有关光学科学家的事迹

作者&投稿:兆阁 (若有异议请与网页底部的电邮联系)
光学、力学科学家的故事~

是牛顿,就找有关他的故事就行了。。

惠更斯
荷兰物理学家、天文学家、数学家。是与牛顿同一时代的科学家,是历史上最著名的物理学家之一,他对力学的发展和光学的研究都有杰出的贡献,在数学和天文学方面也有卓越的成就,是近代自然科学的一位重要开拓者。他建立向心力定律,提出动量守恒原理,改进了计时器。
海森伯
1932年度的诺贝尔物理学奖金于1933年授予海森伯,因为他创立了量子力学(矩阵力学)。它导致了氢的同素异形形式的发现。此外,他还获得许多其他方面的奖励。
焦 耳
焦耳最早的工作是电学和磁学方面的研究,后转向对功热转化的实验研究。
1866年由于他在热学、电学和热力学方面的贡献,被授予英国皇家学会柯普莱金质奖章。
伽利略
伟大的物理学家、天文学家、科学革命的先驱,是人类改变世界的大科学家之一。
卡文迪许
卡文迪许的才能是多方面的。1784年左右他研究了空气的组成,发现普通空气中氮占五分之四,氧占五分之一。他确定了水的成分,肯定了它不是元素而是化合物。他还发现了硝酸。 卡文迪许在热学理论、计温学、气象学、大地磁学等方面都有研究。
卢瑟福
他关于放射性的研究确立了放射性是发自原子内部的变化。他通过α粒子为物质所散射的研究,无可辩驳的论证了原子的核模型,因而一举把原子结构的研究引上了正确的轨道,于是他被誉为原子物理学之父。人工核反应的实现是卢瑟福的另一项重大贡献。
李政道
李政道和杨振宁荣获1957年度诺贝尔物理学奖,是基于他们在1956年提出的“李一杨假说”-在基本粒子的弱相互作用中宇称可能是不守恒的,这被另一位华裔女物理学家吴健雄(1912 -1997)用实验所证实,从而推翻了过去在物理学界被奉为金科玉律的宇称守恒定律,为人类在探索微观世界的道路上打开了一扇新的大门。
钱伟长
他首次将张量分析及微分几何用于弹性板壳研究并建立了薄板薄壳的统一理论,提出了线壳理论的非线性微分方程组,国际上称为“钱伟长方程”。他还首次成功地用系统摄动法处理非线性方程,迄今国际上仍用此法处理这类问题。
他首次将张量分析及微分几何用于弹性板壳研究并建立了薄板薄壳的统一理论,提出了线壳理论的非线性微分方程组,国际上称为“钱伟长方程”。他还首次成功地用系统摄动法处理非线性方程,迄今国际上仍用此法处理这类问题。
牛顿
牛顿在科学上最卓越的贡献是微积分和经典力学的创建。
阿尔伯特·爱因斯坦
著名理论物理学家,相对论的创立者。

1、蒋筑英

蒋筑英不仅有很强的事业心和优秀的人才,而且有高尚无私的思想。翻译外国材料时,蒋筑英经常把它们翻译成另一篇论文,把它们清楚地抄写下来,寄给学习相关学科的同志们。仅四室的同志就收到过他送上门的译文资料九篇。

为了方便人们获取信息,蒋筑英到图书馆积极帮助编目,又到情报室帮助编辑了《光学设计与检验》资料索引。蒋筑英还把多年积累的大量文件卡寄给了新闻办公室供你参考。中国科学院图书馆光学资料不好查找,他设计了一个书目编排方案寄去。

2、王大珩

80年代,王大珩虽然年事已高,领导繁忙,却不遗余力地指导博士生。在选题上,注重理论水平和实践能力。内容应具有进一步工作的前景或应用前景。对学生论文的审阅修改,详尽而严格,对曾是自己提出的新概念、新思想等等内容,从不计较个人署名。


扩展资料:

王大珩的主要荣誉:

1979年,获“全国劳动模范”称号。

1985年,靶场光测设备以“现代国防试验中的动态光学观测及测量技术”获国家科学技术进步特等奖,王大珩是首席获奖者。

1995年1月,获1994年度“何梁何利基金优秀奖”。

1999年,中共中央、国务院、中央军委决定,授予王大珩“两弹一星功勋奖章”。

2001年,荣获国家“863计划”特殊贡献先进个人称号。

2018年11月,入选100名改革开放杰出贡献对象。

2018年12月18日,党中央、国务院授予王大珩同志改革先锋称号,颁授改革先锋奖章,并获评“‘863’计划的主要倡导者”。

参考资料来源:百度百科-蒋筑英

参考资料来源:百度百科-王大珩



光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。

 光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。   人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的时代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。
自《墨经》开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。   1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。   
牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。   
牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。   
惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。   
19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝乾涉现象。菲涅耳于1818年以杨氏乾涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能解释光的直线传播。   
在进一步的研究中,观察到了光的偏振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。
1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。   
1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。   
对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用乾涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。   
1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。   
量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。   
1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。   
1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。   
这样,在20世纪初,一方面从光的干涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。   1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。   此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。   
爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,西奥多·梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。   
光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。
自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。再加上由于激光所提供的相乾光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。   
在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。

光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。
光学的起源在西方很早就有光学知识的记载,欧几里得(Euclid,公元前约330~260)的<反射光学>(Catoptrica)研究了光的反射;阿拉伯学者阿勒·哈增(AI-Hazen,965~1038)写过一部<光学全书>,讨论了许多光学的现象。   光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。17世纪,望远镜和显微镜的应用大大促进了几何光学的发展。   光的本性(物理光学)也是光学研究的重要课题。微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。19世纪以前,微粒说比较盛行。但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如干涉、衍射等,用光的波动性就很容易解释。於是光学的波动说又占了上风。两种学说的争论构成了光学发展史上的一根红线。   狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。
编辑本段历史发展
  光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。   人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的时代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。
自《墨经》开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。   1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。   牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。   牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。   惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。   19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝乾涉现象。菲涅耳于1818年以杨氏乾涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能解释光的直线传播。   在进一步的研究中,观察到了光的偏振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。 光学
1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。   1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。   对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用乾涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。   1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。   量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。   1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。   1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。   这样,在20世纪初,一方面从光的干涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。   1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。   此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。   爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,西奥多·梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。   光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。 光学
自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。再加上由于激光所提供的相乾光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。   在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。
我们通常把光学分成几何光学、物理光学和量子光学。
几何光学
  是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。
物理光学
  是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。
量子光学
  英文名称:quantum optics   量子光学是以辐射的量子理论研究光的产生、传输、检测及光与物质相互作用的学科。1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。   1905年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能。   这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。   光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。
《光学》 作者:【古希腊】欧几里德   《光学》(Optics)是希腊文的第一本透视学,从12个假设(公设)出发推出61个命题.假设1是“人看到物体,是光线从眼睛出发射到所看的物体上去”.这是从柏拉图以来的传统观点.其中命题6是“处于平行位置,大小相同但距离不同的物体,在眼中看到的大小并不与远近成比例”.
近现代
  《 光学原理——光的传播、干涉和衍射的电磁理论》(第七版),作者:(德)玻恩,(美)沃耳夫著,杨葭荪译   新版《光学原理》为有志于攀登光学高峰的年轻人提供了一架云梯,如果不是圣经的话;新版《光学原理》昭示人们,掌握基础理论才是发展和创新的根本,根深叶茂,本固枝荣。   ——中国科学院院士、中国光学学会理事长母国光   本书首次出版于1959年,其前身是诺贝尔奖得主马科斯·玻恩(Max Born)的Optik一书,目前的最新版本是1999年第七版。《光学原理》一书在国外被广泛称为“Born & Wolf”已经销售超过30万册。事实上,每一个科班出身学习光学的人都研读过这本书并深受其影响。近半个世纪以来,“Born & Wolf”一直是物理书架上必不可少的作品,并成为光学领域的奠基性教科书。
光学   光学(最初出现的时候抑或在古希腊时期)属于物理学的一个分支,描述光本身以及光与物质相互作用的特征及性质。 光学既解释了光现象,也由光现象来证明其合理性。   光学领域通常只描述可见光,红外线和紫外线的特征,但是,由于光也是一种电磁波,X-射线,微波,无线电波,和其他形式的电磁辐射也具有和光想似的现象,因此光学也可以看作电磁波的一个波段。部分光现象与取决于光的量子性,正因如此,光学领域也涉及到量子力学。在实践中,绝大多数的光学现象都归结于光的电磁性,可以用麦克斯韦方程来解释。

