高中物理,待测物体的速度v与二次暻光的时光间隔△t的乘积等于双缝间距,实验中可测得二次曝光时间间隔△

作者&投稿:丰垂 (若有异议请与网页底部的电邮联系)
激光散斑测速是一种崭新的测速技术,它应用了光的干涉原理.用二次曝光照相所获得的“散斑对”相当于双缝~

双缝干涉的条纹间距为:△x=ldλ依题意可知双缝间的距离满足:d=v△t由以上两式得:v=lλ△x△t 答:待测物体运动的速度为lλ△x△t.

我今年高考前准备的,希望对你有帮助

1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(3)干涉与衍射是波特有的;
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:
电压表示数:U=UR+UA
电流表外接法:
电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
选用电路条件Rx>>RA [或Rx>(RARV)1/2]
选用电路条件Rx<<RV [或Rx<(RARV)1/2]
12.滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小
便于调节电压的选择条件Rp>Rx
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp<Rx
注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);
十二、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B); {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
十三、电磁感应
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
十四、交变电流(正弦式交变电流)
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
注:
(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;
(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
十五、电磁振荡和电磁波
1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}
2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}
注:
(1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;
(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;
十六、光的反射和折射(几何光学)
1.反射定律α=i {α;反射角,i:入射角}
2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}
3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n
2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角
注:
(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;
(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;
十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)
1.两种学说:微粒说(牛顿)、波动说(惠更斯)
2.双缝干涉:中间为亮条纹;亮条纹位置: =nλ;暗条纹位置: =(2n+1)λ/2(n=0,1,2,3,、、、);条纹间距 { :路程差(光程差);λ:光的波长;λ/2:光的半波长;d两条狭缝间的距离;l:挡板与屏间的距离}
3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)
4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4〔见第三册P25〕
5.光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播
6.光的偏振:光的偏振现象说明光是横波
7.光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用
8.光子说,一个光子的能量E=hν {h:普朗克常量=6.63×10-34J.s,ν:光的频率}
9.爱因斯坦光电效应方程:mVm2/2=hν-W {mVm2/2:光电子初动能,hν:光子能量,W:金属的逸出功}
注:
(1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;
(2)其它相关内容:光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线〔见第三册P50〕/光电效应的规律光子说〔见第三册P41〕/光电管及其应用/光的波粒二象性〔见第三册P45〕/激光〔见第三册P35〕/物质波〔见第三册P51〕。

十八、原子和原子核
1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)极少数α粒子出现大角度的偏转(甚至反弹回来)
2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)
3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}
4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}
5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕
6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}
7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。
注:
(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;
(2)熟记常见粒子的质量数和电荷数;
(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;

高中物理电学实验复习
主要内容:
1、用描迹法画出电场中平面上的等势线
2、描绘小电珠的伏安特性曲线
3、测定金属的电阻率
4、把电流表改装为电压表
5、用电流表和电压表测电池的电动势和内电阻
6、用多用电表探索黑箱内的电学元件
7、练习使用示波器
8、传感器的简单应用
1、用描迹法画出电场中平面上的等势线
[实验目的]
利用电场中电势差及等势面的知识,练习用描迹法画出电场中一个平面上的等势线。
[实验原理]
用导电纸上形成的稳恒电流场来模拟静电场,当两探针与导电纸上电势相等的两点接触时,与探针相连的灵敏电流计中通过的电流为零,指针不偏转,当两探针与导电纸上电势不相等的两点接触时,与探针相连的灵敏电流计中通过的电流就不为零,从而可以利用灵敏电流计找出导电纸上的等势点,并依据等势点描绘出等势线。
[实验器材]
学生电源或电池组(电压约为6V),灵敏电流计,开关,导电纸,复写纸,白纸,圆柱形金属电极两个,探针两支,导线若干,木板一块,图钉,刻度尺等。
[实验步骤]
1.在平整的木板上,由下而上依次铺放白纸、复写纸、导电纸各一张,导电纸有导电物质的一面要向上,用图钉把白纸、复写纸和导电纸一起固定在木板上。
2.在导电纸上平放两个跟它接触良好的圆柱形电极,两个电极之间的距离约为10cm,将两个电极分别与电压约为6V的直流电源的正负极相接,作为“正电荷”和“负电荷”,再把两根探针分别接到灵敏电流计的“+”、“-”接线柱上(如图所示)。
3.在导电纸上画出两个电极的连线,在连线上取间距大致相等的五个点作基准点,并用探针把它们的位置复印在白纸上。
4.接通电源,将一探针跟某一基准点接触,然后在这一基准点的一侧距此基准点约1cm处再选一点,在此点将另一探针跟导电纸接触,这时一般会看到灵敏电流计的指针发生偏转,左右移动探针位置,可以找到一点使电流计的指针不发生偏转,用探针把这一点位置复印在白纸上。
5.按步骤(4)的方法,在这个基准点的两侧逐步由近及远地各探测出五个等势点,相邻两个等势点之间的距离约为1cm。
6.用同样的方法,探测出另外四个基准点的等势点。
7.断开电源,取出白纸,根据五个基准点的等势点,画出五条平滑的曲线,这就是五条等势线。
[注意事项]
1.电极与导电纸接触要良好,且与导电纸的相对位置不能改变。
2.寻找等势点时,应从基准点附近由近及远地逐渐推移,不可冒然进行大跨度的移动,以免电势差过大,发生电流计过载现象。
3.导电纸上所涂导电物质相当薄,故在寻找等势点时,不能用探针在导电纸上反复划动,而应采用点接触法。
4.探测等势点不要太靠近导电纸的边缘,因为实验是用电流场模拟静电场,导电纸边缘的电流方向与边界平行,并不与等量异种电荷电场的电场线相似。
2、描绘小电珠的伏安特性曲线
[实验目的]
通过实验来描绘小灯泡的伏安特性曲线,并分析曲线的变化规律.
[实验原理]
金属物质的电阻率随温度升高而增大,从而使得一段金属导体的电阻随温度发生相应变化.对一只灯泡来说,不正常发光和正常发光时灯丝的电阻值可以相差几倍到十几倍,它的伏安特性曲线(I-U图线)并不是一条直线.即灯丝的电阻是非线性的,本实验通过描绘伏安特性曲线的方法来研究钨丝灯泡在某一电压变化范围内阻值的变化,从而了解它的导电特性.
实验电路图:如图所示,用采用滑线变阻器的分压式接法。
[实验器材]
小灯泡,4V-6V学生电源,滑动变阻器,伏特表,安培表,开关,导线若干.

