牛顿的微粒说和爱因斯坦的光子说的区别

作者&投稿:厉贫 (若有异议请与网页底部的电邮联系)
牛顿的“微粒说”和爱因斯坦的 “光子说”的区别~

。牛顿支持微粒说。他觉得,波有衍射现象,但光是沿着直线传播的,又有谁见过光拐弯呢?所以他相信微粒说。固然,那时关于光,已知有许多奇妙事实同微粒说是不相容的,可这对于绝顶聪明的牛顿来说,攻克这样的难题还不是小菜一碟?他用粒子说对当时所知的光的一切现象都作了解释,只是稍微牺牲了一点简单性而已。比如,为了解释某种光学现象,他崐把光子想象成鸟似的一起一伏的飞翔。
由于托马斯·扬在公元1817年提出了光是横波的假说,解释了当时所有的已知现象,还预言了粒子说所无法解释的“泊松亮斑”,所以粒子说最终被抛弃。
由于光的衍射和干涉现象的发现,光被确定为一种波,但是后来德国科学家普朗克为了解释黑体辐射能量分布曲线,提出了物体以电磁波的形式放出或吸收的能量都是一捆一捆的。为了方便,他把这种捆称为“量子”。

1905年,爱因斯坦为了解释光电效应中电子射出能量和光子能量之间的奇怪关系,提出了光不仅在发射和吸收的时候是量子化的,光本身在空间中运动的时候也是量子化的,他把这种分立的能量“捆”称之为“光子”

两者之间的主要区别在于,牛顿认为光是一种实物,是一些硬的小球,是按照牛顿运动定路运动的。爱因斯坦的光子说认为,光子还是波动,只不过是一种不连续的,分离的粒子状的波动。

