增加会减弱日射,影响气温、云量(微尘中有吸湿性核)和降水。

二、改变下垫面性质与气候效应

人类活动改变下垫面的自然性质是多方面的,目前最突出的是破坏森林、坡地、干旱地的植被及造成海洋石油污染等。

森林是一种特殊的下垫面,它除了影响大气中CO2的含量以外,还能形成独具特色的森林气候,而且能够影响附近相当大范围地区的气候条件。森林林冠能大量吸收太阳入射辐射,用以促进光合作用和蒸腾作用,使其本身气温增高不多,林下地表在白天因林冠的阻挡,透入太阳辐射不多,气温不会急剧升高,夜晚因有林冠的保护,有效辐射不强,所以气温不易降低。因此林内气温日(年)较差比林外裸露地区小,气温的大陆度明显减弱。

森林树冠可以截留降水,林下的疏松腐植质层及枯枝落叶层可以蓄水,减少降雨后的地表径流量,因此森林可称为“绿色蓄水库”。雨水缓缓渗透入土壤中使土壤湿度增大,可供蒸发的水分增多,再加上森林的蒸腾作用,导致森林中的绝对湿度和相对湿度都比林外裸地为大。

森林可以增加降水量,当气流流经林冠时,因受到森林的阻障和摩擦,有强迫气流的上升作用,并导致湍流加强,加上林区空气湿度大,凝结高度低,因此森林地区降水机会比空旷地多,雨量亦较大。据实测资料,森林区空气湿度可比无林区高15—25%,年降水量可增加6—10%。

森林有减低风速的作用,当风吹向森林时,在森林的迎风面,距森林100m左右的地方,风速就发生变比。在穿入森林内,风速很快降低,如果风中挟带泥沙的话,会使流沙下沉并逐渐固定。穿过森林后在森林的背风面在一定距离内风速仍有减小的效应。在干旱地区森林可以减小干旱风的袭击,防风固沙。在沿海大风地区森林可以防御海风的侵袭,保护农田。森林根系的分泌物能促使微生物生长,可以改进土壤结构。森林覆盖区气候湿润,水土保持良好,生态平衡有良性循环,可称为“绿色海洋”。

根据考证,历史上世界森林曾占地球陆地面积的2/3,但随着人口增加,农、牧和工业的发展,城市和道路的兴建,再加上战争的破坏,森林面积逐渐减少,到19世纪全球森林面积下降到46%,20世纪初下降到37%,目前全球森林覆盖面积平均约为22%。我国上古时代也有浓密的森林覆盖,其后由于人口繁衍,农田扩展和明清两代战祸频繁,到1949年全国森林覆盖率已下降到8.6%。建国以来,党和政府组织大规模造林,人造林的面积达4.6亿亩,但由于底子薄,毁林情况相当严重,目前森林覆盖面积仅为12%,在世界160个国家中居116位。

由于大面积森林遭到破坏,使气候变旱,风沙尘暴加剧,水土流失,气候恶化。相反,我国在解放后营造了各类防护林,如东北西部防护林、豫东防护林、西北防沙林、冀西防护林、山东沿海防护林等等,在改造自然,改造气候条件上已起了显著作用。

在干旱、半干旱地区,原来生长着具有很强耐旱能力的草类和灌木,它们能在干旱地区生存,并保护那里的土壤。但是,由于人口增多,在干旱、半干旱地区的移民增加,他们在那里扩大农牧业,挖掘和采集旱生植物作燃料(特别是坡地上的植物),使当地草原和灌木等自然植被受到很大破坏。坡地上的雨水汇流迅速,流速快,对泥土的冲刷力强,在失去自然植被的保护和阻挡后,就造成严重的水土流失。在平地上一旦干旱时期到来,农田庄稼不能生长,而开垦后疏松了的土地又没有植被保护,很容易受到风蚀,结果表层肥沃土壤被吹走,而沙粒存留下来,产生沙漠化现象。畜牧业也有类似情况,牧业超过草场的负荷能力,在干旱年份牧草稀疏、土地表层被牲畜践踏破坏,也同样发生严重风蚀,引起沙漠化现象的发生。在沙漠化的土地上,气候更加恶化,具体表现为:雨后径流加大,土壤冲刷加剧,水分减少,使当地土壤和大气变干,地表反射率加大,破坏原有的热量平衡,降水量减少,气候的大陆度加强,地表肥力下降,风沙灾害大量增加,气候更加干旱,反过来更不利于植物的生长。