图87-1

[实验步骤]
(l)按上图连接好电路,把滑动变阻器的滑动臂P调节到靠近A端处.
(2)闭合电键S,把滑动臂P调节到某个合适的位置,然后读出此时伏特表的示数U1和安培表的示数I1,并把它们记录到下面表格中.

(3)把滑动片P从近A端逐渐往B端调节,重复步骤(2),读出并记录下12组左右不同的电压值和电流值.
(4)断开电键S,拆除电路.
(5)以I为纵轴,U为横轴画出直角坐标系,选取适当的标度,在坐标平面内依次描出12组数据所表示的点,然后用平滑曲线连接这些点,此曲线就是小灯泡的伏安特性曲线.
[注意事项]
1.本实验中,因被测小灯泡灯丝电阻较小,因此实验电路必须采用电流表外接法.
2.因本实验要作I-U图线,要求测出一组包括零在内的电压、电流值,因此变阻器要采用分压接法.
3.电键闭合前变阻器滑片移到图中所示的A端.
4.电键闭合后,调节变阻器滑片的位置,使灯泡的电压逐渐增大,可在伏特表读数每增加一个定值(如0.5V)时,读取一次电流值,并将数据(要求两位有效数字)记录在表中.调节滑片时应注意伏特表的示数不要超过小灯泡的额定电压.
5.在坐标纸上建立一个直角坐标系,纵轴表示电流,横轴表示电压,两坐标轴选取的标度要合理,使得根据测量数据画出的图线尽量占满坐标纸;要用平滑曲线将各数据点连接起来.
3、测定金属的电阻率
[实验目的]
用伏安法间接测定某种金属导体的电阻率;练习使用螺旋测微器。
[实验原理]
根据电阻定律公式R= ,只要测量出金属导线的长度 和它的直径d,计算出导线的横截面积S,并用伏安法测出金属导线的电阻R,即可计算出金属导线的电阻率。
[实验器材]
被测金属导线,直流电源(4V),电流表(0-0.6A),电压表(0-3V),滑动变阻器(50Ω),电键,导线若干,螺旋测微器,米尺等。
[实验步骤]
1.用螺旋测微器在被测金属导线上的三个不同位置各测一次直径,求出其平均值d,计算出导线的横截面积S。
2.按如图所示的原理电路图连接好用伏安法测电阻的实验电路。
3.用毫米刻度尺测量接入电路中的被测金属导线的有效长度,反复测量3次,求出其平均值 。
4.把滑动变阻器的滑动片调节到使接入电路中的电阻值最大的位置,电路经检查确认无误后,闭合电键S。改变滑动变阻器滑动片的位置,读出几组相应的电流表、电压表的示数I和U的值,断开电键S,求出导线电阻R的平均值。
5.将测得的R、 、d值,代入电阻率计算公式 中,计算出金属导线的电阻率。
6.拆去实验线路,整理好实验器材。
[注意事项]
1.测量被测金属导线的有效长度,是指测量待测导线接入电路的两个端点之间的长度,亦即电压表两接入点间的部分待测导线长度,测量时应将导线拉直。
2.本实验中被测金属导线的电阻值较小,因此实验电路必须采用电流表外接法。
3.实验连线时,应先从电源的正极出发,依次将电源、电键、电流表、待测金属导线、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在待测金属导线的两端。
4.闭合电键S之前,一定要使滑动变阻器的滑动片处在有效电阻值最大的位置。
5.在用伏安法测电阻时,通过待测导线的电流强度I的值不宜过大(电流表用0~0.6A量程),通电时间不宜过长,以免金属导线的温度明显升高,造成其电阻率在实验过程中变化。