牛顿认为光是一种微粒。
光学是一门最古老的物理学分支之一.光的本性问题一直是人们十分关心和热衷探讨的问题.17世纪以来,随着科学技术的发展,这种争论达到了空前激烈的地步,也就是物理学史上著名的微粒说与波动说之争.
1.根深蒂固的微粒说
17世纪的科学巨匠牛顿,也是光学大师,关于光的本性,牛顿是这样认为的:光是由一颗颗像小弹丸一样的机械微粒所组成的粒子流,发光物体接连不断地向周围空间发射高速直线飞行的光粒子流,一旦这些光粒子进入人的眼睛,冲击视网膜,就引起了视觉,这就是光的微粒说.牛顿用微粒说轻而易举地解释了光的直进、反射和折射现象.由于微粒说通俗易懂,又能解释常见的一些光学现象,所以很快获得了人们的承认和支持.
但是,微粒说并不是“万能”的,比如,它无法解释为什么几束在空间交叉的光线能彼此互不干扰地独立前时,为什么光线并不是永远走直线,而是可以绕过障碍物的边缘拐弯传播等现象.
为了解释这些现象,和牛顿同时代的荷兰物理学家惠更斯,提出了与微粒说相对立的波动说.惠更斯认为光是一种机械波,由发光物体振动引起,依靠一种特殊的叫做“以太”的弹性媒质来传播的现象.波动说不但解释了几束光线在空间相遇不发生干扰而独立传播,而且解释了光的反射和折射现象,不过在解释折射现象时,惠更斯假设光在水中的速度小于在空气中的速度,这与牛顿的解释正好相反.谁是谁非,拉开了近代科学史上关于光究竟是粒子还是波动的激烈论争的序幕.
尽管波动说可以解释不少光学现象,但由于它很不完善,解释不了人们最熟悉的光的直进和颜色的起源等问题,所以没有得到广泛的支持.再加上当时受实验条件的限制,还无法测出水中的光速,便无法判断牛顿和惠更斯关于折射现象的假设谁对谁错.尤其是牛顿在学术界久负盛名,他的拥护者对波动说横加指责,全盘否定,终于把波动说压了下去,致使它在很长时间内几乎销声匿迹.而微粒说盛极一时,居然在光学界称雄整个18世纪.
2.英姿焕发的波动说
进入19世纪以后,曾被微粒说压得奄奄一息的波动说重新活跃起来.一个个崭新的实验事实,使波动说雄姿英发,应付自如,进入了一个“英雄时期”.
第一位向微粒说发起冲击的是牛顿的同胞托马斯•杨.1801年,年轻的托马斯•杨一针见血地说:“尽管我仰慕牛顿的大名,但我并不因此非得认为他是百无一失的.我遗憾地看到,他也会弄错,而他的权威也许有时阻碍了科学的进步.”托马斯•杨为了证明光是一种波,他在暗室中做了一个举世闻名的光的干涉实验.我们知道,干涉现象是波动的一个特性,托马斯•杨的成功,证明了光确实是一种波,它只有用波动说才能解释,微粒说对此一筹莫展.
给微粒说以沉重打击的第二个实验是光的衍射实验.衍射现象也是波的基本特性之一,这是一种波在传播过程中可以绕过障碍物,或穿过小孔、狭缝而不沿直线传播的现象.法国物理学家菲涅尔设计了一个实验,成功地演示了明暗相间的衍射图样,在微粒说看来,光的衍射现象则是不可理解的.
给微粒说以致命打击的是对光速值的精确测定.牛顿和惠更斯在解释光的折射现象时,对于水中光速的假设是截然相反的,谁是谁非,难以证实.到了19世纪中叶,法国物理学家菲索和付科,分别采用高速旋转的齿轮和镜子,先后精确地测出光在水中的传播速度只有空气中速度的四分之三.又一次证明了波动说的正确性.
经过反复较量,波动说终于压过了微粒说,取得了稳固的地位.到19世纪60年代,麦克斯韦总结了电磁现象的基本规律,建立了光的电磁理论.到80年代,赫兹通过实验证实了电磁波的存在,并证明电磁波确实同光一样,能够产生反射、折射、干涉、衍射和偏振等现象.利用光的电磁说,对于以前发现的各种光学现象,都可以做出圆满的解释.这一切使波动说锦上添花,使它在同微粒说的论战中,取得了无可争辩的胜利.
3�重整旗鼓的微粒说
正当波动说欢庆胜利的时候,意外的事情发生了,以太存在的否定和光电效应的发现,这些新的实验事实又一次要置波动说于死地.
波动说认为,光是依靠充满于整个空间的连续介质——以太做弹性机械振动传播的.为了验证以太的存在,1887年,美国物理学家迈克尔逊和莫雷使用当时最精密的仪器,设计了一个精巧的实验.结果证明,地球周围根本不存在什么机械以太.没有以太,光波和电磁波是怎样传播的呢?面对这一波动说难以克服的困难,微粒说跃跃欲试.光电效应的发现,使微粒说再次“复辟登基”.所谓光电效应,就是指金属在光的照射下,从金属表面释放出电子的现象,所释放的电子叫做光电子.大量的实验证明,光电效应的发生,只跟入射光的频率有关,只要入射光的频率足够高,不管它强度多弱,一旦照射到金属上,立刻就有光电子飞出.而从波动说的观点看,光电效应是绝对无法理解的.因此,波动说完全陷入了困境.而爱因斯坦运用光量子说——全新意义上的微粒说,把光电效应解释得一清二楚.至此,光的微粒说又昂首挺胸.活跃在科学的舞台上.但是,爱因斯坦并没有抛弃波动说,而是把二者巧妙地结合在一起,并辨证地指出:“光——同时又是波,又是粒子,是连续的,又是不连续的.自然界喜欢矛盾……”,这一思想充分体现在他的光量子理论的两个基本方程E=hν和p=(h/λ)中,把粒子和波紧密地联系在一起.

1、分类不同

光子说是由爱因斯坦提出。(建立在普朗克能量子的概念之上)光子(又叫光量子)是一种静止质量为零的粒子,具有能量和动量。

微粒说是指物体是由大量坚硬粒子组成的。微粒说很容易解释光的直进性,也很容易解释光的反射,因为粒子与光滑平面发生碰撞的反射定律与光的反射定律相同。

2、作用不同

视光为微粒,作为微粒的光在均匀介质中传播时,由于均匀介质的微粒呈均匀分布,所以光微粒所受到的介质微粒对其施加的引力将被平衡,受力平衡的光微粒当然就应该在均匀介质中沿着直线匀速运动。

微粒说的能量表hγ(γ为频率,h为普朗克常量) 表hγ(γ为频率,h为普朗克常量为p=P=h/λ=hγ/c(γ为频率,c为光速,h为普朗克常量)在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光子。