据联合国环境规划署估计,当前每年世界因沙漠化而丧失的土地达6万km2,另外还有21万km2的土地地力衰退,在农、牧业上已无经济价值可言。沙漠化问题也同样威胁我国,在我国北方地区历史时期所形成的沙漠化土地有12万km2,近数十年来沙漠化面积逐年递增,因此必须有意识地采取积极措施保护当地自然植被,进行大规模的灌溉,进行人工造林,因地制宜种植防沙固土的耐旱植被等来改善气候条件,防止气候继续恶化。

海洋石油污染是当今人类活动改变下垫面性质的另一个重要方面,据估计每年大约有10亿t以上的石油通过海上运往消费地。由于运输不当或油轮失事等原因,每年约有100万t以上石油流入海洋,另外,还有工业过程中产生的废油排入海洋。有人估计,每年倾注到海洋的石油量达200—1000万t。

倾注到海中的废油,有一部分形成油膜浮在海面,抑制海水的蒸发,使海上空气变得干燥。同时又减少了海面潜热的转移,导致海水温度的日变化、年变化加大,使海洋失去调节气温的作用,产生“海洋沙漠化效应”。在比较闭塞的海面,如地中海、波罗的海和日本海等海面的废油膜影响比广阔的太平洋和大西洋更为显著。

此外,人类为了生产和交通的需要,填湖造陆,开凿运河以及建造大型水库等,改变下垫面性质,对气候亦产生显著影响。例如我国新安江水库于1960年建成后,其附近淳安县夏季较以前凉爽,冬季比过去暖和,气温年较差变小,初霜推迟,终霜提前,无霜期平均延长20天左右。

三、人为热和人为水汽的排放

随着工业、交通运输和城市化的发展,世界能量的消耗迅速增长,仅1970年全世界消耗的能量就相当于燃烧了75亿t煤,放出25×1010J的热量。其中在工业生产、机动车运输中有大量废热排出,居民炉灶和空调以及人、畜的新陈代谢等亦放出一定的热量,这些“人为热”像火炉一样直接增暖大气。目前如果将人为热平均到整个大陆;等于在每平方米的土地上放出0.05W的热量。从数值上讲,它和整个地球平均从太阳获得的净辐射热相比是微不足道的,但是由于人为热的释放集中于某些人口稠密、工商业发达的大城市,其局地增暖的效应就相当显著。如所示,在高纬度城市如费尔班克斯、莫斯科等,其年平均人为热(QF)的排放量大于太阳净辐射;中纬度城市如蒙特利尔、曼哈顿等,因人均用能量大,其年平均人为热QF的排放量亦大于Rg。特别是蒙特利尔冬季因空调取暖耗能量特大,其人为热竟相当于太阳净辐射的11倍以上。但是像热带的香港,赤道带的新加坡,其人为热的排放量与太阳净辐射相比就微乎其微了。

在燃烧大量化石燃料(天然气、汽油、燃料油和煤等)时除有废热排放外,还向空气中释放一定量的“人为水汽”,根据美国大城市气象试验(METROMEX)对圣路易斯城由燃烧产生的人为水汽量为10.8×108g/h,而当地夏季地面的自然蒸散量为6.7×1011g/h。显然人为水汽量要比自然蒸散的水汽量小得多,但它对局地低云量的增加有一定作用。据估计目前全世界能量的消耗每年约增长5.5%。如按这个速度增加下去,到公元2000年,全世界能量消耗将比1970年增加5倍,即年耗能为375亿t煤。其排放出的人为热和人为水汽又主要集中在城市中,对城市气候的影响将愈来愈显示其重要性。