光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。

详情点击http://baike.baidu.com/view/47271.html(里面也有事迹)

光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。


科学家的小故事(50字以内)
然而世界著名的物理学家和化学家、两次诺贝尔奖金获得者居里夫人就是这样一个“不近人情”的人。 居里夫人和她丈夫居里先生为了从事科学研究,谢绝一起应酬,常常是几十天关在屋内不出门。有时他们忘了做饭,就吃胡萝卜充饥。居里夫妇虽然是世界闻名的科学家,家里却很穷。有一天,他们收到爸爸的来信,问他们要添置...

收集其他科学家的事迹
三百多年后,1979年11月10日,罗马教皇不得不在公开集会上宣布:1633年对伽利略的宣判是不公正的。1980年10月又提出重审这一案件,并在罗组成一个包括不同宗教信仰的世界著名科学家委员会来研究伽利略案件的始末,研究科学同宗教的关系,研究伽利略学说的科学价值及其对现代科学思想的贡献。

科学家献身事迹摘抄
2、牛顿 萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为...

国外著名科学家
他还是首位发现色盲现象的科学家。著有《化学哲学的新体系》《气象观测与研究》等。 (22)托马斯·杨 托马斯·杨是英国物理学家、医生、光的波动说的奠基人之一。他做了著名的杨氏干涉实验,为波动光学的复兴做了开创性的工作,是物理学的经典实验之一。他用自己创建的干涉原理解释牛顿环的成因和薄膜的彩色,并第一...

两弹一星科学家的资料
陈能宽(1923~2016.05.27 )材料科学与工程专家,生于湖南慈利县。1960年以后从事原子弹、氢弹及核武器的发展研制。邓稼先(1924.06.25~1986.07.29)安徽怀宁人,理论物理学家,核物理学家。在原子弹、氢弹研究中,领导了爆轰物理、流体力学、状态方程、中子输运等基础理论研究。朱光亚(1924.12.25~ ...

1987到1990年诺贝尔物理学奖获得者的主要事迹,生活轶事
汉斯·格奥尔格·德默尔特德国-美国物理学家,1989年获诺贝尔物理学奖。汉斯·格奥尔格·德默尔特出生于德国格尔利茨,在柏林长大的。1940年中学毕业后他在一个机动防空部队中当兵。他于斯大林格勒战役中幸存,然后被陆军遣送到布雷斯劳大学学习物理。1944年他被派往西部战线,在突出部之役中被美军俘虏。1946...

关与科学家的事迹
关与科学家的事迹 5 越多越好辣... 越多越好辣 展开  我来答 5个回答 #热议# 孩子之间打架 父母要不要干预? 康麦冬Aq 2007-10-18 知道答主 回答量:9 采纳率:0% 帮助的人:0 我也去答题访问个人页 关注 展开全部 艾伯特·爱因斯坦于1879年3月14日在德国小城乌尔姆出生,他的父母都...

其他科学家的事迹
1685~1687年,在天文学家哈雷的鼓励和赞助下,牛顿发表了著名的《自然哲学的数学原理》,完成了具有历史意义的发现——运动定律和万有引力定律,对近代自然科学的发展,作出了重大贡献.1703年,当选为英国皇家学会会长.1727年3月27日,逝世于伦敦郊外的一个小村落里.牛顿不仅对于力学,在其他方面也有...

有哪些关于国人为国家争气的故事?
其后詹天佑的事迹一直激励着我国的铁路人,如今我们的动车和高铁已经位于世界前列,这与詹天佑为祖国而奋斗和献身的精神鼓舞是分不开的。8、献身科学的华罗庚 在抗战结束后,有美国的高端学府通过优渥的经济条件,让当时留学的数学家华罗庚为终身教授。但他回答说:为了抉择真理,为了国家民族,我要回国去!他...

两弹一星科学家资料
名单:于敏(1926~ )核物理学家,中国科学院学部委员。1960年底开始从事核武器理论研究,在氢弹原理突破中解决了热核武器物理中一系列关键问题。2015年被评为感动中国年度人物。王大珩(1915.02.26~2011.7.21)光学专家,生于江苏吴县。中国光学界的主要学术奠基人、开拓者和组织领 导者。开拓和推动...