【目的和要求】
学会用分流法测定电流表的内阻,进一步理解并联分流的原理;练习把电流表改装成电压表,加深对串联分压作用的理解;掌握确定改装电压表的百分误差的方法。
【仪器和器材】
电流表(J0409型或J0409-1型),直流电压表(J0408型或J0408-1型),滑动变阻器(J2354-1型),转柄电位器(22千欧)。简式电阻箱(J2262型),干电池2-3个,单刀开关2个(J2352型),导线若干。
【实验方法】
1.电流表内电阻的测量
(1)按图4.8-1接好电路。R0为电位器(22千欧),R′为电阻箱(0—9999欧),G为电流表,选用G0挡(Rg=80—125欧,Ig=300微安),电源为2—3节干电池。
将R0的阻值调至最大,断开S2,试触S1,如果电路中电流超过电流表的满偏电流,则应串联一个定值电阻;如电路中电流未超过电流表的量程,则可以开始实验。
(2)调节电位器R0的阻值,使电流表指针逐渐指到满刻度。
(3)将电阻箱R′的阻值调到最小,闭合S2,这时电流表G的示数很小。调节(增大)电阻箱R′的阻值,使电流表的指针正好指到满刻度的一半。
(4)记下电阻箱R′的阻值,它就是电流表内电阻Rg的阻值。
2.把电流表改装为电压表
(1)根据上面实验结果计算出电流表的满偏电压Ug=IgRg,为了将它的量程扩大到U(一般U可取2伏),则它的量程扩大的倍数为n=U/Ug,故应串联的分压电阻为R=(n-1)Rg。
(2)将电流表与电阻箱串联,使电阻箱阻值为R=(n-1)Rg,即组成量程为U的电压表。
(3)弄清改装后表盘的读数。首先明确表盘上每格表示多少伏。电流表的原量程为300微安,最大量程处标的是“30”,表盘上“0—30”之间是15格,改装成2伏的电压表后,每一格应表示2/15伏,如果指针指在110微安刻度上,实际电压是2×(110/300)=0.73伏,如果指针偏转3格,实际电压是(2/15)×3=0.40伏。
一般来说可以按公式U′=(I/Ig)U来计算,式中Ig为电流表满偏电流值,I为表盘电流的刻度值,U为改装表的最大量程,U′为改装表对应的刻度。
3.改装电压表的校准
(1)按图 4.8-3接好校准电路。滑动变阻器R1采用分压接法,开始时它的滑片置于分压最小的位置。电源用2节干电池。虚线框内为改装后的电压表,V为标准电压表。
(2)闭合开关,调节滑动变阻器的滑片,依次使标准电压表的读数为0.5伏、1.0伏、1.5伏、2.0伏,在下表中记下改装电压表的相应的读数。
实验次数 标准表读数(伏) 改装表读数(伏)
1 0.5
2 1.0
3 1.5
4 2.0

(3)按下式计算改装电压表的百分误差:

式中U0为改装表的最大量程,U为标准表的相应的读数值。

3、用电流表和电压表测定电池的电动势和内电阻
[实验目的]
测定电池的电动势和内电阻。

[实验原理]
如图1所示,改变R的阻值,从电压表和电流表中读出几组I、U值,利用闭合电路的欧姆定律求出几组 、r值,最后分别算出它们的平均值。
此外,还可以用作图法来处理数据。即在坐标纸上以I为横坐标,U为纵坐标,用测出的几组I、U值画出U-I图象(如图2)所得直线跟纵轴的交点即为电动势值,图线斜率的绝对值即为内电阻r的值。

[实验器材]
待测电池,电压表(0-3V),电流表(0-0.6A),滑动变阻器(10Ω),电键,导线。

[实验步骤]
1.电流表用0.6A量程,电压表用3V量程,按电路图连接好电路。
2.把变阻器的滑动片移到一端使阻值最大。
3.闭合电键,调节变阻器,使电流表有明显示数,记录一组数据(I1、U1),用同样方法测量几组I、U的值。
4.打开电键,整理好器材。
5.处理数据,用公式法和作图法两种方法求出电动势和内电阻的值。