表·2 若干不同城市人为热的排放量

此外,喷气飞机在高空飞行喷出的废气中除混有CO2外,还有大量水汽,据研究平流层(50hPa高空)的水汽近年来有显著的增加,例如1964年其水汽含量为2×10-3mL/L,1970年就上升到3×10-3mL/L,这就和大量喷气飞机经常在此高度飞行有关。水汽的热效应与CO2相似,对地表有温室效应。有人计算,如果平流层水汽量增加5倍,地表气温可升高2℃,而平流层气温将下降10℃。在高空水汽的增加还会导致高空卷云量的加多,据估计在大部分喷气机飞行的北美—大西洋—欧洲航线上,卷云量增加了5—10%。云对太阳辐射及地气系统的红外辐射都有很大影响,它在气候形成和变化中起着重要的作用。

四、城市气候

城市是人类活动的中心,在城市里人口密集,下垫面变化最大。工商业和交通运输频繁,耗能最多,有大量温室气体、“人为热”、“人为水汽”、微尘和污染物排放至大气中。因此人类活动对气候的影响在城市中表现最为突出。城市气候是在区域气候背景上,经过城市化后,在人类活动影响下而形成的一种特殊局地气候。在80年代初期美国学者兰兹葆曾将城市与郊区各气候要素的对比总结如表·3所示。

从大量观测事实看来,城市气候的特征可归纳为城市“五岛”效应(混浊岛、热岛、干岛、湿岛、雨岛)和风速减小、多变。

(一)城市混浊岛效应

城市混浊岛效应主要有四个方面的表现。首先城市大气中的污染物质比郊区多,仅就凝结核一项而论,在海洋上大气平均凝结核含量为940粒/cm3,绝对最大值为39800粒/cm3;而在大城市的空气中平均为147000粒/cm3,为海洋上的156倍,绝对最大值竟达4000000粒/cm3,也超出海洋上绝对最大值100倍以上。再以上海为例,根据近5年(1986—1990年)监测结果,大气中SO2和NOx两种气体污染物城区平均浓度分别比郊县高8.7倍和2.4倍。

其次,城市大气中因凝结核多,低空的热力湍流和机械湍流又比较强,因此其低云量和以低云量为标准的阴天日数(低云量≥8的日数)远比郊区多。据上海近十年(1980—1989年)统计,城区平均低云量为4.0,郊区为2.9。城区一年中阴天(低云量≥8)日数为60天而郊区平均只有31天,晴天(低云量≤2)则相反,城区为132天而郊区平均却有178天。欧美大城市如慕尼黑、布达佩斯和纽约等亦观测到类似的现象。

第三,城市大气中因污染物和低云量多,使日照时数减少,太阳直接辐射(S)大大削弱,而因散射粒子多,其太阳散射辐射(D)却比干洁空气中为强。在以D/S表示的大气混浊度(又称混浊度因子turbidity foctor)的地区分布上,城区明显大于郊区。根据上海近27年(1959—1985年)观测资料统计计算,上海城区混浊度因子比同时期郊区平均高15.8%。在上海混浊度因子分布图上,城区呈现出一个明显的混浊岛。在国外许多城市亦有类似现象。

第四,城市混浊岛效应还表现在城区的能见度小于郊区。这是因为城市大气中颗粒状污染物多,它们对光线有散射和吸收作用,有减小能见度的效应。当城区空气中二氧化氮NO2浓度极大时,会使天空呈棕褐色,在这样的天色背景下,使分辨目标物的距离发生困难,造成视程障碍。此外城市中由于汽车排出废气中的一次污染物——氮氧化合物和碳氢化物,在强烈阳光照射下,经光比学反应,会形成一种浅蓝色烟雾,称为光化学烟雾,能导致城市能见度恶化。美国洛杉机、日本东京和我国兰州等城市均有此现象。