3、解释原理不同

微粒说在解释一束光射到两种介质分界面处会同时发生和折射,以及几束光交叉相遇后彼此毫不妨碍的继续向前传播等现象时,却发生了很大困难。

光子理论认为,光是由一份份光子组成,光的传播是一份份光子的传播,一个光子的能量为E=hr(h为普朗克常数6.63*10^-34,r为光的频率),因此,只要一个光子能量大于金属的逸出功(电子脱离金属原子做的功),电子就会从金属表面脱离。

参考资料来源:百度百科-光子说

参考资料来源:百度百科-微粒说



牛顿的微粒说和爱因斯坦的光子说都是为了解释光的现象,牛顿把光看作一个个微粒小球,遇到平面就会反弹,但这却解释不了传播能量的问题,而光子说就弥补了这点,爱因斯坦把光看成光是一份一份的能量,具有动能和势能

Newton's corpuscular theory was an elaboration of his view of reality as interactions of material points through forces. Note Albert Einstein description of Newton's conception of physical reality:

Newton's physical reality is characterised by concepts of space, time, the material point and force (interaction between material points). Physical events are to be thought of as movements according to law of material points in space. The material point is the only representative of reality in so far as it is subject to change. The concept of the material point is obviously due to observable bodies; one conceived of the material point on the analogy of movable bodies by omitting characteristics of extension, form, spatial locality, and all their 'inner' qualities, retaining only inertia, translation, and the additional concept of force.

In physics, the photon is the elementary particle responsible for electromagnetic phenomena. It is the carrier of electromagnetic radiation of all wavelengths, including gamma rays, X-rays, ultraviolet light, visible light, infrared light, microwaves, and radio waves. The photon differs from many other elementary particles, such as the electron and the quark, in that it has zero rest mass;[3] therefore, it travels (in a vacuum) at the speed of light, c. Like all quanta, the photon has both wave and particle properties (“wave–particle duality”). Photons show wave-like phenomena, such as refraction by a lens and destructive interference when reflected waves cancel each other out; however, as a particle, it can only interact with matter by transferring the amount of energy

where h is Planck's constant, c is the speed of light, and λ is its wavelength. This is different from a classical wave, which may gain or lose arbitrary amounts of energy. For visible light the energy carried by a single photon is around 4×10–19 joules; this energy is just sufficient to excite a single molecule in a photoreceptor cell of an eye, thus contributing to vision.[4]

Apart from having energy, a photon also carries momentum and has a polarization. It follows the laws of quantum mechanics, which means that often these properties do not have a well-defined value for a given photon. Rather, they are defined as a probability to measure a certain polarization, position, or momentum. For example, although a photon can excite a single molecule, it is often impossible to predict beforehand which molecule will be excited.

The above description of a photon as a carrier of electromagnetic radiation is commonly used by physicists. However, in theoretical physics, a photon can be considered as a mediator for any type of electromagnetic interactions, including magnetic fields and electrostatic repulsion between like charges.

The modern concept of the photon was developed gradually (1905–17) by Albert Einstein[5][6][7][8] to explain experimental observations that did not fit the classical wave model of light. In particular, the photon model accounted for the frequency dependence of light's energy, and explained the ability of matter and radiation to be in thermal equilibrium. Other physicists sought to explain these anomalous observations by semiclassical models, in which light is still described by Maxwell's equations, but the material objects that emit and absorb light are quantized. Although these semiclassical models contributed to the development of quantum mechanics, further experiments proved Einstein's hypothesis that light itself is quantized; the quanta of light are photons.

The photon concept has led to momentous advances in experimental and theoretical physics, such as lasers, Bose–Einstein condensation, quantum field theory, and the probabilistic interpretation of quantum mechanics. According to the Standard Model of particle physics, photons are responsible for producing all electric and magnetic fields, and are themselves the product of requiring that physical laws have a certain symmetry at every point in spacetime. The intrinsic properties of photons—such as charge, mass and spin—are determined by the properties of this gauge symmetry.

The concept of photons is applied to many areas such as photochemistry, high-resolution microscopy, and measurements of molecular distances. Recently, photons have been studied as elements of quantum computers and for sophisticated applications in optical communication such as quantum cryptography.
牛顿的微粒说和爱因斯坦的光子说都是为了解释光的现象,牛顿把光看作一个个微粒小球,遇到平面就会反弹,但这却解释不了传播能量的问题,而光子说就弥补了这点,爱因斯坦把光看成光是一份一份的能量,具有动能和势能

自己看一下
Newton's corpuscular theory was an elaboration of his view of reality as interactions of material points through forces. Note Albert Einstein description of Newton's conception of physical reality:

Newton's physical reality is characterised by concepts of space, time, the material point and force (interaction between material points). Physical events are to be thought of as movements according to law of material points in space. The material point is the only representative of reality in so far as it is subject to change. The concept of the material point is obviously due to observable bodies; one conceived of the material point on the analogy of movable bodies by omitting characteristics of extension, form, spatial locality, and all their 'inner' qualities, retaining only inertia, translation, and the additional concept of force.