[注意事项]
1.为了使电池的路端电压变化明显,电池的内阻宜大些,可选用已使用过一段时间的1号干电池。
2.干电池在大电流放电时,电动势 会明显下降,内阻r会明显增大,故长时间放电不宜超过0.3A,短时间放电不宜超过0.5A。因此,实验中不要将I调得过大,读电表要快,每次读完立即断电。
3.要测出不少于6组I、U数据,且变化范围要大些,用方程组求解时,要将测出的I、U数据中,第1和第4为一组,第2和第5为一组,第3和第6为一组,分别解出 、r值再平均。
4.在画U-I图线时,要使较多的点落在这条直线上或使各点均匀分布在直线的两侧。个别偏离直线太远的点可舍去不予考虑。这样,就可使偶然误差得到部分的抵消,从而提高精确度。
5.干电池内阻较小时路端电压U的变化也较小,即不会比电动势小很多,这时,在画U-I图线时,纵轴的刻度可以不从零开始,而是根据测得的数据从某一恰当值开始(横坐标I必须从零开始)。但这时图线和横轴的交点不再是短路电流。不过直线斜率的绝对值照样还是电源的内阻。
4、练习使用多用电表(万用表)测电阻
[实验目的]
练习使用多用电表测电阻。
[实验原理]
多用电表由表头、选择开关和测量线路三部分组成(如图),表头是一块高灵敏度磁电式电流表,其满偏电流约几十到几百 A,转换开关和测量线路相配合,可测量交流电流和直流电流、交流电压和直流电压及电阻等。测量电阻部分即欧姆表是依据闭合电路欧姆定律制成的,原理如图所示,当红、黑表笔短接并调节R使指针满偏时有
Ig= = (1)
当电笔间接入待测电阻Rx时,有
Ix= (2)
联立(1)、(2)式解得
= (3)
由(3)式知当Rx=R中时,Ix= Ig,指针指在表盘刻度中心,故称R中为欧姆表的中值电阻,由(2)式或(3)式可知每一个Rx都有一个对应的电流值I,如果在刻度盘上直接标出与I对应的Rx的值,那么当红、黑表笔分别接触待测电阻的两端,就可以从表盘上直接读出它的阻值。
由上面的(2)可知,电流和电阻的非线性关系,表盘上电流刻度是均匀的,其对应的电阻刻度是不均匀的,电阻的零刻度在电流满刻度处。

[实验器材]
多用电表,标明阻值为几欧、几十欧、几百欧、几千欧的定值电阻各一个,小螺丝刀。

[实验步骤]
1.机械调零,用小螺丝刀旋动定位螺丝使指针指在左端电流零刻度处,并将红、黑表笔分别接入“+”、“-”插孔。
2.选挡:选择开关置于欧姆表“×1”挡。
3.短接调零:在表笔短接时调整欧姆挡的调零旋钮使指针指在右端电阻零刻度处,若“欧姆零点”旋钮右旋到底也不能调零,应更换表内电池。
4.测量读数:将表笔搭接在待测电阻两端,读出指示的电阻值并与标定值比较,随即断开表笔。
5.换一个待测电阻,重复以上2、3、4过程,选择开关所置位置由被测电阻值与中值电阻值共同决定,可置于“×1”或“×10”或“×100”或“×1k”挡。
6.多用电表用完后,将选择开关置于“OFF”挡或交变电压的最高挡,拔出表笔。

[注意事项]
1.多用电表在使用前,应先观察指针是否指在电流表的零刻度,若有偏差,应进行机械调零。
2.测量时手不要接触表笔的金属部分。
3.合理选择量程,使指针尽可能指在中间刻度附近(可参考指针偏转在 ~5R中的范围)。若指针偏角太大,应改换低挡位;若指针偏角太小,应改换高挡位。每次换挡后均要重新短接调零,读数时应将指针示数乘以挡位倍率。
4.测量完毕后应拔出表笔,选择开关置OFF挡或交流电压最高挡,电表长期不用时应取出电池,以防电池漏电。