(二)城市热岛效应

根据大量观测事实证明,城市气温经常比其四周郊区为高。特别是当天气晴朗无风时,城区气温Tu与郊区气温Tr的差值△Tu-r(又称热岛强度)更大。例如上海在1984年10月22日20时天晴,风速1.8m/s,广大郊区气温在13℃上下,一进入城区气温陡然升高,等温线密集,气温梯度陡峻,老城区气温在17℃以上,好像一个“热岛”矗立在农村较凉的“海洋”之上。城市中人口密集区和工厂区气温最高,成为热岛中的“高峰”(又称热岛中心),城中心62中学气温高达18.6℃比近郊川沙、嘉定高出5.6℃,比远郊松江高出6.5℃,类似此种强热岛在上海一年四季均可出现,尤以秋冬季节晴稳无风天气下出现频率最大。

由于热岛效应经常存在,大城市的月平均和年平均气温经常高于附近郊区。

(三)城市干岛和湿岛效应

在表·2中指出城市相对湿度比郊区小,有明显的干岛效

应,这是城市气候中普遍的特征。城市对大气中水汽压的影响则比较复杂,以上海为例,据近7年(1984—1990年)城区11个站水汽压eu和相对湿度RHu的平均值与同时期周围4个近郊站平均水汽压er和相对负值。城郊水汽压和相对湿度都有明显的日变化。据实测△RHu-r的绝对日变化则不同,如果按一天中4个观测时刻(02、08、14、20时),分

却高于郊区的er(表·6),出现“城市湿岛”。在暖季4月至11月有明显的干岛与湿岛昼夜交替的现象,其中尤以8月份为最突出。

表·5 上海各月平均水汽压(hPa)和相对

湿度(%)的城郊对比(1984—1990年)

上述现象的形成,既与下垫面因素又与天气条件密切相关。在白天太阳照射下,对于下垫面通过蒸散过程而进入低层空气中的水汽量,城区(绿地面积小,可供蒸发的水汽量少)小于郊区。特别是在盛夏季节,郊区农作物生长茂密,城郊之间自然蒸散量的差值更大。城区由于下垫面粗糙度大(建筑群密集、高低不齐),又有热岛效应,其机械湍流和热力湍流都比郊区强,通过湍流的垂直交换,城区低层水汽向上层空气的输送量又比郊区多,这两者都导致城区近地面的水汽压小于郊区,形成“城市干岛”。到了夜晚,风速减小,空气层结稳定,郊区气温下降快,饱和水汽压减低,有大量水汽在地表凝结成露水,存留于低层空气中的水汽量少,水汽压迅速降低。城区因有热岛效应,其凝露量远比郊区少,夜晚湍流弱,与上层空气间的水汽交换量小,城区近地面的水汽压乃高于郊区,出现“城市湿岛”。这种由于城郊凝露量不同而形成的城市湿岛,称为“凝露湿岛”,且大都在日落后若干小时内形成,在夜间维持。在城市干岛和城市湿岛出现时,必伴有城市热岛,这是因为城市干岛是城市热岛形成的原因之一(城市消耗于蒸散的热量少),而城市湿岛的形成又必须先具备城市热岛的存在。

城区平均水汽压比郊区低,再加上有热岛效应,其相对湿度比郊区显得更小。以上海为例,上海近7年(1984—1990年)年平均相对湿度,城中心区不足74%,而郊区则在80%以上,呈现出明显的城市干岛(图略)。经普查,即使在水汽压分布呈现城市湿岛时,在相对湿度的分布上仍是城区小于四周郊区。

在国外,城市干岛与湿岛的研究以英国的莱斯特、加拿大的埃德蒙顿、美国的芝加哥和圣路易斯等城市为著称。其关于城市湿岛的形成多数归因于城郊凝露量的差异,少数论及因城区融雪比郊区快,在郊区尚有积雪时,城区因雪水融比蒸发,空气中水汽压增高,因而形成城市湿岛。根据笔者对上海1984年全年逐日逐个观测时刻大气中水汽压的城郊对比分析,还发现上海城市湿岛的形成,除上述凝露湿岛外,还有结霜湿岛、雾天湿岛、雨天湿岛和雪天湿岛等,它们都必须在风小而伴有城市热岛时,才能出现。