In physics, the photon is the elementary particle responsible for electromagnetic phenomena. It is the carrier of electromagnetic radiation of all wavelengths, including gamma rays, X-rays, ultraviolet light, visible light, infrared light, microwaves, and radio waves. The photon differs from many other elementary particles, such as the electron and the quark, in that it has zero rest mass;[3] therefore, it travels (in a vacuum) at the speed of light, c. Like all quanta, the photon has both wave and particle properties (“wave–particle duality”). Photons show wave-like phenomena, such as refraction by a lens and destructive interference when reflected waves cancel each other out; however, as a particle, it can only interact with matter by transferring the amount of energy

where h is Planck's constant, c is the speed of light, and λ is its wavelength. This is different from a classical wave, which may gain or lose arbitrary amounts of energy. For visible light the energy carried by a single photon is around 4×10–19 joules; this energy is just sufficient to excite a single molecule in a photoreceptor cell of an eye, thus contributing to vision.[4]

Apart from having energy, a photon also carries momentum and has a polarization. It follows the laws of quantum mechanics, which means that often these properties do not have a well-defined value for a given photon. Rather, they are defined as a probability to measure a certain polarization, position, or momentum. For example, although a photon can excite a single molecule, it is often impossible to predict beforehand which molecule will be excited.

The above description of a photon as a carrier of electromagnetic radiation is commonly used by physicists. However, in theoretical physics, a photon can be considered as a mediator for any type of electromagnetic interactions, including magnetic fields and electrostatic repulsion between like charges.

The modern concept of the photon was developed gradually (1905–17) by Albert Einstein[5][6][7][8] to explain experimental observations that did not fit the classical wave model of light. In particular, the photon model accounted for the frequency dependence of light's energy, and explained the ability of matter and radiation to be in thermal equilibrium. Other physicists sought to explain these anomalous observations by semiclassical models, in which light is still described by Maxwell's equations, but the material objects that emit and absorb light are quantized. Although these semiclassical models contributed to the development of quantum mechanics, further experiments proved Einstein's hypothesis that light itself is quantized; the quanta of light are photons.

The photon concept has led to momentous advances in experimental and theoretical physics, such as lasers, Bose–Einstein condensation, quantum field theory, and the probabilistic interpretation of quantum mechanics. According to the Standard Model of particle physics, photons are responsible for producing all electric and magnetic fields, and are themselves the product of requiring that physical laws have a certain symmetry at every point in spacetime. The intrinsic properties of photons—such as charge, mass and spin—are determined by the properties of this gauge symmetry.

The concept of photons is applied to many areas such as photochemistry, high-resolution microscopy, and measurements of molecular distances. Recently, photons have been studied as elements of quantum computers and for sophisticated applications in optical communication such as quantum cryptography.

牛顿的微粒说,把光看成是宏观意义上的微粒,他解释光直线传播,与宏观物体一样,受力为0,作匀速直线运动。解释反射,光微粒在碰撞到界面,获得冲量而改变运动方向。
爱因斯坦发现光电效应,按传统的波动理论,波德能量由振幅决定,与频率无关,可是光电效应表明,光的能量与频率有关,与振幅无关。于是爱因斯坦提出光子说,其认为光子能量E=hv,其中的v是指光的频率,这就埋下波粒二象性的根源。后来发现氢原子特征光谱不连续,说明光的粒子性。爱因斯坦把光看成光是一份一份的能量,具有动能和势能。

区别:微粒说把光看成一种微粒,无法解释光线并不是永远走直线,而是可以绕过障碍物的边缘拐弯传播等现象。光子说可以把光看成能量具有动能和势能,可以解释以上问题。


什么是波粒二象性
他分析了从牛顿和惠更斯以来,波动说和微粒说之间的长期争论,指出麦克斯韦电磁波理论的局限性,审查了普朗克处理黑体辐射的思路,总结了光和物质相互作用有关的...爱因斯宣称:“这些考虑……表明辐射的空间分布的涨落和辐射压的涨落也表现得好象辐射是由具有上述大小的量子所构成的一样。”他强调指出:“现代辐射理论(按...