晴隆县15256804043: 有关光学科学家的事迹并解释什么事光学. -
天狗藿香:[答案] 光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科.传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究.光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述...

晴隆县15256804043: 列一下光学中的科学家及其成就
天狗藿香: 张衡——地动仪 祖冲之——圆周率 僧一行——子午线 加利略——力学 牛顿——万有引力 卢瑟福——原子模型 波尔——量子力学 哈勃——宇宙膨胀理论 哥白尼——日心说 达尔文——进化论

晴隆县15256804043: 关于敢于挑战权威,相信真理的科学家事迹? -
天狗藿香: 托马斯·杨 牛顿曾在其《光学》的论著中提出光是由微粒组成的,在之后的近百年时间,人们对光学的认识几乎停滞不前,直到托马斯·杨的诞生,他成为开启光学真理的一把钥匙,为后来的研究者指明了方向. 杨没有向权威低头,而是为此撰写了一篇论文,不过论文无处发表,只好印成小册子,据说发行后“只印出了一本”.杨在论文中勇敢地反击:“尽管我仰慕牛顿的大名,但是我并不因此而认为他是万无一失的.我遗憾地看到,他也会弄错,而他的权威有时甚至可能阻碍科学的进步.”

晴隆县15256804043: 求牛顿在光学领域上的贡献的详细. -
天狗藿香: 1.推导出了近轴光学成像公式,即牛顿公式,解决了经透镜成像的物象位置关系2.将太阳光射入三棱镜,出射光呈现出七彩色,由此发现了白光是由各种不同颜色的光组成,进而精确地说明了...

晴隆县15256804043: 牛顿介绍牛顿的生平事迹牛顿介绍<br/>牛顿的生平事迹
天狗藿香: 牛顿一、生平简介 牛顿(1643—1727)是英国著名的物理学家、数学家和天文学家... 对于光学,牛顿致力于光的颜色和光的本性的研究,也作出了重大贡献.3£? 牛顿...

晴隆县15256804043: 世界著名的科学家及主要成就 -
天狗藿香: 1、艾萨克-牛顿:艾萨克-牛顿是英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》.不仅发现了“万有引力”,还对现代工程学的发展奠定了基础;在光学领域中,他发明了反射望远镜,得出了颜色理论,...

晴隆县15256804043: 光学家和力学家有哪些 -
天狗藿香: 光学家:托马斯·扬(1773—1826)国籍:英国 事例:证明了光波的存在,等等. 力学家:伽利略(1564—1642)国籍:意大利 事例:证明轻的物体和重的物体会以相同速度下落,等等. 附:名人不一定只是一个“家”,像牛顿除了是科学家,还是数学家、哲学家、物理学家.

晴隆县15256804043: 牛顿对物理学的贡献是什么? -
天狗藿香:[答案] 牛顿的贡献及其对中国的影响作者:§☆贝贝゛.牛顿(Isaac Newton,1643.1.4--1727.3.20)是英国物理学家、数学家和天文... 而对青少年启迪智力如此有效,是伏尔泰当初为普及牛顿力学所始料未及的.严肃的科学家时有为“苹果落地”的故事而耽心....

晴隆县15256804043: 介绍一位你最崇拜的科学家的事迹,说一说对你有什么影响? -
天狗藿香: 爱迪生是一位闻名世界的伟大发明家. 1.爱迪生在科学技术中最重大的贡献是发明了留声机和白炽电灯. 2.爱迪生还在电影、有轨电车、矿业、建筑以及兵器等方面,有许多著名的发明创造. 3.爱迪生还在一个真空灯泡里观察到热电子发射现象,后...

晴隆县15256804043: 关于敢于挑战权威,相信真理的科学家事迹?不要老套!200字左右 -
天狗藿香:[答案]托马斯·杨 牛顿曾在其《光学》的论著中提出光是由微粒组成的,在之后的近百年时间,人们对光学的认识几乎停滞不前,直到托马斯·杨的诞生,他成为开启光学真理的一把钥匙,为后来的研究者指明了方向. 杨没有向权威低头...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网