[实验目的]
实验原理
当信号电压输入示波器时,示波管的荧光屏上就反映出这个电压随时间变化的波形来。示波管主要由电子枪、竖直偏转电极和水平偏转电极组成。两电极都不加偏转电压时,由电子枪产生的高速电子做直线运动,打在荧光屏中心,形成一个亮点。这时如果在水平偏转电极上加上随时间均匀变化的电压,则电子因受偏转电场的作用,打在荧光屏上的亮点便沿水平方向匀速移动。如果再在竖直偏转电极上,加上一随时间变化的信号电压,则亮点在竖直方向上也要发生偏移,偏移的大小与所加信号电压的大小成正比。这样,亮点一方面随着时间的推移在水平方向匀速移动,一方面又正比于信号电压在竖直方向上产生偏移。于是在荧光屏上便形成一波形曲线,此曲线反映出信号电压随时间变化的规律。
实验器材
J2459型示波器1台;低压电源1台;变阻器1只;电键1只;导线若干。
实验步骤
1.熟悉J2459型示波器板上各旋钮的作用。如图7-1为J2459型示波器的面板,荧光屏右边最上端的是辉度调节旋钮,标以“ ”符号,用来调节光点和图像的亮度。顺时针旋转旋钮时,亮度增加。
第二个是聚焦调节“⊙”和辅助聚焦“○”,这两个旋钮配合着使用,能使电子射线会聚,在荧光屏上产生一个小的亮斑,得到清晰的图像。
再下面是电源开关和指示灯,用后盖板上的电源插座接通电源后,把开关扳向“开”的位置,指示灯亮,经过一两分钟的预热,示波器就可以使用了。
荧光屏下边第一行左、右两端的旋钮是垂直位移“ ”和水平位移“ ”,分别用来调整图像在竖直方向和水平方向的位置。它们中间的两个旋钮是“Y增益”和“X增益”,分别用来调整图像在竖直方向和水平方向的幅度,顺时针旋转时,幅度连续增大。
中间一行左边的大旋钮是“衰减”,它有1、10、100、1000四挡,最左边的“1”挡不衰减,其余各挡分别使输入的电压衰减为原来

最右边的正弦符号 挡不是衰减,而是由示波器内部自行提供竖直方向的交流试验信号电压,可用来观察正弦波形或检查示波器是否正常工作。
中间一行右边的大旋钮是“扫描范围”,也有四挡,可以改变加在水平方向的扫描电压的频率范围,左边第一挡是10~100Hz,向右旋转每升高一挡,扫描频率都增大10倍,最右边的是“外X”挡,使用这一挡时,机内没有加扫描电压,水平方向的电压可以从外部输入。
中间的小旋钮是“扫描微调”,用来调整水平方向的扫描频率,顺时针转动时频率连续增加。
底下一行中间的旋钮“Y输入”、“X输入”和“地”分别是竖直方向、水平方向和公共接地的输入接线柱。左边的“DC、AC”是竖直方向输入信号的直流、交流选择开关。置于“DC”位置时,所加的信号电压是直接输入的;置于“AC”位置时,所加信号电压是通过一个电容器输入的,它可以让交流信号通过而隔断直流成分。右边的“同步”也是一个选择开关。置于“+”位置时,扫描由被测信号正半周起同步,置于“-”位置时,扫描由负半周起同步。这个开关主要在测量较窄的脉冲信号时起作用,对于正弦波、方波等,无论扳到“+”或“-”,都能很好地同步,对测量没有影响。
2.练习使用示波器
①把辉度旋钮反时针旋到底,垂直位移和水平位移旋钮转到中间位置,衰减旋钮置于最高挡,扫描旋钮置于“外X”挡。
②接通电源,打开电源开关。经预热后,荧光屏上出现亮点。调节辉度旋钮,使亮度适中。
③调节聚焦和辅助聚焦旋钮,观察亮点的大小变化,直至亮点最圆、最小时为止。
④旋转垂直位移和水平位移旋钮,观察亮点的上下移动和左右移动。
⑤把扫描范围旋钮旋至最低档,扫描微调旋钮反时针旋到底,把X增益旋钮顺时针旋到1/3处,观察亮点的水平方向的移动情况。
⑥顺时针旋转扫描微调旋钮,观察亮点的来回移动(随着扫描频率增大而加快,直至成为一条水平亮线)。旋转X增益旋钮,观察亮线长度的变化。
⑦把扫描范围旋钮置于“外X”挡,交直流选择开关扳到“DC”,并使亮点位于荧光屏中心。按图7-2接好电路,输入一直流电压。
⑧移动变阻器的滑动片,改变输入电压的大小,观察亮点的移动。
⑨将电池的正负极接线调换位置,重复步骤⑧。
⑩使Y增益旋钮顺时针旋到底,衰减旋钮置于“1”挡。使变阻器的滑动片从最右端起向左滑动至某一位置,读取亮点偏移的格数。此时亮点每偏移1格,表示输入电压改变50mV。计算此时输入电压的大小。如果衰减旋钮置于其他挡时,应将所得数值乘以相应的倍数。
(11)实验完毕后,把辉度旋钮反时针旋到底,然后关机,切断电源。

[实验原理]
[实验器材]
[实验步骤]
[注意事项]