有些象《相对论》一样的,神奇的理论,还有什么??什么是时间膨胀,什么是...
他分析了从牛顿和惠更斯以来,波动说和微粒说之间的长期争论,指出麦克斯韦电磁波理论的局限性,审查了普朗克处理黑体辐射的思路,总结了光和物质相互作用有关的各种现象,认为光在传播过程和与物质相互作用的过程中,能量不是分散的,而是一份一份地以能量子的形式出现的。 1909年1月,爱因斯坦再次撰文讨论辐射问题,9月在...

黑河市18384606299: 牛顿的“微粒说”和爱因斯坦的 “光子说”的区别 -
弥姿迪利: .牛顿支持微粒说.他觉得,波有衍射现象,但光是沿着直线传播的,又有谁见过光拐弯呢?所以他相信微粒说.固然,那时关于光,已知有许多奇妙事实同微粒说是不相容的,可这对于绝顶聪明的牛顿来说,攻克这样的难题还不是小菜一碟?...

黑河市18384606299: 牛顿的微粒说和爱因斯坦的光子说的区别一机惠更斯的波动说与电磁说的区别.请说得明白一点. -
弥姿迪利:[答案] 牛顿认为光是一种微粒. 光学是一门最古老的物理学分支之一.光的本性问题一直是人们十分关心和热衷探讨的问题.17世纪以来,随着科学技术的发展,这种争论达到了空前激烈的地步,也就是物理学史上著名的微粒说与波动说...

黑河市18384606299: 牛顿旳"微粒说"和爱因斯坦旳 "光子说"的区别 -
弥姿迪利: 简单说 微粒说就是光是有微粒组成 而光子的提出说明光具有波粒二向性

黑河市18384606299: 下列说法正确的是() -
弥姿迪利:[选项] A. 牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的 B. 光的双缝干涉实验显示了光具有波动性 C. 红光照射某金属时有电子向外发射,紫光照射该金属时一定也有电子向外发射 D. 原子核所含核子单独存在时的总质量小于该原子核的质量

黑河市18384606299: 为什么说爱因斯坦的"光子"与牛顿的"微粒"是不同的? -
弥姿迪利: 爱因斯坦提出的光子是指量子力学中光传播的一份份能量,它同时适用于高速的相对论力学和微观的量子力学 而牛顿说的微粒是指一种实物粒子,及类似电子,质子等具有静止质量的微观粒子,而近代科学发现光子并没有精质量

黑河市18384606299: 关于对光的本性的认识 下列说法中正确的是 ( ) -
弥姿迪利:[选项] A. 牛顿的微粒说与惠更斯的波动说第一次揭示了光具有波粒二象性 B. 牛顿的微粒说与爱因斯坦的光子说没有本质的区别 C. 麦克斯韦从理论上指出电磁波传播速度跟光速相同 他提出光是一种电磁波 D. 麦克斯韦的电磁说与爱因斯坦的光子说说明光具有波粒二象性

黑河市18384606299: 光到底是物质微粒还是波 -
弥姿迪利: 光子既是粒子又是波(电磁波). 首先先说光子是物质吧.这个简单,如果你否认光是物质,那么它是什么,是意识吗?显然,它是物质.波也可以是物质存在的一种形态,不要把声波不是物质和光波是物质弄混了.类似的 场也是物质. 光在均匀...

黑河市18384606299: 19世纪之前,人们对光的本质有哪两种不同的学说 -
弥姿迪利:[答案] 人类对光的认识过程- - 人类对光的本性认识经历了一个非常曲折、漫长的过程,这其中不仅仅使我们获得了很多知识,更... 以惠更斯等为代表的光的波动说和以牛顿为代表的光的微粒说各持己见.它们都能解释一些光学现象.但也各有一些局限性,限...

黑河市18384606299: “光”是什么,是物体吗? -
弥姿迪利: 在经典物理学上,粒子理论认为光是由一个个独立的光子构成的.到十七世纪晚期Christian Huygens提出了波动理论,认为光是一种特殊的波而不是粒子集合.1807年Thomas Young又用光的衍射行为进一步证实了这一理论.可就在人们决定接...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网