(四)城市雨岛效应

城市对降水影响问题,国际上存在着不少争论。1971—1975年美国曾在其中部平原密苏里州的圣路易斯城及其附近郊区设置了稠密的雨量观测网,运用先进技术进行持续5年的大城市气象观测实验(METROMEX),证实了城市及其下风方向确有促使降水增多的“雨岛”效应。这方面的观测研究资料甚多,以上海为例,根据本地区170多个雨量观测站点的资料,结合天气形势。进行众多个例分析和分类统计,发现上海城市对降水的影响以汛期(5—9月)暴雨比较明显。在上海近30年(1960—1989年)汛期降水分布图上,城区的降水量明显高于郊区,呈现出清晰的城市雨岛。在非汛期(10月至次年4月)及年平均降水量分布图(图略)上则无此现象。

城市雨岛形成的条件是①在大气环流较弱,有利于在城区产生降水的大尺度天气形势下,由于城市热岛环流所产生的局地气流的辐合上升,有利于对流雨的发展;②城市下垫面粗糙度大,对移动滞缓的降雨系统有阻障效应,使其移速更为缓慢,延长城区降雨时间;③城区空气中凝结核多,其化学组分不同,粒径大小不一,当有较多大核(如硝酸盐类)存在时,有促进暖云降水作用。上述种种因素的影响,会“诱导”暴雨最大强度的落点位于市区及其下风方向形成雨岛。

城市不仅影响降水量的分布,并且因为大气中的SO2和NO2甚多,在一系列复杂的化学反应之下,形成硫酸和硝酸,通过成雨过程(rian out)和冲刷过程(wash out)成为“酸雨”降落,为害甚大。

(五)城市平均风速小、局地差异大、有热岛环流

城市下垫面粗糙度大,有减低平均风速的效应。这可以通过以下两方面的对比来证明:①同一地点在其城市发展的历史过程中风速的前后对比;②同一时期城市和郊区风速的对比。国内外大城市这方面的实测资料甚多,仍以上海为例,上海气象台自1884年即开始有风速观测记录,迄今已有一百余年。在百余年来,上海城市发展速度甚快,市区人口增加34倍强,房屋建筑密度增加亦快,年平均风速逐年明显地变小。表·7。

表·7 上海气象台历年年平均风速(m/s)(1984—1990年)

由表8·12可见,无论风速仪安装在何高度,其在同一高度所测得的风速,都是随着上海城市的发展,风速逐时段递减。以距地面12m的风速而论,最近5年(1986—1990年)的平均风速比90多年前(1894—1900年)的平均风速要减小34.2%。再从图8·25看,近10年上海城中心区平均风速(2.5m/s)要比远郊南汇(3.7m/s)小32.4%。

在大范围内,气压梯度极小的天气形势下,特别是晴夜,由于城市热岛的存在,在城区形成一个弱低压中心,并出现上升气流。郊区近地面的空气乃从四面八方流入城市,风向热岛中心辐合。

由热岛中心上升的空气在一定高度上又流向郊区,在郊区下沉,形成一个缓慢的热岛环流,又称城市风系,这种风系有利于污染物在城区集聚形成尘盖,有利于城区低云和局部对流雨的形成。我国上海、北京等城市都曾观测到此类城市热岛环流的存在。

此外,城市内部因街道走向、宽度、两侧建筑物的高度、型式和朝向不同,各地所获得的太阳辐射能就有明显的差异,在盛行风微弱时或无风时会产生局地热力环流。又当盛行风吹过鳞次栉比、参差不齐的建筑物时,因阻障效应产生不同的升降气流、涡动和绕流等、使风的局地变化更为复杂。

(选自周淑贞等《气象学与气候学》)

城市地区人为源排放强度大 一次 二次污染物浓度水平都较高
而且日变化规律与相关源活性密切相关 如早晚交通高峰时期 交通源排放强度很大 加之早晚混合层高度较小 相关污染物浓度水平很高 午间光照强烈 溶剂源排放强度很大 二次污染物浓度亦出现峰值
郊区大气中天然源排放的物种浓度较大 如果处于下风口则也可能出现较高浓度的二次污染物 如昌平地区曾多次观测到高达140~200ppb的臭氧