(4)测电学量
名称 备考要点
电流表

电压表 1. 正确读数 合理选择量程,尽可能使指针偏在1/3—2/3的范围
2. 表头原理:θ=BSI/K,即θ∝I

3 量程的扩大:电流表——并联分流电阻Rx=Rg/(n-1)
电压表——串联分压(大)电阻Rx=(n-1)Rg
多用电表 1、 电路和原理图
当选择开关分别接到1,2,3,4时,即可测直流电流,直流电压,交流电压,电阻
2、 使用与读数:
(1) 测电流和电压时,必须使电流以红笔进,从黑笔流出
(2) 测电阻时,待测电阻要与电源及其它电阻断开,且不要用手接触表笔,合理选择量程,尽可能使指针在中央位置附近,否则应更换量程,每次更换量程时,都要重新调零后才能测量
(3) 三条主要刻线:
最上面是欧姆档的刻度,零刻度在右侧,且刻线不均匀
第二条是电压和电流刻线,零刻线在左侧,且刻线均匀
第三条是交流低压刻线,零刻线在左侧,且刻线均匀

测量直流电阻部分即欧姆档是根据闭合电路欧姆定律设计的,原理如图所示。当红黑表笔短接并调节R使指针满偏时有:
Ig=E/(r+rg+ R)=E/R中 (1)(R中= r+rg+ R)
当表笔接入待测电阻Rx时,
Ix=E/(R中+Rx) (2)
由(1)(2)两式解得:
Ix/Ig=R中/(Rx+R中) (3)
由(3)式可知当Rx = R中时,Ix=Ig/ 2 ,指针指在表盘刻度中心,故称R中为欧姆档的中值电阻,并可知每一个Rx 都有一个对应的电流值Ix 如果在刻度盘上直接标出与Ix对应Rx的值,就可在表盘上读出待测电阻的阻值

池的正极跟“一”插孔相连.

例题 (2003年广东,11)图为一正在测量中的多用电表盘。

(1) 如果是用直流10V档测量电压,则读数为_________V。
(2) 如果是用 ×1档测量电阻 , 则读数为__________欧。
(3) 如果是用直流5mA档测量电流,则读数为_________mA.。

答案: 6.5 8.0 3.25

(5) 调节仪器
名称 备考要点
滑动变阻器 (1) 原理:R=ρL/S,实际接入电路的电阻丝长度L
(2) 两种接法:限流器电路与分压器电路,两种接法的比较

电阻箱 接入电路的初态R取最大值
H.变阻箱的读数

【例16】如图所示,a、b、c、d是滑动变阻器的4个接线柱。现把此变阻器串联接人电路中,并要求沿片P向接线柱C移动时,电路中的电流减小,则接入电路中的接线柱可能是( ).
A.a和b B.a和c C.b和c D.b和d
解C、D.
变阻器串联接在电路中,改变其阻值电流随之变化.根据欧姆定律,电路中的电流减小时,变阻器阻值应变大,所以保证P向C移动时,变阻器阻值变大即可.

(6) 其他
名称 备考要点
测力的弹簧秤 (1) 原理:胡克定律及二力平衡原理
(2) 校正零点,认清量程与最小刻度,正确使用与读数
示波器 (1) 示波器可以直接观察电信号随时间变化的情况
(2) 示波器面板名称,功能一览
(3) 示波器的原理和作用

例题:若示波器所显示的输入波形如图(C)所示,要将波形上移,应调节面板上的_______旋钮;要使此波形横向展宽,应调节________旋钮;要使屏上能够显示3个完整的波形,应调节_______旋钮。

分析与解:竖直位移;X增益;扫描范围和扫描微调

例题 (2003年江苏,11)图为示波器面板,屏上显示的是一亮度很低、线条较粗且模糊不清的波形。
(1) 若要增大显示波形的亮度,应调节___________旋钮。
(2) 若要屏上波形线条变细且边缘清晰,应调节_____________旋钮。
(3) 若要将波形曲线调至屏中央,应调节_______与_______旋钮。

答案: (1)辉度 (2)聚焦 (3)竖直位移或“↓↑” 水平位移或“ ”

(二)测量性实验
这类实验以某一原理或物理规律(公式)为依据,通过测量相关的物理量,从而实现测定某个(或某些)物理量或物理常数为实验目的。
序号 名称 备考重点
1
测量匀变速直线运动的加速度 数据处理方法:公式法和图象法
2 用单摆测定重力加速度 摆长的确定与测量;累积法测周期的方法;计时起,终点位置的选择;数据处理方法;公式法与图象法
3 用油膜法估测分子的大小 实验原理的理解;区分油酸体积和油酸酒精体积
4 测定金属的电阻率 器材的选择:选电源、选滑动变阻器、选电表;选电路
5 测电池电动势和内电阻 电路连接方式;测量数据的图象处理方法;作图时坐标分度的选取
6 测定玻璃的折射率 实验步骤要合理,注意误差分析,计算折射率的方法
7 用双缝干涉测光的波长 会调整实验装置;会正确读数

【例12】在做“研究匀变速直线运动”的实验时,某同学得到一条用打点计时器打下的纸带,并在其上取了A、B、C、D、E、F等6个计数点,(每相邻两个计数点间还有4个打点计时器打下的点,本图中没有画出)打点计时器接的是“220V、50Hz”的交变电流.如图,他把一把毫米刻度尺放在纸带上,其零刻度和计数点A对齐.