城市和郊区相比,哪个昼夜温差大
如题,如果从热容考虑,城市热容比郊区小,白天升温快,夜晚降温也快,温差应大;如果从大气状况来看,城市多云雾(凝结核较多),白天对太阳辐射削弱作用强,温度较低,夜晚大气逆辐射强,温度较高,温差应小

为什么城市空气中的水汽比郊区少,城市气温比郊区高?
一般来讲原因有:1、城市的绿地和水域面积相对较小,大多数都是水泥地,阻止了泥土中的水分蒸发;2、城市中的建筑都是玻璃居多,加强了太阳光的照射,使水分不易保留,3、降雨,郊区由于大气水循环会比较的频繁,所以降雨会比较多,而城市中由于地面水蒸气较少升入天空形成云朵,所以降雨相较郊区会少些...

城市中的气温明显什么郊外地区
使得城市白天吸收储存太阳能比郊区多,夜晚城市降温缓慢仍比郊区气温高。城市热岛是以市中心为热岛中心,有一股较强的暖气流在此上升,而郊外上空为相对冷的空气下沉,这样便形成了城郊环流,空气中的各种污染物在这种局地环流的作用下,聚集在城市上空,如果没有很强的冷空气,城市空气污染将加重。

城市中心的气温往往高于周边郊区的气温是什么效应造成的
城市中心的气温往往高于周边郊区的气温是什么效应造成的?A.热岛效应 B.绿洲效应 正确答案:A 热岛效应(Urban Heat Island Effect)是指当城市发展到一定规模,由于城市下垫面性质的改变、大气污染以及人工废热的排放等使城市温度明显高于郊区,形成类似高温孤岛的现象。 热岛效应是指一个地区的气温高于...

什么是城市热岛效应?
城市热岛效应,通俗地讲就是城市化的发展,导致城市中的气温高于外围郊区的这种现象。在气象学近地面大气等温线图上,郊外的广阔地区气温变化很小,如同一个平静的海面,而城区则是一个明显的高温区,如同突出海面的岛屿,由于这种岛屿代表着高温的城市区域,所以就被形象地称为城市热岛。在夏季,城市局部...

城市的太阳辐射量往往低于郊区,造成这种现象的主要原因有哪些_百度知 ...
郊区太阳辐射较强日照时间要长。城市太阳辐射较弱,日照时间短,城市的人口集中,工业发达,各种燃料的燃烧不断排放大量烟尘和废气,使空气被污染,并使日照和太阳辐射减弱。据研究,太阳辐射年总量减少约10~15%,日照时间减少约5~15%。

城市的雾比郊区多,主要是因为城市的大气中含有较多的:( ) A.水汽 B...
这些尘埃容易吸附空气中的水分,从而形成雾气而降低了城市里的能见度。在有风的环境中或者日照良好的情况下,空气因风或受热而流动,促使尘埃散开,于是雾就消散了。点评:本题难度较小,主要考固体杂质的作用。雾和云都是由浮游在空中的小水滴或冰晶组成的水汽凝结物,只是雾生成在大气的近地面层中,...

"热岛效应"的原因是什么? 一是城市与郊区地表面性质不同,热力性质差异...
概念不一样,城市热岛效应是城市与郊区之间的热力环流形成的基础。1、热力环流是大气运动最简单的形式,由于地面的冷热不均而形成的空气环流。其形成过程为:受热地区大气膨胀上升,近地面形成低气压,而高空形成高气压;受冷地区相反,从而在近地面和高空的水平面上形成了气压差,促使大气的水平运动,形成...

城市热岛环流
由于城市热岛环流的出现,城区工厂排出的污染物随上升气流而上升,笼罩在城市上空,并从高空流向郊区,到郊区后下沉。下沉气流又从近地面流向城市中心,并将郊区工厂排出的污染物带入城市,造成二次污染,致使城市的空气污染更加严重。上海是个特大城市,只要没有较大的风,而城市热岛又很明显(晴天时,...

同一地区城市气温为什么比郊区气温高
城市热岛效应 英文名称:The Urban Heat Island Effect 晴朗无风的夏日,海岛上的地面气温,高于周围海上气温,并因此形成海风环流以及海岛上空的积云对流,这是海洋热岛效应的表现.近年来,由于城市人口集中,工业发达,交通拥塞,大气污染严重,且城市中的建筑大多为石头和混凝土建成,它的热传导率和热容量都很高...

武山县15576678215: 城区与郊区相比() -
虫紫补肾:[选项] A. 高空气压低 B. 近地面气温高、气压高 C. 近地面气温低、气压低 D. 高空气压高

武山县15576678215: 为什么城市空气中的水汽比郊区少,城市气温比郊区高? -
虫紫补肾:[答案] 一般来讲原因有:1、城市的绿地和水域面积相对较小,大多数都是水泥地,阻止了泥土中的水分蒸发;2、城市中的建筑都是玻璃居多,加强了太阳光的照射,使水分不易保留,3、降雨,郊区由于大气水循环会比较的频繁,所以降雨会比较多,而...

武山县15576678215: 城市市区和郊区在主要气候要素上有哪些不同? -
虫紫补肾: 城市会出现热岛效应而郊区不会有 城市气温普遍比郊区要高

武山县15576678215: 造成中心城区气候不同于郊区,其表现为 -
虫紫补肾: 人类活动对气候的影响在城市中表现最为显著.根据设在城区和其周围郊区的气象站同时间观测资料表明,城市气候与郊区相比有“热岛”、“干岛”、“湿岛”、“混浊岛”和“雨岛”等“五岛”效应. 热岛: 在晴稳无风的夜晚,由郊区进...

武山县15576678215: 城市和郊区相比,哪个昼夜温差大 -
虫紫补肾: 如题,如果从热容考虑,城市热容比郊区小,白天升温快,夜晚降温也快,温差应大;如果从大气状况来看,城市多云雾(凝结核较多),白天对太阳辐射削弱作用强,温度较低,夜晚大气逆辐射强,温度较高,温差应小

武山县15576678215: 城市人为的下垫面和郊区、农村的相比有什么不同? -
虫紫补肾: 空气流向不同,形成城市热岛. 城市热岛效应(Urban heat island effect)是指城市中的气温明显高于外围郊区的现象.在近地面温度图上,郊区气温变化很小,而城区则是一个高温区,就象突出海面的岛屿,由于这种岛屿代表高温的城市区域...

武山县15576678215: 城市地区由于空气湿度比郊区大,所以云雾天气比郊区多对吗 -
虫紫补肾: 城市地区空气湿度比郊区大,空气中的尘埃,pm2.5也大于郊区,由于人口密集,工厂多热量也高,所以,水分蒸发大,空气湿度比郊区大,云雾天气就多

武山县15576678215: 城市气候共同的特征有哪几方面? -
虫紫补肾: 由于城市下垫面特殊性质,空气中由燃料产生的二氧化碳等较多,加上人为的热源等因子,城市气温明显高于郊区.这种情况称为“城市热岛效应”.国内外许多学者的研究表明:城市热岛强度是夜间大于白天,日落以后城郊温差迅速增大,日...

武山县15576678215: 为什么城市的气温比郊区高 -
虫紫补肾:[答案] 热岛效应” 久居都市的人们都有类似的体验:夏季里城市局部地区的气温要比郊区高出很多.为了逃避酷热难耐的暑气,人们往往愿意跑到绿树成荫、河湖交错的郊区或乡村去享受一份清凉和惬意. 由于城市人口集中,工业发达,交通拥塞,大气污染...

武山县15576678215: 为什么城市的气温比郊区高 -
虫紫补肾: 由于城市人口集中,工业发达,交通拥塞,大气污染严重,且城市中的建筑大多为石头和混凝土建成,它的热传导率和热容量都很高,加上建筑物本身对风的阻挡或减弱作用,可使城市年平均气温比郊区可高2度,甚至更多,在温度的空间分布...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网