(1)求打点计时器在打B、C、D、E各点时物体的瞬时速度vB、vC、vD、vE.
(2)根据(1)中得到的数据,试在图中所给的坐标系中,用做v-t图象的方法,从求物体的加速度a(要标明坐标及其单位,单位大小要取得合适,使作图和读数方便,并尽量充分利用坐标纸).
(3)如果当时电网中交变电流的频率是f=49Hz,而做实验的同学并不知道,那么由此引起的系统误差将使加速度的测量值比实际值偏 .理由是: .

解析:(1)用匀变速直线运动中间时刻的瞬时速度等于该段时间内的平均速度进行计算.(2)由上问结果可知A、F对应的速度大约为0.08m/s和0.29m/s,所以横坐标从0开始每格表示0.1s,纵坐标从0.05m/s开始每大格表示0.05m/s.图线的斜率就是加速度.(3)由于实际的周期大于0.02s,所以周期的测量值偏小了,导致加速度的测量值偏大.
答案:(1)0.12m/s,0.20m/s, 0.16m/s, 0.25m/s。(2)由图象得a=0.42m/s2(3)大,周期的测量值偏小.

例题(2001上海)利用打点记时器研究一个约1.4m高的商店卷帘窗的运动,将纸带粘在卷帘底部,纸带通过
望采纳。




怎么测电荷量
1、电荷量的测量方法 电荷量的测量方法有多种,包括电位差计法、电容器法、电感法等。其中,电位差计法是最常用的一种方法。电位差计法是通过测量电位差来计算电荷量的方法。具体来说,它利用电位差计将一个已知电量的标准电池与待测物体进行比较,从而确定待测物体的电荷量。该方法的优点是精度高、...

请问,在物理中,为什么测量物体的长度的结果一般保留2位小数
因为长度一般用毫米刻度尺,最小分度为1 mm,向下估读位移到1\/10 mm,故以cm为单位,到小数点后第二位。

初中物理,天平是精密的测量仪器,使用时,应严格注意哪些事项?
初中物理中,要求主要注意以下三条:(1) 被测物体的质量不能超过天平的称量;(若超过,Ⅰ.称不出物体的质量;Ⅱ. 超出过多时,还会损坏梁架及影响天平的精确度)(2) 向盘中加减砝码时要用镊子,不能用手接触砝码,不能把砝码弄湿、弄脏;(否则,砝码会沾上污物或被手上的汗水等锈蚀砝码,造成...

刻度尺测量方法
直接测量法 直接测量法适用于待测物体的两端都能与刻度尺接触的情况。将刻度尺与待测物体接触,并确保两端对齐并紧贴物体表面。读取刻度尺上与物体两端对齐的刻度线位置,得到物体的长度。间接测量法 间接测量法适用于待测物体的某一端无法与刻度尺直接接触的情况。通过其他测量手段(如游标卡尺)测量待测...

用扭摆法测定物体的转动惯量
用扭摆法测定物体的转动惯量如下:三线扭摆法测转动惯量是大学物理实验中的项目。测量原理是通过测量刚体转动周期和刚体的质量以及其他一些参数,然后再利用相关公式计算出待测刚体的转动惯量,这个过程有比较关键的一步是要先测量空盘的转动惯量,然后再把待测刚体放在空盘上用同样办法测量出两者作为一体的...

用尺子测量物体长度时,应该如何读数
2、 零刻度线或某一数值刻度线对齐待测物体的起始端,使刻度尺有刻度的边贴紧待测物体,与所测长度平行,不能倾斜。3、 视线与刻度尺尺面垂直或正对刻度线。4、读数时要估读到分度值的下一位(在初中物理中长度的测量是唯一必须估读的)。例如下图中刻度尺的分度值是1mm,则读数时要在毫米以下再...

什么是静平衡检测方法,静平衡检测有哪些步骤?
静平衡检测方法是一种用于确定物体是否处于静止状态的方法。它通过测量物体所受的力和力矩来确定物体是否处于平衡状态。静平衡检测方法通常包括以下步骤:1、将待测物体放置在一个平坦的水平面上,并使其保持静止。使用测力计或称重器等工具测量物体所受的重力。使用测力计或扭矩扳手等工具测量物体所受的...

密度测量的原理是什么意思
密度是指物体的质量与其体积之比,是一个物质的固有属性。密度测量的原理是通过测量物体的质量和体积来计算出物体的密度。因为质量和体积都是可以精确测量的物理量,通过它们的比值可以得到物质的密度。测量密度的方法有很多种,常见的有比重法、浮力法和毛细管法等。其中比重法是将待测物体和已知密度的物体...

初中物理测量物体密度的方法有那8种? .
步骤:1)、在玻璃杯中倒入适量水,将鸡蛋轻轻放入,鸡蛋下沉;2)、往水中逐渐加盐,边加边用密度计搅拌,直至鸡蛋漂浮,用密度计测出盐水的 密度即等到于鸡蛋的密度;二、 液体的密度:1、 称量法:器材:烧杯、量筒 、天平、待测液体 步骤:1)、用天平称出烧杯的质量M1;2)、将待测液体倒入 烧杯...

如何解决物理学中关于质量的问题?
物理学中关于质量的问题是研究物质的基本属性和相互作用的重要方面。解决这些问题需要运用物理学的基本原理和方法,并结合实验数据进行验证和分析。首先,要解决质量的问题,我们需要了解质量的定义和测量方法。质量是物体所固有的属性,它决定了物体在引力场中的运动和相互作用。常用的质量单位是千克,在国际...

云梦县19760917154: 高一物理必修2所有公式 -
中明盐酸: 超级全面的物理公式!!!很有用的说~~~(按照咱们的物理课程顺序总结的)¬ 1)匀变速直线运动 ¬ 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as ¬ 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at ¬ 5.中间位置速度Vs/2...

云梦县19760917154: 高一物理运动学4个公式3个推论是什么? -
中明盐酸: 1.速度V=v0+at 2、位移x=Vot+at2/2 3、速度位移公式: Vt2-Vo2=2ax 有用推论: 1、中间时刻速度Vt/2=V平=(Vt+Vo)/2 4. 2.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/23.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

云梦县19760917154: 高中物理公式有哪些?
中明盐酸: 高中物理公式有很多,如:速度Vt=Vo+at;位移s=Vot+at²/2=V平t=Vt/2t;有用推论Vt²-Vo²=2as;初速度Vo=0;末速度Vt=gt;下落高度h=gt2/2;重力G=mg;滑动摩擦...

云梦县19760917154: 高中物理,为什么位移传感器测两次速度? -
中明盐酸: 你看清楚,测两次测的不是速度,是距离,算的是物体的速度. 每测一次,是根据红外线和超声波的速度差,计算ab之间的距离,所以每测一次是测距离,测两次距离,除以两次测量之间的时间差算速度.

云梦县19760917154: 高中物理加速度方向和速度方向怎么判断的… -
中明盐酸: 加速度的方向判定: 1、与物体所受合力方向相同. 2、与(V末-V初)方向相同. 3、若物体做加速运动,则加速度方向与V初方向相同. 4、若物体做减速运动,则加速度方向与V初方向相反. 速度方向判定: 1、在直线运动中,“速度方向...

云梦县19760917154: 高一物理平均速度公式 -
中明盐酸: 1、平均速度=△x/△t(△x=位移,△t=通过这段位移所用的时间). 2、2*V1*V2÷(V1+V2)=平均速度.(前半路程平均速度V1,后半路程平均速度V2) 平均速度是一个描述物体运动平均快慢程度和运动方向的矢量,它粗略地表示物体在一个段时...

云梦县19760917154: 高一物理必修一前两章中的速度,加速度公式变式 -
中明盐酸: 中间位置速度Vs/2=[(Vo2 Vt2)/2]1/2 6.位移s=V平t=Vot at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

云梦县19760917154: 高中物理.速度计算
中明盐酸: 对于:物体在第2秒末的瞬时速度如果初速度为零,那么v=at(a是加速度,第二秒末时t=2)如果初速度不为零,那么v=at+v0(v0是初速度 第2个3s内就是指第四秒初至第六秒末.第一个3s内就是指第一秒初至第三秒末 注意第X秒末和第X+1秒初是同一时刻.

云梦县19760917154: 高一物理必修一公式 -
中明盐酸: 物理必修1知识点第一章 运动的描述一、 基本概念1、 质点2、 参考系3、 坐标系4、 时刻和时间间隔5、 路程:物体运动轨迹的长度6、 位移:表示物体位置的变动.可用从起点到末点的有向线段来表示,是矢量. 位移的大小小于或等于路程....

云梦县19760917154: 物理知识!测量速度的方法?初中,高中的知识 -
中明盐酸: 1. 测量平均速度的方法:测出物体通过距离为s的点用的时间t,则物体在这一段距离上的平均速度=s/t. 2. 测量瞬时速度的方法:用光电计数器测.在相距为△s的很近的两点处设置光电计数器,测出物体通过的时间△t,则物体的瞬时速度v=△s/△t.由于△s很小,所以可以认为v就是物体的瞬时速度.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网